
Metalevel Information in Ontology-Based Applications

Thanh Tran Duc, Peter Haase
AIFB Institute,

University of Karlsruhe
D-76128 Karlsruhe, Germany

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks
Computing Laboratory, University of Oxford

Wolfson Building, Parks Road,
Oxford, OX1 3QD, UK

Abstract

Applications of Semantic Web technologies often require the
management ofmetalevelinformation—that is, information
that provides additional detail about domain-level informa-
tion, such as provenance or access rights policies. Existing
OWL-based tools provide little or no support for the rep-
resentation and management of metalevel information. To
fill this gap, we propose a framework based onmetaviews—
ontologies that describe facts in the application domain. We
have implemented our framework in the KAON2 reasoner,
and have successfully applied it in a nontrivial scenario.

Introduction
Applications of the Web Ontology Language (OWL) abound
in both academia and industry. By relying on OWL, appli-
cations can exploit the extensive body of research in ontol-
ogy management and reasoning, as well as an advanced tool
base supporting complex services such as query answering.
OWL is often used for modeling the objects of an applica-
tion domain. For example, in an application that manages
corporate data about products, an OWL ontology might be
used to capture the structure of the product catalog. Such a
domain ontologycan be used for data gathering and access.

Domain information is often accompanied bymetalevel
information that does not talk about the application domain,
but describes the domain information itself. For example,
an application might want to record the provenance and
quality of domain information and to use them for filtering
and ranking queries to domain information, such as retriev-
ing “all information from a trusted source.” Other possi-
ble uses of metalevel information include the provision of
an access-rights model for domain information, and adding
hints about the proper semantic meaning of ontology entities
usingmetaproperties(Welty & Andersen 2005).

Several formalisms have been proposed that allow for a
clear separation and a controlled interaction between do-
main and metalevel information. Modal logics have often
been used to give a precise model-theoretic interpretation
to modalities such as beliefs and agent knowledge (Halpern
& Moses 1992). The metareasoning framework (Criscuolo,
Giunchiglia, & Serafini 2002) distinguishes between object

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and metatheories and provides bridging rules for linking the
statements at different levels. Context logics (Guha, Mc-
Cool, & Fikes 2004) allow one to state that a proposition
is true in some context. Such logics, however, are often
rather complex and not practicable. At the other end of
the spectrum, the Resource Description Framework (RDF)
(Klyne & Carroll 2004) provides a rudimentary mechanism
for the representation of metalevel information viareifica-
tion; however, the semantics of reification has not been pre-
cisely defined. (Schueleret al. 2008) have extended RDF
and SPARQL with constructs that enable explicit representa-
tion and querying of metalevel information, but it is unclear
how to apply this approach to expressive languages such as
OWL. In OWL, metalevel information about entities can be
captured using annotations; however, these can be used in an
OWL ontology only in a very restricted way. Furthermore,
OWL provides no explicit support for metalevel information
about axioms. Thus, OWL applications currently need to
devise ad hoc mechanisms for solving problems related to
metalevel information. Such mechanisms are often propri-
etary, so there is little or no standardized tool support.

In this paper we present a simple yet semantically sound
framework for the management of metalevel information—
one that can easily be integrated into existing ontology man-
agement systems and reasoners. Our framework is based on
the observation that domain and metalevel information have
distinct universes of discourse. We store the metalevel state-
ments in the domain ontology usingaxiom annotations—
ontology statements that are akin to comments in a program-
ming language and that do not affect the semantics of the do-
main information. We give semantics to this information by
translating the metalevel statements from the domain ontol-
ogy into ametaview—an ontology that explicitly talks about
the facts in the domain ontology. The domain ontology and
its metaview are interpreted independently. We propose a
query language MQL that can be used to integrate the infor-
mation in the two ontologies in a controlled manner.

We have implemented our framework in the ontology
management and reasoning system KAON2 (Motik & Sat-
tler 2006). The implementation is relatively straightforward,
which we take as evidence that our framework is lightweight
and does not require extensive change to existing tools. To
demonstrate the usefulness of our framework in practice, we
have applied it in a nontrivial application scenario.



Our framework is based on the OWL 1.1 W3C Mem-
ber Submission,1 and we assume the reader to be familiar
with its Functional-Style Syntax. OWL 1.1 is currently be-
ing evolved into a new W3C standard called OWL 2. Once
this work is completed, aligning our framework with OWL
2 should be straightforward.

Application Scenario
Our application scenario is based on a use case from a Euro-
pean research project. In order to keep up with its competi-
tors, one of the project partners—a well-known European
car manufacturer—maintains a Competitive Analysis De-
partment, in which analysts produce monthly reports about
competitors’ new cars and improvements to existing models.
Product managers use such reports to determine which cars
are likely to adversely affect manufacturer’s market position.

The Department employs a range of techniques for gath-
ering the data necessary to produce these reports. For ex-
ample, a lot of data is manually gathered and entered into
various databases. In order to deal with the large volumes of
information now available online, the Department also uses
text analysis tools that periodically scan online information
sources; these tools typically provide quality indicatorssuch
as confidence in data accuracy. Example 1 show the type of
information that is gathered during the acquisition process.

Example 1 Mazda2 consumes 5.3 l/100km. (origin: Mo-
torbox; agent: text analysis; confidence: 0.8)

In order to generate the monthly report, the analysts run
various queries over the databases containing the gathered
data. They often want to filter out “uncertain” information,
and so they might ask the following query.

Example 2 Retrieve all pieces of information about Mazda
car models together with their associated confidence levels.

Furthermore, since fuel prices are high, fuel consumption
is a critical factor in the report. Hence, the analysts might
want to verify the information sources that provide informa-
tion about models with low fuel consumption.

Example 3 Retrieve all information sources stating some
information about car models with low consumption.

Finally, the analysts might want to retrieve information
about competitors’ low-consumption cars; since this repre-
sents critical marketing information, only high quality infor-
mation sources should be considered.

Example 4 Retrieve all car models with low consumption,
but consider only high-quality information sources.

Large amounts of data are needed in order to produce ac-
curate reports, so a high degree of automation is crucial to
the Department’s success. This is to be achieved using a
common conceptual model that can be used for end-to-end
description of the data in the system. Such a conceptual
model should be multifaceted. It should provide a common
vocabulary that can capture common knowledge about the
modeled domain, as in the following example.

1http://www.w3.org/Submission/2006/10/

Example 5 Each car model has a nominal consumption
measured in l/100km. Car models whose consumption is
lower than 6 l/100km have low consumption.

The conceptual model should also represent analysts’
background knowledge about the information gathering and
report generation processes, as in the following example.

Example 6 Motorbox is a low-quality, and Newstreet is a
high-quality information source. Information that is manu-
ally entered is of high-quality.

Finally, the conceptual model should allow the applica-
tion to store the actual information gathered in the process,
such as that presented in Example 1, and should support
queries such as the ones in Examples 2–4. Ontologies are
nowadays commonly used in applications for conceptual
modeling, so it is natural to apply them in this scenario.

The Metaview Approach
We now present a framework that can be used to realize sce-
narios such as the one described in the previous section.

Domain- and Metalevel Information
Using ontology-based technologies in our scenario is not
straightforward. From Examples 1, 5, and 6, we can see
that our application needs to represent two different typesof
information. The facts that “the consumption of Mazda2 is
5.3 l/100km” and that “low consumption cars consume less
than 6 l/100km” describe the application domain; we call
such informationdomain-level. The fact that the consump-
tion of Mazda2 has been discovered on Motorbox describes
not the application domain, but the domain-level statements
themselves; we call such informationmetalevel.

The distinction between domain- and metalevel informa-
tion is crucial in our scenario. One might argue that met-
alevel information can be represented by simply extending
the domain-level ontology appropriately. For example, the
information from Example 1 can be represented using a
ternary relation connecting the car model, the consumption,
and the information source. Such a modeling style, however,
is quite cumbersome because it interacts adversely with rea-
soning; for example, it is unclear how the information about
the origin of the fact should influence the conclusion that
Mazda2 is not a low consumption car. Moreover, RDF and
OWL support only binary relations. Hence, separating the
two types of information is useful for both conceptual and
practical reasons. To do so, we need an approach for repre-
senting and relating domain- and metalevel information.

Metalevel Information in RDF
Before presenting our approach, we overview the capabil-
ities for representing metalevel information in RDF—the
simplest of the Semantic Web languages. RDF graphs con-
sist of triples of the form〈s p o〉, wheres is thesubject, p
is thepredicate, ando is theobject; subjects, predicates and
objects are all calledresources. For example, the domain-
level statement from Example 1 can be represented by triple
(1). Metalevel information about RDF resources can be
encoded using standard triples. For metalevel information



about RDF statements, RDF provides a mechanism called
reification. To represent information about triple (1), the
triple can bereified—that is, it can be given identity and
turned itself into triples. Triple (1) can thus be represented
by a new resourcea:t1 and described by triples (2). Infor-
mation about (1) can then be stated by attaching it toa:t1, as
it is shown in triple (3).
(1) 〈a:Mazda2 a:cons “5.3”〉

(2)
〈a:t1 rdf:type rdf:Statement〉, 〈a:t1 rdf:subject a:Mazda2〉,
〈a:t1 rdf:predicate a:cons〉, 〈a:t1 rdf:object “5.3”〉

(3) 〈a:t1 a:origin a:Motorbox〉

The main drawback of RDF reification is that the relation-
ship between the original and the reified triples is unclear.
For example, it is unclear whether (1) implies (2) or vice
versa. It is also unclear whether the infrastructure that real-
izes the management of RDF ontologies should generate (2)
from (1) automatically, or whether the reified triples should
be entered manually. Hence, reification has not been used
extensively in practice and is not supported in OWL DL.

Framework Overview
Our framework for the management of domain- and met-
alevel information is schematically shown in Figure 1. It
is inspired by RDF reification, but without the ambiguities
in the semantics. It is based on an observation that the
domain- and metalevel information talk about different uni-
verses of discourse: the domain information may, for ex-
ample, talk about vehicles and vehicle information sources,
while the metalevel information talks about domain state-
ments themselves. We therefore use distinct ontologies to
capture domain- and metalevel information; we call the for-
mer thedomain ontologyand the latter themetaview.

Keeping the domain and metalevel information in phys-
ically separate ontologies would make information mainte-
nance difficult. Thus, we use annotations to add metalevel
information to the domain ontologyO in a way which al-
lows us to extract the metaview fromO whenever needed.
By using annotations, we ensure that metalevel information
in O does not affect the formal meaning ofO. We define
an operatorµ that transforms the domain ontologyO into
its metaviewµ(O). Thus, the metaview can be though of
as a “virtual” ontology that is generated fromO on demand.
The metaview is, however, an OWL ontology, thus provid-
ing precise semantics to the metalevel information.

The ontologyµ(O) contains the reified facts ofO, repre-
sented as instances ofOmo—a metaontology that models the
structure of OWL 1.1 axioms; furthermore,µ(O) contains
assertions about these facts that are extracted from their an-
notations inO. Thus,µ(O) might contain a description of
the fact in Example 1: it would represent the structure of
the fact “Mazda2 consumes 5.3 l/100km”, and the statement
that this fact was derived from Motorbox using text analysis
with a confidence of 0.8.

Knowledge about the general structure of the metalevel
information used in the application can be described in a
separate application-specific ontologyOml. This ontology
might contain statements such as those in Example 6—that
is, that Newstreet and manual entry are both high-quality

Domain Ontology

(O)

DOMAIN INFORMATION METALEVEL INFORMATION

query query

Query Formalism (MQL)

Metaview

( (O))

Metalevel

Ontology

(Oml)

import

Metaview

Vocabulary

(Omo)
import

mo:import

Figure 1: The Metaview Framework

information sources, while Motorbox is a low-quality infor-
mation source.

The operatorµ ensures that each metaview ontologyµ(O)
importsOmo via the standard OWL 1.1 import mechanism.
To makeOml available toµ(O), our framework provides a
special annotationmo:importsthat can be added toO and
that is mapped byµ to an imports statement inµ(O). Thus,
by addingAnnotation( mo:importOml ) to O, we ensure
that µ(O) importsOml and thus gains access to the rele-
vant metalevel domain descriptions. Note that althoughOml

is application specific, it describes the structure of the met-
alevel domain, and can thus be expected to change much less
frequently than the “data” inµ(O).

OntologiesO andµ(O) do not import each other, so there
is no semantic interaction between them. Typical appli-
cations will, however, often need to integrate information
from a domain ontology and its metaview; for example, they
might want to answer questions such as the one presented in
Example 4. In order to achieve this we propose MQL—a
language that allows for querying both domain- and met-
alevel information and integrating the query answers.

Representing Metalevel Information in OWL 1.1
The domain-level information can be represented straight-
forwardly using an OWL 1.1 domain ontologyO. For ex-
ample, the statements from Example 5 correspond naturally
to the following axioms.

(4)
SubClassOf(a:CarModel

DataSomeValuesFrom( a:cons xsd:float))

(5)
SubClassOf( DataSomeValuesFrom( a:cons

DatatypeRestriction( xsd:floatmaxExclusive “6” ))
a:LowConsCarModel)

Similarly, the description of the metalevel domain can be
represented as an OWL 1.1 ontologyOml. Hence, Example
6 can be represented by axioms (6)–(8).
(6) ClassAssertion( a:Motorbox a:LowQualityIS)

(7) ClassAssertion( a:Newstreet a:HighQualityIS)

(8)
SubClassOf(

ObjectHasValue( a:agent a:Manual)
ObjectSomeValuesFrom( a:origin a:HighQualityIS))

The metalevel information about the domain-level facts
is stored in the domain ontologyO using OWL 1.1annota-
tions. The existing OWL standard already allows for anno-
tations on ontology entities: concepts, properties, and indi-
viduals can have information attached to them that is akin to



comments in programming languages, and OWL 1.1 extends
this idea to axioms and even ontologies as well. Annotations
in OWL 1.1 have the form (9) or (10), depending on whether
the value of the annotation is an individual or a constant.
(9) Annotation( annotationURI individual)

(10) Annotation( annotationURI constant)

Thus, to represent statements from Example 1, we add to
O the following axiom.

(11)

DataPropertyAssertion(
Annotation( a:origin a:Motorbox)
Annotation( a:agent a:TextAnalysis)
Annotation( a:conf“0.8” )

a:cons a:Mazda“5.3” )

In this way, domain- and metalevel information is man-
aged physically in one place, but metalevel information has
no semantic effect on domain-level information.

Semantics of Metalevel Information
The metaview ontologyµ(O) consists of (1) a reference to
the description of the metalevel domain, (2) a reified repre-
sentation of the axioms ofO, (3) the logical interpretation
of the metalevel information stored inO. Due to space con-
straints, we defer the definition ofµ to an online appendix.2

For part (1) ofµ(O), wheneverO contains an ontology
annotation of the formAnnotation( mo:importOml ), the
ontologyµ(O) importsOml using the standard OWL 1.1
import mechanism.

For part (2) ofµ(O), we have created a metaontology
Omo that captures the structure of OWL 1.1 ontologies,3 and
have definedµ such that each metaontology importsOmo.
This ontology is independent of the domain, and its purpose
is to describe OWL 1.1 axioms. For example, a data prop-
erty assertion is described inOmo using the following axiom
(mo: is the namespace prefix used inOmo), which states that
a data property assertion is a kind of fact and that it has ex-
actly one property, one source, and one target that are a data
property, an individual, and a constant, respectively.
SubClassOf( mo:DataPropertyAssertion

ObjectIntersectionOf( mo:Fact
ObjectExactCardinality( 1 mo:property mo:DataProperty)
ObjectExactCardinality( 1 mo:source mo:Individual)
DataExactCardinality( 1 mo:target rdfs:Literal)))

Each axiomα of O is assigned byµ a uniquerepresen-
tative individualµα, andα is then translated into assertions
by following the structure defined byOmo. For example,
assertion (11) is assigned the individualµ(11), and is then
translated into assertions (12)–(14).
(12) ObjectPropertyAssertion( µ(11) mo:property a:cons)

(13) ObjectPropertyAssertion( µ(11) mo:source a:Mazda)

(14) DataPropertyAssertion( µ(11) mo:target“5.3” )

Part (3) ofµ(O) is generated by translating annotations
into assertions: if an axiomα contains an annotation of the
form (9) or (10), the annotation is translated into an assertion
(15) or (16), respectively.

2http://owlodm.ontoware.org/mu.pdf
3http://owlodm.ontoware.org/OWL1.1

(15) ObjectPropertyAssertion( µα annotationURI individual)

(16) DataPropertyAssertion( µα annotationURI constant)

For example, the annotations of (11) are translated into
assertions (17)–(19). Thus, the metalevel information inO
is interpreted inµ(O) as domain level information.
(17) ObjectPropertyAssertion( µ(11) a:origin a:Motorbox)

(18) ObjectPropertyAssertion( µ(11) a:agent a:TextAnalysis)

(19) DataPropertyAssertion( µ(11) a:conf “0.8” )

Querying Metalevel Information
We now present a query language called MQL, which allows
for querying an ontology and its metaview in an integrated
way. The main goal in MQL is to enable the integration of
the domain ontology with its metaview, so we assume that
the queries over a single ontology (either the domain ontol-
ogy or the metaview) can be answered by some query lan-
guageLQ. In practice,LQ might be, e.g., the language of
conjunctive queries over OWL ontologies (Calvanese, Gia-
como, & Lenzerini 1998), which we can process using well-
known algorithms (Glimmet al. 2007). WithQ(~x) we de-
note a query ofLQ, where~x is the vector ofdistinguished
variables—that is, the variables that should be substituted
with individuals to obtain an answer. We writeO |= Q(~a)
to denote that~a is an answer toQ(~x) in O.

Definition 1 Let LQ be a language for querying a single
OWL ontology. The syntax of MQL queries is defined as
follows, with the restriction that eachmql-query must be
domain independent (Abiteboul, Hull, & Vianu 1995).
LQ-query← a query ofLQ of the formQ(~x)

O-spec← ontology specification of the formO
mql-atom← LQ-query@[ mql-query | O-spec ]

mql-query← mql-atom | x1 = x2 | ¬ mql-query |
∃x : mql-query | mql-query ∧ mql-query

We define theanswerans(ϕ) of an MQL queryϕ using
the following induction.

• If ϕ = Q(~x)@[O], then~a ∈ ans(ϕ) iff O |= Q(~a).
• If ϕ = Q(~x)@[ψ], then ~a ∈ ans(ϕ) iff ω |= Q(~a) for
ω = {α | µα ∈ ans(ψ)}.

• ans(ϕ) is defined as usual (Abiteboul, Hull, & Vianu
1995) if the top-level connective ofϕ is =, ¬, ∃, or ∧.

The main difference of MQL to standard relational query
languages is in the definition of atoms. Atoms of the
form ϕ = Q@[O] are evaluated by simply answering the
LQ-query Q over the ontologyO. Atoms of the form
ϕ = Q@[ψ] whereψ is a nested MQL query are evaluated
as follows. First,ψ is evaluated recursively. Next, for each
individualx ∈ ans(ψ), if x was assigned byµ to some ax-
iom α (i.e., if x = µα), thenα is added to the setω; other-
wise,x is ignored. After this process,ω contains the axioms
selected by the nested queryψ. Finally, theLQ-queryQ is
answered in the axiom setω. Since MQL queries are domain
independent, they can be evaluated recursively similarly to
standard first-order relational queries (Abiteboul, Hull,&
Vianu 1995), by just changing the way in which atoms are
processed. Based on this observation, we were able to im-
plement the metaview framework and MQL on top of the
KAON2 reasoner with only moderate effort.



Table 1: Typical MQL Query Patterns

Query Type Pattern
Domain ϕ(x) = QD(x)@[O]
Metalevel ϕ(x) = QM (x)@[µ(O)]
Filter ϕ(x) = QD(x)@[QM (y)@[µ(O)] ]
Join ϕ(x, y) = QM (x, y)@[µ(O)] ∧QD(x)@[O]

MQL is a very expressive language; however, we expect
that most queries used in practice will follow the patterns
shown in Table 1.4

Thedomainand themetalevelquery patterns retrieve ei-
ther only domain or metalevel information without any in-
teraction between the two. Query (20) is an example of
the former query pattern, and it retrieves all instances of
a:MazdaModelin O. Query (21) is an example of the lat-
ter query pattern, and it retrieves all facts in the metaview
together with their confidence values.
(20)ϕ1(x) = a:MazdaModel(x)@[O]

(21)ϕ2(x, y) = ( mo:Fact(x) ∧ a:conf(x, y) )@[µ(O)]

The filter query pattern consists of a domain queryQD

that is answered over a subset of the domain ontology; this
subset is defined by a nested queryQM over the metaview.
The query from Example 4 is such a query and it can be
expressed in MQL as follows. TheLQ-query (22) selects
all facts from high-quality information sources, and theLQ-
query (23) selects all cars with low consumption. The MQL
query (24) thus selects all axioms that are of high quality,
and (25) selects all car models with low consumption from
that set. To evaluateϕ3, we recursively evaluateψ and then
evaluateQ2 over the set of axioms that correspond to the
representative individuals contained in the result ofψ.

(22)
Q1(x) =∃y : mo:Axiom(x) ∧ a:origin(x, y) ∧

a:HighQualityIS(y)

(23)Q2(z) = a:LowConsCarModel(z)

(24)ψ(w) = Q1(w)@[µ(O)]

(25)ϕ3(z) = Q2(z)@[ψ]

The join query pattern consists of a metalevel queryQM

whose results are filtered by a join with a domain-level query
QD. The query from Example 2 is such a query and it can
be expressed in MQL as follows. TheLQ-query (26) selects
the facts, the entities that the fact is about (encoded usingthe
mo:sourceproperty), and their confidence values. TheLQ-
query (27) selects all Mazda car models. The MQL query
(28) thus evaluatesQ3(x, y, z) overµ(O), evaluatesQ4(y)
overO, joins the results ony, and finally projectsy out.
(26)Q3(x, y, z) = mo:Fact(x) ∧mo:source(x, y) ∧ a:conf(x, z)

(27)Q4(y) = a:MazdaModel(y)

(28)ϕ4(x, z) = ∃y : ( Q3(x, y, z)@[µ(O)] ∧Q4(y)@[O] )

MQL is closely related to EQL-Lite(Q) (Calvaneseet
al. 2007). EQL-Lite(Q) is parameterized with a first-order
query languageQ. Queries of EQL-Lite(Q) are first-order

4In the absence of a standardized syntax for conjunctive queries
over OWL ontologies, we use the common notation in which con-
cepts and properties are unary and binary predicates, respectively.

formulas over atoms of the formKψ for ψ aQ-query; the
semantics ofKψ is essentially equivalent to the MQL-atom
ψ@[O]. MQL can thus be seen as a generalization of EQL-
Lite(Q), in which MQL-atoms can query more than one on-
tology and/or “dynamic” axiom sets generated via nested
queries to the metaview.

An Application Based on Metaviews
Based on the KAON2’s implementation of the metaview
framework, we have implemented aknowledge browser5

that supports users in the previously mentioned scenario.
Roughly speaking, the browser first asks the user to spec-
ify the taskhe is trying to accomplish. Then, the browser
implementsdata filtering: it presents the user with a view
over the data that matches with the specified task.

The data filtering process is described by afiltering pol-
icy—a declarative description of which data is relevant for
which task. The policy is modeled as an ontologyOpo,6

which corresponds to the metalevel ontologyOml in Figure
1. The ontology extends the well-known top-level Suggested
Upper Merged Ontology (SUMO),7 and its axioms can be
separated into two main parts.

Part (i) of Opo describes various information sources,
information extraction methods, and the quality of infor-
mation that they produce. Information sources are repre-
sented by thepo:InformationProviderconcept, human infor-
mation extractors are represented by thepo:Employeecon-
cept, and software information extractors are representedby
thepo:SoftwareProgramconcept; all these are subconcepts
of sumo:Agent. Information sources and information extrac-
tors are associated with the facts in the domain ontology us-
ing thepo:origin andpo:extractorproperties, respectively.
These concepts and properties are used to define more com-
plex concepts. For example, the conceptpo:TrustedAgentis
defined to contain all agents that are considered trustworthy
according to the company’s policy. Similarly, the concept
po:HighQualityFactis defined to contain “all facts that have
been extracted by a trusted agent, that come from a trusted
information source, and for which the agent specified a con-
fidence value higher than 0.8.”

Part (ii ) of Opo describes the task that the user currently
working with the browser is trying to accomplish. Unlike
Part (i) which is general and does not change frequently,
Part (ii ) of Opo changes whenever the user completes one
task and moves to the next one: the old task description
in Opo is then replaced with a new one. The task is de-
scribed by means of the identity of the user that is working
with the application, the type of task that the user is try-
ing to accomplish, and the lists of information sources and
information extractors that are relevant for the task. Tasks
are modeled as instances of thesumo:Processconcept, and
users are associated with the tasks using thepo:actorprop-
erty. Finally, information sources and information extractors
are associated with the task using thesumo:instrumentprop-
erty, which is used in SUMO to denote that a process (i.e.,

5http://ontoware.org/projects/xxplore/
6http://xxplore.ontoware.org/policy
7http://www.ontologyportal.org/



a task) is accomplished by means of some other entity. Ax-
ioms (29)–(32) show a description of a calendar forecasting
task:po:Marina is the user working on the task, which is be-
ing accomplished using thepo:Motorboxinformation source
and thepo:Prontosoftware extractor—a tool for extracting
ontology relations from text. Note that the latter three indi-
viduals are described inOpo.
(29) ClassAssertion(po:CalenderForecasting po:Process)

(30)
ObjectPropertyAssertion(po:actor

po:CalenderForecasting po:Marina)

(31)
ObjectPropertyAssertion(po:instrument

po:CalenderForecasting po:Motorbox)

(32)
ObjectPropertyAssertion(po:instrument

po:CalenderForecasting po:Pronto)

To construct the view containing the facts relevant to the
current task, the knowledge browser uses then the MQL
queryq = Q5(x)@[µ(O)], whereQ5 is defined as follows.

(33)

Q5(x) = po:HighQualityAxiom(x) ∧ po:Process(y) ∧
po:origin(x, v) ∧ po:TrustedAgent(v) ∧
po:extractor(x,w) ∧ po:TrustedAgent(w) ∧
po:instrument(y, v) ∧ po:instrument(y,w)

Intuitively speaking,Q5 selects all facts that were produced
by the information source and extracted by an agent both
of which are relevant for the task and are trusted according
to company’s policy. The queryq then evaluatesQ5 over
the metaviewµ(O) in order to perform information filtering.
The result ofq can be used either directly for information
browsing, or it can be used to answer domain-level queries.

Validation of our Framework
To validate the practical usefulness of our framework, we
analyzed the actual information needs of our project partner.
In particular, we interviewed eight company’s employees, all
of whom were familiar with traditional database user inter-
faces and the concept of querying. The interviewees were
first made acquainted with the domain and the metalevel
ontologies, and then they were asked to provide as many
(i) domain-level concepts calledtypes, such asa:Model,
a:News, and a:Forecast, that determine the objects being
queried, and (ii ) concepts and properties that can restrict
the types calledselectors. For example, the domain-level
selectorcar:Maker can be applied to the typea:Model to
retrieve all models by a certain manufacturer; similarly, the
metalevel selectorpo:extractorcan be applied to the type
a:Newsto retrieve all news obtained through a certain ex-
tractor. In total, 3 types and 36 selectors were identified.
We analyzed 100 “sensible” combinations of types and se-
lectors, for which we extracted an intuitive description of
what the combination should mean w.r.t. the domain and the
policy ontologies. Then, we translated each description into
a query schema—an expression containing placeholders for
the selectors’ values—that realizes the intuitive semantics of
the combination. We thus obtained 59 domain-level queries,
33 filter queries, and 8 join queries. We did not encounter
a combination of types and selectors whose intuitive mean-
ing cannot be transformed into MQL. Thus, our framework
seems to cover the information needs of our use case.

We evaluated the performance of our implementation.
Our main goal was just to see whether our framework is im-
plementable at all, and not to conduct an exhaustive perfor-
mance evaluation. Using a standard PC, we measured the
time needed to evaluate 24 query schemas in which place-
holders were replaced with values supplied by the users. The
domain ontology contained 110 axioms, and the metaview
ontology inherited 227 axioms fromOmo. We used four
data sets containing 50K, 100K, 500K, and 1M assertions,
respectively. The longest times to evaluate a query were
0.5s, 1.2s, 2.4s, and 8.8s, respectively, while the average
times were 0.2s, 4s, 1.5s, and 3.7s. These results suggest
that our implementation can handle nontrivial data sets.

Conclusion
We presented a framework for the representation and inte-
gration of domain- and metalevel information in the Seman-
tic Web. Even without relying on a complex logical for-
malism, our framework is capable of satisfying the informa-
tion needs of a nontrivial practical scenario. At the same
time, our framework provides a well-understood and precise
semantics to the metalevel information. This semantics is
based on the standard semantics of OWL, thus allowing the
framework to be implemented using existing technologies.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995.Foundations
of Databases. Addison Wesley.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. EQL-Lite: Effective First-Order
Query Processing in Description Logics. InProc. IJACI
2007, 274–279.
Calvanese, D.; Giacomo, G. D.; and Lenzerini, M. 1998.
On the Decidability of Query Containment under Con-
straints. InProc. PODS ’98, 149–158.
Criscuolo, G.; Giunchiglia, F.; and Serafini, L. 2002. A
Foundation for Metareasoning Part I: The Proof Theory.J.
Log. Comput.12(1):167–208.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2007.
Conjunctive Query Answering for the Description Logic
SHIQ. In Proc. IJCAI 2007, 399–405.
Guha, R. V.; McCool, R.; and Fikes, R. 2004. Contexts for
the Semantic Web. InProc. ISWC 2004, 32–46.
Halpern, J. Y., and Moses, Y. 1992. A guide to complete-
ness and complexity for modal logics of knowledge and
belief. Artificial Intelligence54(3):319–379.
Klyne, G., and Carroll, J. J. 2004. Resource Description
Framework (RDF): Concepts and Abstract Syntax.
http://www.w3.org/TR/rdf-concepts/.
Motik, B., and Sattler, U. 2006. A Comparison of Rea-
soning Techniques for Querying Large Description Logic
ABoxes. InProc. LPAR 2006, 227–241.
Schueler, B.; Sizov, S.; Staab, S.; and Tran, T. 2008.
Querying for Meta Knowledge. InProc. WWW 2008.
Welty, C., and Andersen, W. 2005. Towards ontoclean 2.0:
A framework for rigidity.Applied Ontology1(1):107–116.


