
Pushing the Limits of Reasoning over Ontologies with Hidden Content∗
(Extended Version)

Bernardo Cuenca Grau and Boris Motik
Oxford University Computing Laboratory

University of Oxford, UK

Abstract

There is currently a growing interest in techniques for hiding
parts of the signature of an ontology Kh that is being reused
by another ontology Kv . Towards this goal, Cuenca Grau,
Motik, and Kazakov (2009) recently proposed the import-by-
query framework, which makes the content of Kh accessi-
ble through a limited query interface. If Kv reuses the sym-
bols from Kh in a certain restricted way, one can reason over
Kv ∪ Kh by accessing only Kv and the query interface. In
this paper, we map out the landscape of the import-by-query
problem. We show that certain restrictions of our original
framework are strictly necessary to make reasoning possible,
we propose extensions that overcome some of the expres-
sivity limitations, we present several novel reasoning algo-
rithms, and we outline the limitations of the new framework.

Introduction
The Web Ontology Language (OWL) and its revision OWL
2 are ontology languages standardized by the W3C, and their
formal underpinning is provided by description logics (DLs)
(Baader et al. 2007)—knowledge representation formalisms
with well understood formal properties. OWL ontologies
are often used to provide a shared vocabulary for a family
of applications, thus making data exchange between the ap-
plications easier. Furthermore, constructing ontologies is a
labor-intensive task, so reusing (parts of) well-established
ontologies when developing new ones is seen as key to re-
ducing ontology development cost. Consequently, the prob-
lem of ontology reuse has recently received significant at-
tention (Stuckenschmidt, Parent, and Spaccapietra 2009).

An OWL ontology Kv can reuse an ontology Kh via im-
porting, and the result is logically equivalent to Kv ∪ Kh.
OWL reasoners deal with imports by loading both ontolo-
gies and merging their contents, which requires physical ac-
cess to the axioms ofKh. The vendor ofKh, however, might
be reluctant to distribute (parts of) the contents ofKh, as do-
ing so might allow competitors to plagiarize Kh. Moreover,
Kh might contain information that is sensitive from a privacy
point of view. Finally, one might want to impose a varying
cost on the reuse of different parts of Kh. To stipulate that
∗Bernardo Cuenca Grau is supported by a Royal Society Uni-

versity Research Fellowship.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kh should not be publicly available, we call the ontology
Kh hidden and, by analogy, we call Kv visible.

Motivated by such scenarios, several approaches to hiding
a subset of the signature of Kh have been developed. One
approach is to publish an Υ-interpolant ofKh—an ontology
that contains no symbols from Υ and that coincides withKh
on all logical consequences formed using the symbols not in
Υ (Konev, Walter, and Wolter 2009). Once an Υ-interpolant
has been published, it can be imported into Kv without any
restrictions, and one can reason over the union of Kv and
the Υ-interpolant using off-the-shelf DL reasoners. Such Υ-
interpolants, however, exist only for inexpressive DLs and
under certain syntactic restrictions; furthermore, they can be
of exponential size, which can be problematic in practice.

In our previous work, we proposed an approach in which
Kh is accessible via a limited query interface that we call an
oracle (Cuenca Grau, Motik, and Kazakov 2009). The ora-
cle advertises a public subset Γ of the signature ofKh, and it
can answer queries overKh that are expressed in a particular
query language and that use only the symbols from Γ. Under
certain assumptions, a so-called import-by-query algorithm
can reason over Kv ∪ Kh (e.g., determine its satisfiability)
without having physical access to the content ofKh, by only
posing queries to the oracle forKh. The idea of accessing an
ontology through oracles is similar in spirit to the proposal
for query answering in a peer-to-peer setting by Calvanese et
al. (2004); however, the latter approach focuses on reusing
data rather than schema statements.

Our framework minimizes the information flow between
Kv and Kh. Apart from restricting access to Kh, reason-
ing can be performed without Kh having any access to Kv ,
which is beneficial as Kv might also contain sensitive in-
formation. Furthermore, unlike interpolation, our frame-
work does not require materializing an exponentially large
Υ-interpolant, and it can be applicable in cases when Υ-
interpolants for Kh do not exist. In contrast to interpolation,
however, our framework imposes restrictions on the wayKv
can reuse the public symbols from Kh.

The formal properties of import-by-query algorithms de-
pend on the oracle query language and the logics used to
express Kv and Kh. In our previous work, we studied the
case when oracles support concept satisfiability queries—
that is, when queries are concepts over Γ in the DL of Kh,
for which the oracle determines their satisfiability w.r.t. Kh.

We proved that no import-by-query algorithm exists in such
a setting even if Kv and Kh are expressed in the lightweight
description logic EL (Baader, Brandt, and Lutz 2005). To
make reasoning possible, the reuse of the advertised sym-
bols was subjected to the following restrictions.

1. Reuse was required to be modular—that is, Kv could not
change the meaning of the symbols reused fromKh (Lutz,
Walther, and Wolter 2007; Cuenca Grau et al. 2008).

2. Role symbols (i.e., binary predicates) from Kh could be
reused in Kv only in a particular restricted way.

We presented an import-by-query algorithm that can han-
dle Kv and Kh expressed in the DLs SROIQ (Kutz, Hor-
rocks, and Sattler 2006) and SRIQ (Horrocks, Kutz, and
Sattler 2005), respectively, provided that the mentioned as-
sumptions are satisfied. Our algorithm, however, may issue
exponentially many queries to the oracle even if standard
reasoning over Kv ∪ Kh requires only polynomial time.

In this paper, we extend the import-by-query framework
in several important ways. To weaken the restrictions on
the reuse of the role symbols, we employ a more expres-
sive oracle query language: our queries are ABoxes over the
symbols from Γ, for which the oracle decides their satisfi-
ability w.r.t. Kh. ABox satisfiability has been implemented
in most state-of-the-art DL reasoners, so such a query lan-
guage seems like a natural choice. We then study the formal
properties of import-by-query algorithms in such a setting
and prove the following novel results.

1. We show that, even with ABox satisfiability oracles, the
presence of nominals in Kh can preclude the existence of
an import-by-query algorithm.

2. We prove that modular reuse is strictly necessary—that
is, that no import-by-query algorithm exists if Kv does
not reuse the symbols from Γ in a modular way.

3. We present an import-by-query algorithm for the case
when both Kv and Kh are in EL and reuse is modular.

4. Depending on the expressivity of Kv and Kh, we show
that the presence of cyclic axioms can prevent the exis-
tence of an import-by-query algorithm.

5. We present an import-by-query algorithm for the case
when bothKv andKh are inALCHIQ, the reuse is mod-
ular, and Kv satisfies a particular acyclicity restriction.

Our results thus map out the landscape of the import-by-
query problem, close several important gaps in our previous
work, and provide a starting point for implementation.

The proofs of some of our theorems can be found in the
appendix.

Preliminaries
In this section, we recapitulate the DL notation used in this
paper and present an overview of the hypertableau reasoning
algorthms for DLs (Motik, Shearer, and Horrocks 2009).

Description Logics
We first introduce the description logicALCHOIQ. A sig-
nature Σ is a disjoint union of countable sets of atomic con-
cepts NC , atomic roles NR, and individuals NI . A role is

either atomic or an inverse role R− for R ∈ NR. For R
and R′ roles, a role inclusion axiom has the form R v R′.
The set of concepts is the smallest set containing >, ⊥, A,
{a}, ¬C, C1 u C2, C1 t C2, ∃R.C, ∀R.C, ≥nR.C, and
≤nR.C, for A an atomic concept, a an individual, C, C1,
and C2 concepts, R a role, and n a nonnegative integer. A
concept inclusion axiom has the form C1 v C2 for C1 and
C2 concepts, and C1 ≡ C2 is an abbreviation for C1 v C2

and C2 v C1. A TBox T is a finite set of concept and role
inclusion axioms. An assertion has the form C(a), R(a, b),
¬R(a, b), a ≈ b, or a 6≈ b, for C a concept, R a role,
and a, b individuals. An ABox A is a finite set of asser-
tions. A knowledge base K = T ∪ A consists of a TBox
T and an ABox A. We use standard definitions of a Σ-
interpretation I , satisfiability of K in I , satisfiability of a
concept C w.r.t. K, and other relevant reasoning problems
(Baader et al. 2007). For α a concept, a role, an axiom, or
a set of axioms, sig(α) is the signature of α—that is, the set
of atomic concepts and atomic roles occurring in α.

The DL ALCHIQ is obtained from ALCHOIQ by dis-
allowing nominal concepts of the form {a}. Furthermore,
the DL EL (Baader, Brandt, and Lutz 2005) (resp. FL0

(Baader et al. 2007)) supports only concepts of the form
>, ⊥, A, C1 u C2, and ∃R.C (resp. >, ⊥, A, C1 u C2, and
∀R.C) forA andR atomic, disallows role inclusion axioms,
and supports only assertions of the form C(a) or R(a, b),
with C an EL (resp. FL0) concept and R an atomic role.

Hypertableau Algorithms for ALCHIQ and EL
The hypertableau algorithm for ALCHIQ starts by prepro-
cessing the input KB into so-called HT-rules. Let NV be a
set of variables disjoint with the set of individuals NI . An
atom is an expression of the form C(s), R(s, t), or s ≈ t,
where s, t ∈ NV ∪ NI , C is a concept, and R is a role. A
rule is an expression of the form

U1 ∧ . . . ∧ Um → V1 ∨ . . . ∨ Vn (1)

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. The con-
junction U1∧. . .∧Um is called the body, and the disjunction
V1 ∨ . . . ∨ Vn is called the head. The empty body and the
empty head are written as > and ⊥, respectively. Rules are
interpreted as universally quantified FOL implications in the
usual way. An HT-rule is a rule of the form∧

Ai(x) ∧
∧
Rij(x, yi) ∧

∧
Sij(yi, x)

∧
Bij(yi)→∨

Ci(x) ∨
∨
R′ij(x, yi) ∨

∨
S′ij(yi, x) ∨∨

Dij(yi) ∨
∨
yi ≈ yj

(2)

where Rij , Sij , R′ij , and S′ij are atomic roles; Ai, Bij , and
Dij are atomic concepts; Ci are either atomic concepts or
concepts of the form ≥nR.A, or ≥nR.¬A; and each vari-
able yi occurring in the rule occurs in the rule body. An
HT-rule is Horn if it contains at most one atom in the head.

Any ALCHIQ KB can be transformed into an equisat-
isfiable set of HT-rules and a normalized ABox—that is, an
ABox containing only assertions of the form A(a), ¬A(a),
R(a, b), or ¬R(a, b) with A and R atomic. The following
algorithm checks satisfiability of a set of HT-rules R and a
normalized ABox A. In the rest of this paper, we treat con-
cepts of the form ∃R.C as abbreviations for ≥ 1R.C.

Table 1: Hypertableau Derivation Rules
Derivation Rules for ALCHIQ

Hyp-rule

If 1. % ∈ R with % of the form (1) and
2. a mapping σ from the variables in % to

the individuals in A exists such that
2.1 σ(x) is not indirectly blocked for each x ∈ NV ,
2.2 σ(Ui) ∈ A for each 1 ≤ i ≤ m, and
2.3 σ(Vj) 6∈ A for each 1 ≤ j ≤ n,

then A1 = A ∪ {⊥} if n = 0;
Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n otherwise.

≥-rule

If 1. ≥nR.C(s) ∈ A with s not blocked in A and
2. there are no individuals u1, . . . , un in A s.t.
{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n}∪
{ui 6≈ uj | 1 ≤ i < j ≤ n} ⊆ A,

then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n}∪
{ti 6≈ tj | 1 ≤ i < j ≤ n}

where t1, . . . , tn are fresh successors of s.

≈-rule

If 1. s ≈ t ∈ A with s 6= t
then A1 := mergeA(s→ t) if t is named or

s is a descendant of t, and
A1 := mergeA(t→ s) otherwise.

⊥-rule

If 1. s 6≈ s ∈ A or {A(s),¬A(s)} ⊆ A or
{R(s, t),¬R(s, t)} ⊆ A

with s, t not indirectly blocked and
2. ⊥ 6∈ A

then A1 := A ∪ {⊥}.

The ∃-rule for EL

∃-rule If ∃R.C(s) ∈ A and {R(s, aC), C(aC)} 6⊆ A
then A1 := A ∪ {R(s, aC), C(aC)}

Definition 1. Individuals. For a set of named individuals
NI , the set of all individuals NX is inductively defined as
the smallest set such that NI ⊆ NX and, if x ∈ NX , then
x.i ∈ NX for each integer i. The individuals NX \ NI are
unnamed. An individual x.i is a successor of x, and x is a
predecessor of x.i; descendant and ancestor are the transi-
tive closures of successor and predecessor, respectively.

Pairwise Anywhere Blocking. The label LA(s) of an in-
dividual s and the label LA(s, t) of an individual pair 〈s, t〉
in an ABox A are defined as follows:

LA(s) = {A | A(s) ∈ A and A is atomic}
LA(s, t) = {R | R(s, t) ∈ A}

Let ≺ be a strict ordering on NX containing the ancestor
relation. By induction on ≺, we assign to each individual s
in A a status as follows:

• s is directly blocked by t iff the following conditions hold,
for s′ and t′ the predecessors of s and t, respectively:
– s and t are unnamed, t is not blocked, and t ≺ s;1

– LA(s) = LA(t) and LA(s′) = LA(t′); and
– LA(s, s′) = LA(t, t′) and LA(s′, s) = LA(t′, t).

• s is indirectly blocked iff its predecessor is blocked.
• s is blocked iff it is either directly or indirectly blocked.

1When reasoning with ALCHOIQ knowledge bases, individ-
uals s′ and t′ are also required to be unnamed; however, this re-
striction is not needed with ALCHIQ knowledge bases.

Pruning and Merging. The ABox pruneA(s) is obtained
from A by removing all assertions containing a descendant
of s. The ABox mergeA(s→ t) is obtained from pruneA(s)
by replacing s with t in all assertions.

Clash. An ABox A contains a clash if ⊥ ∈ A; otherwise,
A is clash-free.

Derivation Rules. The algorithm consists of the Hyp-,≥-,
≈-, and ⊥-rule from Table 1, which, given R and a clash-
free ABox A, derive the ABoxes 〈A1, . . . ,An〉. In the Hyp-
rule, σ(U) is obtained from U by replacing each variable x
with σ(x). For a roleR and individuals s and t, the function
ar(R, s, t) returns the assertionR(s, t) ifR is atomic, or the
assertion S(t, s) if R is an inverse role and R = S−.

Derivation. A derivation for R and A is a pair (T, ρ)
where T is a finitely branching tree and ρ labels the nodes
of T with ABoxes s.t. (i) ρ(ε) = A for ε the root, and (ii) for
each node t, if a derivation rule is applicable toR and ρ(t),
then t has children t1, . . . , tn s.t. 〈ρ(t1), . . . , ρ(tn)〉 are the
result of applying one derivation rule to R and ρ(t). The
algorithm returns t if some derivation for R and A has a
leaf node labeled with a clash-free ABox, and f otherwise.

The hypertableau algorithm forALCHIQ can also be ap-
plied to EL KBs. Motik and Horrocks (2008) showed, how-
ever, that a worst-case optimal algorithm can be obtained by
modifying the ≥-rule. This modified algorithm works on a
set R of EL-rules—HT-rules of the form (3), where C is
either atomic, or of the form ∃R.A with A atomic.

k∧
i=1

Ai(x) ∧
m∧
i=1

[
Ri(x, yi) ∧

mi∧
j=1

Bij(yi)

]
→ C(x) (3)

The following algorithm checks satisfiability of R ∪ A,
forR a set of EL-rules and A a normalized ABox.

Definition 2. For each named individual a ∈ NI and each
atomic concept A ∈ NC , let aA be a fresh individual that is
uniquely associated with a and A. The hypertableau algo-
rithm for EL follows Definition 1, but the derivation rules
include the Hyp-, ⊥-, and ∃-rule from Table 1.

Motivating Example and Definitions
To illustrate our framework, consider a medical research
company (MRC) that has developed an ontology about hu-
man anatomy. The ontology contains concepts describing
organs such as Heart and TV (tricuspid valve); medical
conditions such as CHD (congenital heart defect), VSD
(ventricular septum defect), and AS (aortic stenosis); and
treatments such as Surgery. The roles part, con, and
treatment relate organs with their parts, medical conditions,
and treatments, respectively, and they are used to define con-
cepts such as VSD Heart (a heart with a ventricular septal
defect) and Sur Heart (a heart that requires surgical treat-
ment). We focus on reusing schema knowledge, so we as-
sume that the ontology consists only of a TBox Th, given in
Table 2. MRC wants to freely distribute information about
organs and conditions, but wants to charge for the informa-
tion about treatments. To this end, MRC identifies a set Γ
of public symbols of Th; we write these symbols in bold,
and the remaining private symbols in sans serif. MRC does

Table 2: Example Knowledge Bases
Hidden Knowledge Base Th
γ1 Heart v Organ u ∃part.TV
γ2 VSD v CHD
γ3 AS v CHD
γ4 VSD Heart ≡ Heart u ∃con.VSD
γ5 VSD Heart v ∃treatment.Surgery
γ6 Sur Heart ≡ Heart u ∃treatment.Surgery
Visible Knowledge Base Kv
δ1 VSD Patient ≡ Patient u ∃hasOrg .VSD Heart
δ2 HS Patient ≡ Patient u ∃hasOrg .Sur Heart
δ3 AS Patient ≡ Patient u

∃hasOrg .(Heart u ∃con.AS)
δ4 Ab TV v TV
δ5 Dis TV v Ab TV
δ6 EA Heart ≡ VSD Heart u ∃part.Dis TV
δ7 EA Patient ≡ Patient u ∃hasOrg .EA Heart
δ8 Ab TV Heart ≡ Heart u ∃part.Ab TV
δ9 TVD Patient ≡ Patient u ∃hasOrg .Ab TV Heart

not want to distribute the axioms of Th, as this might allow
competitors to copy parts of the ontology.

Consider also a health-care provider (HCP) that reuses Th
to describe types of patients such as VSD Patient (patients
with a ventricular septum defect), HS Patient (patients re-
quiring heart surgery), AS Patient (patients with aortic
stenosis), EA Patient (patients with Ebstein’s anomaly),
and TVD Patient (patients with a tricuspid valve defect).
Since the TBox Th does not describe Ebstein’s anomaly,
HCP defines EA Heart as a heart with a ventricular septum
defect and with a displaced tricuspid valve Dis TV ; further-
more, it defines a displaced tricuspid valve as abnormal, and
Ab TV Heart as a heart with an abnormal tricuspid valve.
The ontology is shown in Table 2, and its private symbols
are written in italic. Although our example does not use
ABox assertions, we allow the visible ontology to contain
such assertions in general, so we denote it withKv . HCP can
use Th ∪ Kv to conclude VSD Patient v HS Patient (pa-
tients with ventricular septum defect require heart surgery)
and EA Patient v TVD Patient (patients with Ebstein’s
anomaly are a kind of patients with a tricuspid valve defect).

To support such scenarios, in our previous work we pro-
posed the import-by-query framework (Cuenca Grau, Motik,
and Kazakov 2009). Instead of publishing (a subset of) the
axioms of Th, MRC can publish an oracle for Th—a service
that can answer queries over Th provided that the queries use
only the public symbols of Th. We presented an import-by-
query algorithm that allows HCP to reason over Kv ∪ Th by
using the axioms of Kv and the oracle. Our framework was
based on oracles that decide the satisfiability of a concept C
in the DL of Th, provided that sig(C) ⊆ Γ. For reasoning to
be possible, we imposed the following restrictions:

R1. Th was not allowed to contain nominals.

R2. The TBox of Kv had to be modular w.r.t. Γ; that is, its
axioms could not affect the meaning of the symbols in Γ.

R3. Let a conceptC be Γ-modal if, forR ∈ Γ, it is of the form
∃R.C, ∀R.C, ≥nR.C, and ≤nR.C, and let C be Γ-
restricted if sig(C) ⊆ Γ; then, we required each Γ-modal
concept in Kv to be Γ-restricted.

Restriction R3 is particularly severe, as it prevents mixing
roles from Th with concepts from Kv in modal restrictions.
Axioms δ6 and δ8 from Table 2 violate this restriction.

To overcome these limitations, in this paper we introduce
two new (but closely related) types of oracles, which are
more powerful than the oracles based on concept satisfiabil-
ity. An ABox satisfiability oracle is given an ABox A with
sig(A) ⊆ Γ, and it checks the satisfiability of A ∪ Th. An
ABox entailment oracle is given an ABoxA and an assertion
α with sig(A) ⊆ Γ and sig(α) ⊆ Γ, and it checks whether
A ∪ Th |= α. An ABox entailment oracle can always sim-
ulate an ABox satisfiability oracle, and the converse holds
provided that A allows for assertions of the form ¬C(s)
and ¬R(s, t). Assertions of the former type are available
in many DLs; furthermore, assertions of the latter type can
be added to most DLs without any problems, which is why
we included such assertions in the definition of the DLs that
can do so in the previous section. Therefore, we consider in
this paper mainly ABox satisfiability oracles; we use ABox
entailment oracles only when the DL of Th is Horn and thus
does not support assertions of the form ¬C(s).

In practice, it is natural to express a query ABox A in the
same DL as Th. To obtain general results about infeasibility
of reasoning, however, it is useful to allow the DL of A to
be more expressive than the DL of Th, so that Kv can “learn
more about the models of Th.” We therefore parameterize
our oracles with a DL L that determines the types of asser-
tions allowed in A.

Definition 3. Let Th be a TBox, L a description logic, and Γ
a signature. An ABox satisfiability oracle Ωa

Th,Γ,L is a func-
tion that, for eachL-ABoxA such that sig(A) ⊆ Γ, returns t
iff Th ∪ A is satisfiable. An ABox entailment oracle Ωe

Th,Γ,L
is a function that, for each L-ABox A such that sig(A) ⊆ Γ
and each L-assertion α that mentions only the individuals
in A such that sig(α) ⊆ Γ, returns t iff Th ∪ A |= α.

An import-by-query algorithm takes as input a knowledge
baseKv and an oracle ΩTh,Γ,L with sig(Kv) ∩ sig(Th) ⊆ Γ,
and it terminates after a finite number of computation steps
returning t iff Kv ∪ Th is satisfiable.

We use the generic term ABox query oracle (or simply or-
acle) for either an ABox satisfiability or an ABox entailment
oracle. Furthermore, if L is the same as the logic of Th, we
abbreviate ΩTh,Γ,L to ΩTh,Γ.

We finally show that we can without loss of generality
assumeKv to contain no concept that is both Γ-modal and Γ-
restricted (such as ∃con.AS in axiom δ3). Intuitively, this is
because we can always treat such concepts as “atomic” from
the point of view ofKv and rely on the oracle to compute all
relevant consequences of such concepts.

Theorem 1. Each import-by-query algorithm applicable to
an oracle ΩTh,Γ,L and an input knowledge base Kv ∈ DL
that does not contain concepts that are both Γ-modal and
Γ-restricted can be converted into an import-by-query algo-

rithm that handles input knowledge bases containing such
concepts, provided that L allows for DL-concepts.

Proof. Let IbQ′ be an import-by-query algorithm satisfying
the assumptions of the theorem. For C a concept and α a
concept, axiom, or knowledge base, let us say that C is Γ-
outermost in α if C is Γ-modal and it does not occur in α as
a proper subconcept of another Γ-modal subconcept D.

Let ΩTh,Γ,L be an oracle and Kv ∈ DL a knowledge base
that could be handled by IbQ′ if each Γ-outermost concept
in it were replaced with an atomic concept. Let S be the
set of Γ-outermost concepts in Kv , and let XC be a fresh
atomic concept for each C ∈ S. We define Γ′, T ′h, and
K′v as follows: Γ′ = Γ ∪ {XC | C ∈ S}; K′v is obtained
from Kv by replacing each concept C ∈ S with XC ; and
T ′h = Th ∪ {XC ≡ C | C ∈ S}.

Clearly, Kv ∪ Th is equisatisfiable with K′v ∪ T ′h, and
IbQ′ is applicable to ΩT ′

h,Γ
′,L and K′v . Now let IbQ be the

algorithm that on ΩTh,Γ,L and Kv behaves as follows.

• IbQ simulates the steps of IbQ′ on ΩT ′
h,Γ

′,L and K′v while
treating all concepts in S as if they were atomic.

• Whenever IbQ′ queries ΩT ′
h,Γ

′,L with an ABox A′, IbQ
queries ΩTh,Γ,L with an ABox A obtained from A′ by
replacing each concept XC with C.

Algorithm IbQ clearly returns on ΩTh,Γ,L and Kv the same
value as IbQ′ on ΩT ′

h,Γ
′,L and K′v; hence, if L allows

for DL-concepts, IbQ is an import-by-query algorithm for
ΩTh,Γ,L and Kv .

Limits of ABox Query Oracles
In this section we revisit restrictions R1–R3 from our pre-
vious work and explore the limitations of the framework
based on ABox query oracles. We first justify R1, which was
adopted in our previous work for technical reasons, without
a formal justification.

Theorem 2. No import-by-query algorithm based on ABox
query oracles exists if Kv is in a DL without the finite model
property and the DL of Th provides for nominals and dis-
junction, even if L = ALCHOIQ and Γ = ∅.

Proof. Assume that an import-by-query algorithm exists,
and let Kv be any knowledge base satisfiable only in infinite
models. Since the algorithm terminates, the maximum size
of the query ABoxes is bounded; furthermore, since these
ABoxes are inALCHOIQ, an integer n depending only on
Kv and Γ exists such that each satisfiable ABox passed to the
oracle has a model containing at most n objects. Let T 1

h = ∅
and T 2

h = {> v {a1} t . . . t {an}}. Clearly, Kv ∪ T 1
h is

satisfiable, but Kv ∪ T 2
h is not. Consider now an arbitrary

L-ABox A such that sig(A) ⊆ Γ. Clearly, Ωa
T 1
h ,Γ

(A) = t

implies Ωa
T 2
h ,Γ

(A) = t, and the converse holds by the mono-
tonicity of first-order logic. Thus, Ωa

T 1
h ,Γ

(A) = Ωa
T 2
h ,Γ

(A)

for anyA, so our algorithm returns the same result when ap-
plied to the oracles for T 1

h and T 2
h ; however, this contradicts

the fact that Kv ∪ T 1
h is satisfiable but Kv ∪ T 2

h is not.

We next revisit R2. In this paper, we use the deductive
notion of modularity (Lutz, Walther, and Wolter 2007) and
say that Kv is modular w.r.t. Γ if, for all concepts C and
D in the DL of Kv such that sig(C) ⊆ Γ and sig(D) ⊆ Γ,
Kv |= C v D implies ∅ |= C v D. Previously, we adopted
modularity as a “reasonable” assumption, without formal
justification. We next present a very strong result: modu-
larity is necessary for the existence of an import-by-query
algorithm. Intuitively, without modularityKv can arbitrarily
influence the models of Th, and the oracle cannot take this
into account since it has no access to the axioms of Kv .

Theorem 3. For any logic DL containing at least the con-
structors of EL and at most the constructors of ALCHIQ,
no import-by-query algorithm based on ABox query oracles
exists if Kv and Th are in DL and L = ALCHIQ, unless
Kv is modular in the public signature Γ of Th.

Proof. Consider any signature Γ and anyALCHIQ knowl-
edge base Kv such that Kv is not modular w.r.t. Γ. Then,
possibly complex DL concepts C and D exist such that
sig(C) ⊆ Γ, sig(D) ⊆ Γ, Kv |= C v D, and ∅ 6|= C v D.
Assume now that an import-by-query algorithm exists that
terminates on Kv , Γ, and any Th in a DL as specified in the
theorem. Without loss of generality, we can assumeKv to be
satisfiable; otherwise, the import-by-query problem is triv-
ial. Let T 1

h and T 2
h be as follows, where R 6∈ Γ and A 6∈ Γ.

T 1
h = ∅
T 2
h = {> v ∃R.(A u C), A uD v ⊥}

Clearly, Kv ∪ T 1
h is satisfiable, but Kv ∪ T 2

h is not. Con-
sider now an arbitrary L-ABox A such that sig(A) ⊆ Γ. If
A ∪ T 1

h is unsatisfiable, so is A ∪ T 2
h . Conversely, assume

that A ∪ T 1
h is satisfiable in a model I . Since ∅ 6|= C v D,

an interpretation IC and a domain element x ∈ 4IC exist
such that x ∈ CIC but x 6∈ DIC . Let I ′ be the following
interpretation:

4I′ = 4I ∪4IC
RI

′
= {〈o, x〉 | o ∈ 4I′}

XI′ = XI ∪XIC for each atomic concept X 6∈ Γ

AI
′

= {x}

Clearly, I ′ |= T 2
h ; furthermore, since the concepts in A are

inALCHIQ and do not containR, we have I ′ |= A as well.
Hence, Ωa

T 1
h ,Γ,L

(A) = Ωa
T 2
h ,Γ,L

(A), which proves our claim
as in the proof of Theorem 2.

We finally focus on R3. The proof of nonexistence of
an import-by-query algorithm from our previous work uses
an EL ontology Kv that entails a cyclic axiom of the form
A v ∃R.A with R ∈ Γ but A 6∈ Γ. We introduced R3 as a
possible way of invalidating this proof.

Later in this paper, we provide an import-by-query algo-
rithm based on ABox query oracles for Kv and Th in EL,
and where R3 is not required to hold. This shows the advan-
tage of ABox-based over concept-based oracles. However,
we next show that ABox query oracles are not sufficiently
expressive if is allowed to Th contain universal quantifiers.

Theorem 4. No import-by-query algorithm based on ABox
query oracles exists forKv in EL and Th in FL0, even if the
TBox of Kv is modular, Th is Horn, and L = ALCHIQ.

Proof. Assume that an import-by-query algorithm exists,
and let Kv = {A(a), Z(a), A v ∃R.A} and Γ = {R,Z}.
The TBox of Kv is modular w.r.t. Γ: for each interpreta-
tion I for Γ, the interpretation J such that XJ = XI for
each X ∈ Γ and XJ = ∅ for each X 6∈ Γ is a model of the
TBox of Kv , which implies deductive modularity.

Since the algorithm terminates on Γ and Kv , there is a
bound on the number of questions posed to an oracle that
depends only on Γ and Kv . Thus, the number of individu-
als (resp. the number of existentially quantified concepts) in
each ABox passed to the oracle is bounded by some inte-
ger n (resp. m). Let k = n+m+ 1 and let C1, . . . , Ck be
distinct and fresh atomic concepts. Consider the following
Horn-FL0 TBoxes:

T 1
h = {Ci u Cj v ⊥ | 1 ≤ i < j ≤ k} ∪ {Z v C1} ∪

{Ci−1 v ∀R.Ci | 1 < i ≤ k} ∪ {Ck v ∀R.C1}
T 2
h = T 1

h ∪ {Ck v ⊥}

Clearly, Kv ∪ T 1
h is satisfiable, whereas Kv ∪ T 2

h is not.
We next show that, for each L-ABox A with sig(A) ⊆ Γ
with at most n individuals and concepts of quantifier depth
at most m, we have Ωa

T 1
h ,Γ

(A) = Ωa
T 2
h ,Γ

(A), which proves
our claim as in the proof of Theorem 2. Due to the mono-
tonicity of first-order logic, satisfiability of A ∪ T 2

h implies
satisfiability of A ∪ T 1

h , and we next show the converse.
We say that an individual c in A is j steps away from b0
if {Z(b0), R(b0, b1), . . . , R(bj−1, bj)} ⊆ A for some indi-
viduals b1, . . . , bj with bj = c; in such a case, we have
A ∪ T 1

h |= Cj(c). LetR1
h andA′ be the result of transform-

ing T 1
h and A into HT-rules. Since the algorithm from Def-

inition 1 is sound and complete, there is a clash-free ABox
A′′ labeling a leaf of a derivation for R1

h and A′. Since
A contains at most m existentially quantified concepts, A′′
contains at mostm unnamed individuals. But then,A′′ ∪ T 2

h
can only be unsatisfiable if individuals b and c exist such
that c is k steps away from b. Since A contains at most
n+m individuals and n+m < k, an individual d exists
that is both j1 and j2 steps away from b, where j1 6= j2. But
then, A′′ ∪ T 1

h is unsatisfiable, and A ∪ T 1
h is unsatisfiable

as well, which is a contradiction.

The proof of Theorem 4 again assumes that Kv entails
an axiom A v ∃R.A with R ∈ Γ and A 6∈ Γ, which implies
A v ∃Rn.A for arbitrary n. Through universal quantifica-
tion, Th can now “propagate” information along an R-chain
to an unknown level m. An import-by-query algorithm can-
not determine up to which depth the model ofKv needs to be
examined, which prevents termination. Later in this paper,
we present a sufficient acyclicity restriction on the axioms
of Kv that bounds n and thus ensures termination.

Finally, the proof of the following theorem shows that
acyclicity and modularity are not sufficient if Kv can propa-
gate statements about the symbols private toKv into a model
of Th; this can be achieved, for example, using universal
quantifiers. In a subsequent section, we introduce a safety

condition that prevents such propagation and, ultimately, al-
lows us to devise an import-by-query algorithm.
Theorem 5. No import-by-query algorithm based on ABox
query oracles exists forKv in FL0 and Th in EL, even if the
TBox of Kv is modular and L = ALCHIQ.

Proof. Assume that an algorithm exists. Let Γ = {R,B,Z}
and let Kv = {A(a), Z(a), A v ∀R.A,A v B}. That the
TBox of Kv is modular w.r.t. Γ can be shown as in the proof
of Theorem 4. Since the algorithm terminates, there is a
bound on the number of oracle queries that depends only
on Γ and Kv . Let n be maximum quantifier depth of an L-
concept in a query ABox, and let T 1

h and T 2
h be as follows:

T 1
h = {Z v ∃R . . .∃R︸ ︷︷ ︸ .D } T 2

h = T 1
h ∪ {B uD v ⊥}

n+ 1 times

Clearly, Kv ∪ T 1
h is satisfiable, whereas Kv ∪ T 2

h is not.
We show that Ωa

T 1
h ,Γ,L

(A) = Ωa
T 2
h ,Γ,L

(A) for each L-ABox
A with sig(A) ⊆ Γ and with concepts of quantifier depth at
most n. This clearly holds if T 1

h ∪ A is unsatisfiable, so
assume that T 1

h ∪ A is satisfiable. Let R1
h and A′ be the

result of transforming T 1
h and A into a set of HT-rules and

a normalized ABox. Since the algorithm from Definition 1
is sound and complete, there is a clash-free ABox A′′ la-
beling a leaf of a derivation for R1

h and A′. Since D does
not occur in A′, if D(s) ∈ A′′, then s is at least n+ 1 steps
away from any individual a such that Z(a) ∈ A′′. Since A
contains concepts with quantifier depth at most n, we have
that D(s) ∈ A′′ implies B(s) /∈ A′′; but then, no derivation
rule is applicable to R2

h ∪ A′′ for R2
h the result of trans-

forming T 2
h into HT-rules, so T 2

h ∪ A is satisfiable. Thus,
Ωa
T 1
h ,Γ,L

(A) = Ωa
T 2
h ,Γ,L

(A) = t, which proves our claim as
in the proof of Theorem 2.

Import-by-Query Algorithms
We next identify positive cases for which an import-by-
query algorithm exists. For simplicity, in all algorithms we
assume that Kv does not contain concepts that are both Γ-
modal and Γ-restricted; by Theorem 1 this is without loss
of generality. Our algorithms extend the hypertableau algo-
rithms for ALCHIQ and EL given in the preliminaries.

Import-by-Query in EL
In this section we present an import-by-query algorithm
based on ABox entailment oracles that is applicable when
Kv and Th are in EL. The only relevant negative result is
given in Theorem 3, soKv must be modular w.r.t. Γ. We use
a stronger condition and require Kv to be local w.r.t. Γ; for
Kv in EL, this is the case if sig(C) 6⊆ Γ for each concept in-
clusion C v D ∈ Kv (Cuenca Grau et al. 2008). While the
design of an import-by-query algorithm that requires only
modularity is an open problem, we do not believe locality to
be a severe limitation in practice: determining modularity of
Kv w.r.t. Γ is EXPTIME-complete (Lutz and Wolter 2009),
and no practical algorithm is presently known. Note that our
running example satisfies the locality requirement.

Our algorithm is based on the hypertableau framework, so
Kv must first be converted into a set Rv of EL-rules and a

normalized ABoxAv . It is straightforward to see that, if Kv
is local and does not contain concepts that are Γ-modal and
Γ-restricted, thenRv is EL-safe, as specified next.

Definition 4. A set Rv of EL-rules is EL-safe w.r.t. a sig-
nature Γ if, for each rule % ∈ Rv ,

• % contains a body atom α such that sig(α) 6∈ Γ, and
• for each body atom in % of the form R(x, yi) with R ∈ Γ,

there is a body atom in % of the form B(yi) with B 6∈ Γ.

Our algorithm takes a set Rv of EL-safe rules and a nor-
malized ABox Av . It applies the standard EL hypertableau
derivation rules, as well as an additional rule that, given an
ABox Ai in a derivation, asks the oracle to “complete” Ai
with the relevant assertions entailed by Th ∪ Ai.
Definition 5. The EL Ωe-algorithm takes a set Rv of EL-
rules, a normalized ABox Av , and an ABox entailment ora-
cle Ωe

Th,Γ such thatRv is EL-safe w.r.t. Γ. The algorithm is
obtained by extending the algorithm in Definition 2 with the
following derivation rule, where A|Γ is constructed from A
by removing each assertion α ∈ A such that sig(α) 6⊆ Γ:

(Ωe-rule): If for someC ∈ Γ ∪ {⊥} and individual s in
A we have Ωe

Th,Γ(A|Γ, C(s)) = t and C(s) 6∈ A, then
A1 := A ∪ {C(s)}.
Our algorithm is indeed an import-by-query algorithm,

and it can be implemented to run in polynomial time, as
shown by the following theorem.

Theorem 6. The EL Ωe-algorithm is an import-by-query
algorithm and it can be implemented such that it runs in
time polynomial in the size of Rv ∪ Av with a polynomial
number of calls to Ωe

Th,Γ.

We next explain the intuition behind this result. The EL
Ωe-algorithm is deterministic, so each derivation of the al-
gorithm has a single leaf node labeled with a uniquely de-
fined ABox Ae. We prove that Rv ∪ Av ∪ Th is satis-
fiable iff ⊥ /∈ Ae. To this end, let Rh be the result of
transforming Th into EL-rules, and let AEL be the ABox
obtained by applying the standard EL hypertableau algo-
rithm to Rv , Av , and Rh. Since the latter algorithm is
sound and complete, it suffices to show that ⊥ ∈ Ae iff
⊥ ∈ AEL. It is straightforward to see that Ae ⊆ AEL; thus,
⊥ ∈ Ae implies ⊥ ∈ AEL. For the converse, we prove that
AEL ⊆ Ae ∪ sat(Rh,Ae|Γ), where sat(Rh,Ae|Γ) is the re-
sult of applying the standard EL algorithm to Ae|Γ andRh;
in other words, we show that the assertions in AEL \ Ae

can be obtained by applying the standard EL algorithm to
Ae|Γ and Rh. Intuitively, this can be done for two reasons:
first, the Ωe-rule “transfers” all relevant consequences ofRh
from AEL into Ae; and second, EL-safety ensures that the
EL-rules in Rv do not propagate information from the visi-
ble into the hidden part.

We illustrate these ideas by means of an example. Let
Γ = {C,R, S} and letRv and Th be defined as follows:

Rv = { A(x)→ ∃R.B(x), B(x)→ ∃S.A(x),
A(x) ∧ C(x)→ ∃T.C(x) }

Th = { ∃R.> v C, C v ∃S.D }

Figure 1(a) shows the ABox Ae obtained by applying the
EL Ωe-algorithm toRv and Th. Note that the Ωe-rule intro-
duces assertionC(aA) intoAe. Figure 1(b) shows the ABox
obtained by applying the standard EL algorithm to Rh and
Ae|Γ; this ABox contains the assertions necessary to satisfy
Th. Finally, Figure 1(c) shows the final ABox AEL. Due
to EL-safety, assertions S(aA, aD) and S(aC , aD) cannot
trigger an application of an EL-rule in Rv; hence, the EL-
rules in Rv are “confined” to individuals aA, aB , and aC ,
for which the Ωe-rule adds all relevant assertions to Ae.

Import-by-Query in ALCHIQ
In this section we present an import-by-query algorithm
based on ABox satisfiability oracles that is applicable to Kv
and Th in ALCHIQ. Our algorithm is based on the hy-
pertableau framework, so Kv must first be converted into a
set Rv of HT-rules and a normalized ABox Av . To ensure
modularity as required by Theorem 3, we requireRv to sat-
isfy the safety condition from Definition 4. We next devise
further restrictions onRv that allow us to overcome the neg-
ative results of Theorems 4 and 5.

Safety and Acyclicity To overcome the negative result of
Theorem 5, we extend the notion of safety to prevent the
transfer of information private to Rv into Th. This pre-
vents, for example, Kv from containing axioms of the form
A v ∀R.B where R ∈ Γ and {A,B} ∩ Γ = ∅.
Definition 6. A set of HT-rules Rv is HT-safe w.r.t. a sig-
nature Γ if each rule % ∈ Rv is EL-safe w.r.t. Γ and, in
addition, for each atom in the body of % of the form R(x, yi)
or R(yi, x) with R ∈ Γ, the body of % contains atoms of the
form A(x) and B(yi) such that A 6∈ Γ and B 6∈ Γ.

As to the negative result of Theorem 4, note that this re-
sult relies on the fact that the visible knowledge base can en-
tail a cyclic axiom A v ∃R.A with R ∈ Γ and A 6∈ Γ. We
next present a sufficient test for the detection of such cycles.
The test first constructs a graph-like structure G that “sum-
marizes” the models of Rv ∪ Th ∪ Av; more precisely, the
projection of each model of Rv ∪ Th ∪ Av to the symbols
in sig(Rv) can always be homomorphically embedded into
G. The structure G satisfies the conditions from Table 3.
Intuitively, since the axioms of Th are not physically avail-
able, Conditions 4–7 reflect in G any possible consequence
of Th. Conditions 1–3 reflect inG the information that could
be derived usingRv ∪ Av and the possible consequences of
Th. The proof of Proposition 1 shows thatG can be obtained
from Rv and Av as the least fixpoint of a monotonic opera-
tor that mimics the conditions from Table 3.
Definition 7. Let Γ be a signature, R a set of HT-rules, A
an ABox, and let V = V1 ∪ V2 be defined as follows:

V1 = { va | a is an individual occurring in A }
V2 = { vA, v¬A | A is a concept in sig(R) ∪ sig(A) }

A structure G = (∼, E, λ) forR∪A w.r.t. Γ is a triple with
the following elements:
• ∼ is an equivalence relation on V . Let W be the set of

equivalence classes of ∼ and [·]∼ : V →W the function
that assigns to each v ∈ V its equivalence class [v]∼.

A, C B

C

aA aB

aC

R

S
T

(a) Ae

A, C B

C D

aA aB

aC aD

R

S
S

S

(b) sat(Rh,Ae|Γ)

A, C B

C D

aA aB

aC aD

R

S
T S

S

(c) AEL

Figure 1: An Illustration of the Completeness Argument for the EL Ωe-Algorithm

Table 3: Conditions for Structure Stability
1.C ∈ λ([va]∼) for each C(a) ∈ A; R ∈ λ([va]∼, [vb]∼) for

each R(a, b) ∈ A; and A ∈ λ([vA]∼) and ¬A ∈ λ([v¬A]∼)
for each A ∈ sig(R) ∪ sig(A).

2. If ≥nR.C ∈ λ(w), then 〈w, [vC]∼〉 ∈ E and
• R ∈ λ(w, [vC]∼) if R is an atomic role, or
• S ∈ λ([vC]∼, w) if R is an inverse role with R = S−.

3. For each % ∈ R of the form (2) and each w,w1, . . . , wn ∈W ,
if for all body atoms of % we haveAi ∈ λ(w),Rij ∈ λ(w,wi),
Sij ∈ λ(wi, w), and Bij ∈ λ(wi), then for each head atom
of ρ we have Ci ∈ λ(w), R′ij ∈ λ(w,wi), S′ij ∈ λ(wi, w),
Dij ∈ λ(wi), and wi = wj .

4.A ∈ λ(w) and ¬A ∈ λ(w) for each w ∈W and A ∈ Γ.
5. IfR′ ∈ λ(w,w′) for someR′ ∈ Γ, thenR ∈ λ(w,w′) for each
R ∈ Γ.

6. If R ∈ λ(w,w′) for some R ∈ Γ, then R ∈ λ(w′, w).
7. If, for some R ∈ Γ and R′ ∈ Γ, we have that R ∈ λ(w,w1)

and R′ ∈ λ(w,w2), or R ∈ λ(w,w1) and R′ ∈ λ(w2, w), or
R ∈ λ(w1, w) and R′ ∈ λ(w2, w), then w1 = w2.

• E ⊆W ×W is a relation on W .
• λ is a function that assigns to each w ∈W a possibly

empty set of concepts λ(w) and each 〈w,w′〉 ∈W ×W
a possibly empty set of atomic roles λ(w,w′).

A structure G = (∼, E, λ) for R ∪ A w.r.t. Γ is stable if it
satisfies the conditions in Table 3.

We define the partial order ≤ on structures such that,
for G1 = (∼1, E1, λ1) and G2 = (∼2, E2, λ2), we have
G1 ≤ G2 iff ∼1⊆∼2 and, for each v, v′ ∈ V ,

• 〈[v]∼1
, [v′]∼1

〉 ∈ E1 implies 〈[v]∼2
, [v′]∼2

〉 ∈ E2,
• λ1([v]∼1) ⊆ λ2([v]∼2), and
• λ1([v]∼1

, [v′]∼1
) ⊆ λ2([v]∼2

, [v′]∼2
).

A dependency structure is each smallest structure (w.r.t. ≤)
that is stable forR∪A w.r.t. Γ.

Proposition 1. The dependency structure forR∪A w.r.t. Γ
is unique.

Proof (Sketch). We define an operator T that maps a struc-
ture G1 = (∼1, E1, λ1) into a structure G2 = (∼2, E2, λ2).
Let W1 be the set of equivalence classes of ∼1. The struc-
ture G2 is obtained by initially setting G2 := G1 and then
modifying G2 as follows:

• λ2 is extended such that it satisfies Conditions 1 and 4
from Table 3.
• For each w ∈W1 and each concept ≥nR.C ∈ λ1(w),

the pair 〈w, [vC]∼1
〉 is added to E2; if R is atomic, then

R is added to λ2(w, [vC]∼); and if R is of the form S−

with S atomic, then S is added to λ2([vC]∼, w).
• For each HT-rule % ∈ R of the form (2) and each
w,w1, . . . , wn ∈W1 such that, for each body atom of %,
we have Ai ∈ λ1(w), Rij ∈ λ1(w,wi), Sij ∈ λ1(wi, w),
and Bij ∈ λ1(wi), the following modifications are per-
formed for each head atom of %: Ci is added to λ2(w),
Dij is added to λ2(wi), R′ij is added to λ2(w,wi), S′ij is
added to λ2(wi, w), and relation ∼2 is extended such that
wi becomes equal to wj .

• For each w,w′ ∈W1 such that R′ ∈ λ1(w,w′) for some
R′ ∈ Γ, R is added to λ2(w,w′) for each R ∈ Γ.

• For each w,w′ ∈W1 such that R ∈ λ1(w,w′) for some
R ∈ Γ, R is added to λ2(w′, w).

• For each w,w1, w2 ∈W1 such that R ∈ λ1(w,w1) and
R′ ∈ λ1(w,w2), or R ∈ λ1(w,w1) and R′ ∈ λ1(w2, w),
or R ∈ λ1(w1, w) and R′ ∈ λ1(w2, w) for some R ∈ Γ
andR′ ∈ Γ, relation∼2 is extended such thatw1 becomes
equal to w2.

It is straightforward to check that T is monotone on the lat-
tice of all structures forR∪Aw.r.t. Γ, and that if T (G) = G,
then G is stable. Thus, by the well-known Knaster-Tarski
theorem, T has a unique least fixpoint, which corresponds
to the dependency structure forR∪A w.r.t. Γ.

Our test then checks whether the dependency structure G
for Rv and Av contains a “harmful cycle”—that is, a cy-
cle that is not confined to Av and that involves only roles
from Γ. Proposition 2 shows that the overall check can be
performed in polynomial time.

Definition 8. Let G be the dependency structure forR∪A
w.r.t. Γ. A pair 〈w,w′〉 ∈W ×W is harmful in G if
〈w,w′〉 ∈ E, w ∩ V2 6= ∅, w′ ∩ V2 6= ∅, and an atomic role
R ∈ Γ exists such that R ∈ λ(w,w′) or R ∈ λ(w′, w). A
structure G contains a harmful cycle if w1, . . . , wn ∈W
exist such that 〈wi, wj〉 is harmful for each 1 ≤ i ≤ n and
j = i+ 1 mod n; furthermore, G is acyclic if it does not
contain a harmful cycle. Finally, R∪A is acyclic w.r.t. Γ if
the dependency structure forR∪A and Γ is acyclic.

A

B

B,C A

a

b

c d

R

S

S

(a) Canonical Model

A

B

B,C
A

A

a

b

c d

e

R

S
R

S

(b) Extended Canonical Model

A

D

B,C

u

w

v

R,S

S

T

(c) Dependency Structure

A

D

B,C

u

w

v

R,S

S

T

R

(d) Extended Dependency Structure (I)

A

D

B,C

u

w

v

R,S

S

T

R

(e) Extended Dependency Structure (II)

Figure 2: Dependency Structures and Acyclicity

Proposition 2. Acyclicity of R ∪ A w.r.t. Γ can be checked
in polynomial time.

Proof (Sketch). Let V be as specified in Definition 7, let
G = (∼, E, λ) be a structure forR∪Aw.r.t. Γ, letW be the
set of equivalence classes of ∼, and let |G| be the size of G
(which we assume to be defined in a straightforward way).
Since |V | is linear in the size of R, A, and Γ, we have that
|W | is linear, and |G| is polynomial. The structure T (G) can
be computed in polynomial time. The only nontrivial case is
the third item in the definition of T , which requires matching
an HT-rule % ∈ R to G. Let n be the number of variables in
%. Each consequent atom has at most two variables and the
body atoms of % are connected in a tree-like manner, so the
relevant consequent atoms of % can be computed in at most
|V |2 × n steps. Thus, the dependency structure for R ∪ A
w.r.t. Γ can be computed by polynomially many applications
of T , each which can be computed in polynomial time.

The acyclicity condition significantly relaxes condition
R3 from our previous work; for example, it allows us to ex-
press axioms δ6 and δ8 from Table 2. Intuitively, it ensures
that “canonical” models ofRv∪Av (i.e., models containing
the least possible information derivable from Rv ∪ Av) do
not contain infinite chains of roles from Γ. We use this fact
in our algorithm to define a suitable blocking condition. We
explain this intuition on an example where Γ = {C,R, T},
Av = {A(a)}, andRv contains the HT-rules (4)–(9).

A(x)→ ∃R.B(x) (4)
A(x)→ ∃S.B(x) (5)
A(x)→ ∃S.C(x) (6)

S(x, y) ∧ S(x, z)→ y ≈ z (7)
B(x) ∧ C(x)→ ∃S.A(x) (8)

R(x, y) ∧ C(y)→ ∃T.D(x) (9)

Figure 2(a) shows a canonical model I ofRv ∪Av , and Fig-
ure 2(c) shows the relevant part of the corresponding depen-
dency structureG (for simplicity, we do not show the part of
the structure corresponding to Av). The repetitive structure
of I is represented in G as a cycle over nodes u and v. Since
S 6∈ Γ, this cycle is not harmful, and Rv ∪ Av is acyclic
w.r.t. Γ. Note, however, that a dependency structure overes-
timates the canonical models; for example,G contains a link
between u and w labeled with T , which is not reflected in I .
This becomes important if, for example, we extend Rv with
the HT-rule (10). This extension clearly does not change
the canonical models of Rv ∪ Av; however, the new depen-
dency structure, shown in Figure 2(d), contains a harmful
cycle. This is the price we pay for a polynomial acyclic-
ity test: a more detailed acyclicity check could enumerate
all canonical models, but this would often require (at least)
exponential time. Nevertheless, dependency structures pro-
vide us with a sufficient check. For example, assume that
we extended Rv with the HT-rule (11). The corresponding
dependency structure, shown in 2(e), contains a self-loop in
u, which is harmful; this reflects the infinite R-chain in the
canonical model shown in Figure 2(b).

D(x)→ ∃R.A(x) (10)
S(x, y) ∧ C(y)→ ∃R.A(x) (11)

An Import-by-Query Algorithm We next present our
import-by-query algorithm that assumesRv ∪ Av to be HT-
safe and acyclic w.r.t. Γ. We modify the standard hyper-
tableau algorithm in three ways. First, we introduce several
cut rules that nondeterministically guess all “relevant” asser-
tions involving the symbols in Γ. Second, we use the Ωa-rule
to check whether the guesses related to Γ are indeed consis-
tent with Th. Third, we use a relaxed blocking condition.
Definition 9. The ALCHIQ Ωa-algorithm takes an oracle
Ωa
Th,Γ for Th an ALCHIQ TBox, a normalized ABox Av ,

Table 4: Additional Rules

A-cut
If 1. s is not indirectly blocked in A and

2. {A(s),¬A(s)} ∩ A = ∅ with A ∈ Γ
then A1 := A ∪ {A(s)} and A2 := A ∪ {¬A(s)}.

R-cut

If 1. s and t are not indirectly blocked in A,
2. R′(s, t) ∈ A with R′ ∈ Γ, and
3. {R(s, t),¬R(s, t)} ∩ A = ∅ with R ∈ Γ

then A1 := A ∪ {R(s, t)} and A2 := A ∪ {¬R(s, t)}.

R−-cut

If 1. s and t are not indirectly blocked in A,
2. R(s, t) ∈ A with R ∈ Γ, and
3. {R(t, s),¬R(t, s)} ∩ A = ∅,

then A1 := A ∪ {R(t, s)} and A2 := A ∪ {¬R(t, s)}.

≈-cut
If 1. s, s1, s2 are not indirectly blocked in A and

atomic roles R,R′ ∈ Γ exist such that
1.1 {R(s, s1), R′(s, s2)} ⊆ A or
1.2 {R(s, s1), R′(s2, s)} ⊆ A or
1.3 {R(s1, s), R

′(s2, s)} ⊆ A
then A1 := A ∪ {s1 ≈ s2} and A2 := A ∪ {s1 6≈ s2}.

Ωa-rule
If Ωa

Th,Γ(A|Γ) = f and ⊥ 6∈ A
then A1 := A ∪ {⊥}.

and a set of HT-rulesRv such thatRv ∪Av is acyclic w.r.t.
Γ and Rv is HT-safe w.r.t. Γ. The algorithm is obtained by
modifying Definition 1 as given next.

Blocking. An unnamed individual s is blocking-relevant
in A if, for s′ the predecessor of s, we have

LA(s, s′) ∩ Γ = LA(s′, s) ∩ Γ = ∅.

Then, each individual s in an ABoxA is assigned a blocking
status in the same way as in Definition 1, with the difference
that s is directly blocked by t if, in addition to the conditions
in Definition 1, both s and t are blocking-relevant.

Derivation Rules. The derivation rules are given in Ta-
bles 1 and 4. By A|Γ we denote the ABox obtained from A
by removing each assertion containing an indirectly blocked
individual and each assertion α such that sig(α) 6⊆ Γ.

Our algorithm is indeed an import-by-query algorithm.

Theorem 7. The ALCHIQ Ωa-algorithm is an import-by-
query algorithm and it can be implemented such that it runs
in N2EXPTIME in the size of Rv ∪ Av with an exponential
number of calls to Ωa

Th,Γ.

We explain next the intuitions behind the proofs. All
derivation rules are clearly sound. Furthermore, due to
acyclicity, the chains of assertions involving roles from Γ
are bounded in length, which enables blocking and ensures
termination. We next sketch the completeness argument. Let
A be a clash-free ABox labeling the leaf of a derivation for
Rv , Av , and Ωa

Th,Γ, and letRh be the set of HT-rules corre-
sponding to Th. To prove that Rv ∪ Av ∪ Th is satisfiable,
we extend A to a clash-free ABox Afin such that no deriva-
tion rule of the standard hypertableau algorithm is applicable
to Rv ∪Rh and Afin; thus, Rv ∪Rh ∪ Afin is satisfiable,
and so isRv ∪ Th ∪ Afin. The construction ofAfin proceeds
as follows:

1. We take the projection A|Γ of A to Γ and split it up. In
particular, we define Anm to contain all assertions of A|Γ
involving individuals reachable from a named individual;

furthermore, for each nonblocked blocking-relevant indi-
vidual t, we define At to contain all assertions of A|Γ
involving individuals reachable from t.

2. We apply the standard hypertableau algorithm to Rh and
Anm, andRh and eachAt; letAnm

fin andAtfin be clash-free
ABoxes labeling leaves of the respective derivations. The
Ωa-rule is not applicable to A so such ABoxes exist.

3. We define Afin as the union of A, Anm
fin , and all Atfin, plus

all assertions C(s) such that s is blocked in A by the
blocker s′, C(s′) ∈ As′fin, and sig(C) ⊆ sig(Rh).

Call the individuals from A old, and the individuals intro-
duced in the second step new; we then observe the following.
(1) Due to the cut rules, any assertion derivable by the hy-
pertableau calculus is present in A positively or negatively,
so the second step above cannot derive new assertions in-
volving only old individuals. (2) ABoxes Anm and At are
disjoint, so the HT-rules from Rh can be applied in Afin

only to subsets that correspond to Anm and At. (3) Due
to (1), no HT-rule from Rv can become applicable to asser-
tions involving only old individuals. (4) Due to HT-safety,
no HT-rule from Rv can become applicable to an assertion
of Afin that involves a new individual. (5) Due to (1) and
the third step from the construction above, if an individual
s is blocked in A, Anm

fin , or Atfin, then s is blocked in Afin

as well. Observations (1)–(6) then imply that no derivation
rule of the standard hypertableau algorithm is applicable to
Rv ∪Rh and Afin, which proves completeness.

Consider our running example in which Rv contains
the HT-rules (4)–(9), Av = {A(a)}, Γ = {C,R, T}, and
Th = {∃R.> v C, C v ∃T.C, C v E}. The ALCHIQ
Ωa-algorithm produces a derivation in which a leaf is labeled
with the ABox A shown in Figure 3(a); for simplicity, we
do not show the negative assertions. Individual f is directly
blocked by c in A, and assertions C(a) and C(d) are due
to the application of the A-cut rule. To construct Afin, the
assertions containing a symbol not in Γ are removed, re-
sulting in the ABox A|Γ shown in Figure 3(b). This ABox
is then split into connected components Anm, Ac, and Ad;
note that c and d are the only nonblocked blocking-relevant
individuals. Next, Anm, Ac, and Ad are completed w.r.t.
Rh using the standard hypertableau algorithm; figure 3(c)
shows the resulting ABoxes Anm

fin , Acfin, and Adfin. Note that
the guesses of C(a) and C(d) in A are consistent with the
axiom ∃R.> v C from Th. Finally, Afin is obtained by tak-
ing the union of A, Anm

fin , Acfin, and Adfin, and adding E(f);
the latter is because f is blocked by c and E(c) ∈ Acfin. The
result is shown in Figure 3(d), and clearly no derivation rule
of the standard hypertableau algorithm is applicable to Afin.

We finish this section with a note that, similarly as in our
previous work (Cuenca Grau, Motik, and Kazakov 2009,
Section 5.2), if Th is Horn, we can use an entailment oracle
instead of a satisfiability oracle, dispense with the nonde-
terministic cut rules, and use an oracle query rule that deter-
ministically completes an ABox with the missing assertions.
Such an algorithm issues oracle queries “on demand,” so it
is “goal oriented” and thus better suited to implementation.

A, C

B

B, C A, C

B

B, C

a

b

c d

e

f

R

S
S

R

S

(a) Clash-free ABox A

C

C

C

C

a

b

c d

e

f

R

R

Anm

Ac

Ad

(b) ABox A|Γ

C, E

a

b

C, E

C, E

R

T

T

Anm
fin

C, E c

C, E

C, E

T

T

Ac
fin

C, E

d

e

C, E

C, E

R

T

T

Ad
fin

(c) Saturation viaRh

A, C, E

B

B, C, E A, C, E

B

B, C, EC, E

C, E C, E

C, E

C, E

C, E

a

b

c d

e

f

R

S
S

R

S

T

T T

T

T

T

(d) Extended ABox Afin

Figure 3: Completeness of the ALCHIQ Ωa-algorithm

Conclusion
In this paper, we have extended the import-by-query frame-
work from our previous work and have lifted many of its
original restrictions. Our results provide a flexible way for
ontology designers to ensure selective access to their ontolo-
gies. Our framework thus provides key theoretical insights
into the issues surrounding ontology privacy. Furthermore,
we believe our algorithms to be practicable when applied to
Horn ontologies; thus, our results provide a starting point for
the development of practical import-by-query systems.

The problem of import-by-query is novel, and we see
many open questions. From a theoretical point of view, it
would be interesting to explore the formal connection be-
tween import-by-query and interpolation. Furthermore, a
problem that is relevant to both theory and practice is to al-
low the hidden ontology to selectively export data and not
just schema statements. Finally, the framework should be
implemented and tested in practice.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2007. The Description
Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2nd edition.
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
Envelope. In Proc. IJCAI, 364–369.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; and Rosati, R. 2004. What to Ask to a Peer: Ontology-
based Query Reformulation. In Proc. KR, 469–478.
Cuenca Grau, B.; Horrocks, I.; Kazakov, Y.; and Sattler, U.
2008. Modular Reuse of Ontologies: Theory and Practice.
JAIR 31:273–318.

Cuenca Grau, B.; Motik, B.; and Kazakov, Y. 2009.
Import-by-Query: Ontology Reasoning under Access Lim-
itations. In Proc. IJCAI, 727–733. AAAI Press.
Horrocks, I.; Kutz, O.; and Sattler, U. 2005. The irresistible
SRIQ. In Proc. of OWLED.
Konev, B.; Walter, D.; and Wolter, F. 2009. Forgetting
and uniform interpolation in large-scale description logic
terminologies. In Proc. IJCAI. AAAI Press.
Kutz, O.; Horrocks, I.; and Sattler, U. 2006. The Even
More Irresistible SROIQ. In Proc. KR, 68–78.
Lutz, C., and Wolter, F. 2009. Deciding inseparability and
conservative extensions in the description logic EL. J. of
Symbolic Computation 45:151–286.
Lutz, C.; Walther, D.; and Wolter, F. 2007. Conservative
Extensions in Expressive Description Logics. In Proc. IJ-
CAI, 453–458.
Motik, B., and Horrocks, I. 2008. Individual Reuse in
Description Logic Reasoning. In Proc. IJCAR, 242–258.
Motik, B.; Shearer, R.; and Horrocks, I. 2009. Hyper-
tableau Reasoning for Description Logics. JAIR.
Stuckenschmidt, H.; Parent, C.; and Spaccapietra, S., eds.
2009. Modular Ontologies: Concepts, Theories and Tech-
niques for Knowledge Modularization, volume 5445 of
LNCS. Springer.

Appendix
Proof of Theorem 6
For eachR andA, each derivation of the hypertableau algo-
rithm for EL contains exactly one leaf node, so we identify a
derivation with a sequence of ABoxes A0,A1, . . . ,An; fur-
thermore, the ABox labeling the derivation leaf is uniquely
defined by R and A, so we denote it with sat(R,A). The
following lemma can be easily shown by modifying slightly
the proofs from (Motik and Horrocks 2008) and (Baader,
Brandt, and Lutz 2005).
Lemma 1. The following properties hold for each set of EL-
rules R, ABox A, atomic concept C ∈ sig(R), and individ-
ual s in A:

1. C(s) ∈ sat(R,A) iffR∪A |= C(s).
2. For each ABox A′ ⊆ sat(R,A) and each set of EL-rules
R′ ⊆ R, we have sat(R′,A′) ⊆ sat(R,A).

Just like in the case of the hypertableau algorithm for EL,
each derivation of the Ωe-algorithm for EL contains exactly
one leaf node; furthermore, the ABox labeling the derivation
leaf is uniquely defined byRv ,Av , and Ωe

Th,Γ, so we denote
it with sate(Rv,Av,Ωe

Th,Γ). In our proofs, we identify as-
sertions of the form ⊥(s) with just ⊥.
Lemma 2. Let Rh be the result of transforming Th into
EL-rules; furthermore, let Ae = sate(Rv,Av,Ωe

Th,Γ) and
AEL = sat(Rv ∪Rh,Av). The following is then true.

• Soundness: Ae ⊆ AEL;
• Completeness: ⊥ ∈ AEL implies ⊥ ∈ Ae.

Proof (Soundness). Let A0, . . . ,An with An = Ae be a
derivation of sate(Rv,Av,Ωe

Th,Γ). We show by induction
on the rule applications that Ai ⊆ AEL for each 0 ≤ i ≤ n.
This claim holds for i = 0 because A0 = Av . Assume now
that Ai−1 ⊆ AEL and let Ai be obtained from Ai−1 by ap-
plying a derivation rule of the EL Ωe-algorithm.

Assume that the Hyp-rule is applied to Ai−1 and some
EL-rule % ∈ Rv . From % ∈ Rv ∪Rh, Ai−1 ⊆ AEL, and
the fact that Hyp-rule is not applicable to AEL and %, we
have Ai ⊆ AEL. The argument is the same for the ∃-rule.

Assume that the Ωe-rule is applied toAi−1 deriving C(s)
for C ∈ Γ ∪ {⊥}. By the precondition of the rule we have
Ωe
Th,Γ(Ai−1|Γ, C(s)) = t, so by Property 1 of Lemma 1 we

haveC(s) ∈ sat(Rh,Ai−1|Γ). By the induction assumption
Ai−1|Γ ⊆ AEL; furthermore, Rh ⊆ Rh ∪Rv , so by Prop-
erty 2 of Lemma 1 we have sat(Rh,Ai−1|Γ) ⊆ AEL. Thus,
C(s) ∈ AEL, as required.

Proof (Completeness). By Statement 1 of the claim below,
⊥ ∈ AEL implies ⊥ ∈ Ae or ⊥ ∈ sat(Rh,Ae|Γ); in the lat-
ter case, Rh ∪ A|Γ is unsatisfiable and, since the Ωe-rule is
not applicable to Ae, we have ⊥ ∈ Ae.

We say that an individual s is Rv-relevant if s ∈ NI or
if it is of the form aC with C ∈ sig(Rv); in contrast, s is
Rh-relevant if it is of the form aC with C ∈ sig(Rh).
CLAIM: Let A0, . . . ,An = sat(Rv ∪Rh,Av) be a deriva-
tion for Rv ∪Rh and Av; then, the following statements
hold for each Aj with 0 ≤ j ≤ n:

1. Aj ⊆ Ae ∪ sat(Rh,Ae|Γ).
2. α ∈ Aj implies α ∈ Ae whenever α is of the form

(a) C(s) with sig(C) ⊆ sig(Rv) and sRv-relevant, or
(b) R(s, t) with R ∈ sig(Rv) and s and tRv-relevant.

3. For each C(s) ∈ Aj , we have that
(a) sig(C) ⊆ sig(Rv) or sig(C) ⊆ sig(Rh), and
(b) if s isRh-relevant, then sig(C) ⊆ sig(Rh).

4. Each role assertion in Aj is of the form
(a) R(s, t) with s, t ∈ NI and R ∈ sig(Rv), or
(b) R(s, aC) such that

i. {R,C} ⊆ sig(Rv) or {R,C} ⊆ sig(Rh), and
ii. if s isRh-relevant, then {R,C} ⊆ sig(Rh).

The proof is by induction on the application of the deriva-
tion rules. For the induction base, we have A0 = Av . State-
ments (1) and (2) hold because Av ⊆ Ae. Statement (3a)
holds since C(a) ∈ Av implies sig(C) ⊆ sig(Rv). State-
ment (3b) holds vacuously. Finally, Statement (4) holds be-
cause each role assertion in Av is of the form (4a). Assume
now that Statements 1–4 hold for Aj−1 and consider an ap-
plication of a rule that derives Aj .

Assume that the ∃-rule is applied to ∃R.C(s) ∈ Aj−1,
deriving R(s, aC) and C(aC). By the induction assump-
tion, ∃R.C(s) ∈ Ae or ∃R.C(s) ∈ sat(Rh,Ae|Γ). In the
former case, we have {R(s, aC), C(aC)} ⊆ Ae because
the ∃-rule is not applicable to Ae; in the latter case, we
have {R(s, aC), C(aC)} ⊆ sat(Rh,Ae|Γ) because the ∃-
rule is not applicable to sat(Rh,Ae|Γ); thus, Aj satisfies
Statement (1). If {R,C} ⊆ sig(Rv) and s is Rv-relevant,
then ∃R.C(s) ∈ Ae since Aj−1 satisfies Statement (2); but
then, since the ∃-rule is not applicable to Ae, we have
{R(s, aC), C(aC)} ⊆ Ae, so Aj satisfies Statement (2).
Furthermore, C is atomic, so C(aC) satisfies Statement
(3). Finally, ∃R.C(s) satisfies Statements (3a) and (3b), so
R(s, aC) satisfies Statements (4b-i) and (4b-ii), respectively.

Assume that the Hyp-rule is applied to an EL-rule % of
the form (3), deriving C(s). Then, individuals t1, . . . , tm in
Aj−1 exist such that Ai(s) ∈ Aj−1 for each 1 ≤ i ≤ k,
and {Ri(s, ti), Bi,1(ti), . . . , Bi,mi(ti)} ⊆ Aj−1 for each
1 ≤ i ≤ m. Statement (4) trivially holds for Aj . We next
prove Statements (1)–(3) by distinguishing the cases when
% ∈ Rh and % ∈ Rv .

• % ∈ Rh. By the induction assumption, for each 1 ≤ i ≤ k
we have Ai(s) ∈ Ae ∪ sat(Rh,Ae|Γ). If Ai(s) ∈ Ae,
then Ai ∈ sig(Rv); moreover, Ai ∈ sig(Rh) since Ai oc-
curs in % ∈ Rh; thus, Ai ∈ sig(Rv) ∩ sig(Rh) = Γ, so
Ai(s) ∈ Ae|Γ. Hence, Ai(s) ∈ sat(Rh,Ae|Γ) for each
1 ≤ i ≤ k. One can prove in an analogous way that
{Ri(s, ti), Bi,1(ti), . . . , Bi,mi(ti)} ⊆ sat(Rh,Ae|Γ) for
each 1 ≤ i ≤ m. Since the Hyp-rule is not applicable to
sat(Rh,Ae|Γ), then C(s) ∈ sat(Rh,Ae|Γ), so Aj satis-
fies Statement (1).
In the proof that Aj satisfies Statement (2), the only
nontrivial case is when s is Rv-relevant (so it occurs
in Ae|Γ), sig(C) ⊆ sig(Rv), and C(s) ∈ sat(Rh,Ae|Γ).
Since C occurs in % ∈ Rh, we have sig(C) ⊆ sig(Rh),
so sig(C) ⊆ sig(Rv) ∩ sig(Rh) = Γ. By Property 1 of

Lemma 1, we haveRh ∪ Ae|Γ |= C(s); since the Ωe-rule
is not applicable toAe, we have C(s) ∈ Ae; thus,Aj sat-
isfies Statement (2). Finally, Aj satisfies Statements (3a)
and (3b) because sig(C) ⊆ sig(Rh).

• % ∈ Rv . Clearly, sig(C) ⊆ sig(Rv). We first prove
the following property (?): if s is of the form aD, then
D ∈ sig(Rv) \ Γ. To prove (?), let us assume that s is of
the form aD. Since Rv is EL-safe w.r.t. Γ, by Definition
4 at least one of the following cases holds.
– Ai /∈ Γ for some 1 ≤ i ≤ k. Thus,Ai 6∈ sig(Rh). Now
Ai(aD) satisfies the contrapositive of Statement (3b),
so D 6∈ sig(Rh), and D ∈ sig(Rv) \ Γ.

– Ri 6∈ Γ for some 1 ≤ i ≤ m. Thus, Ri 6∈ sig(Rh).
Now Ri(aD, ti) satisfies the contrapositive of State-
ment (4b-ii), so D 6∈ sig(Rh), and D ∈ sig(Rv) \ Γ.

– Ri ∈ Γ and Bi,` /∈ Γ for some 1 ≤ i ≤ m and some
1 ≤ ` ≤ mi. Assertion R(aD, ti) satisfies Statement
(4), so ti is of the form aE for some E. Assertion
Bi,`(aE) satisfies Statement (3b) and Bi,` 6∈ sig(Rh),
so (by the contrapositive) we have E ∈ sig(Rv) \ Γ.
Assertion R(aD, aE) satisfies Statement (4b-ii), so (by
the contrapositive) we have D ∈ sig(Rv) \ Γ.

By (?), we have that either s ∈ NI or s = aD with
D ∈ sig(Rv) \ Γ; thus, s is Rv-relevant. Furthermore,
since A ∈ sig(Rv), Ai(s) ∈ Aj−1, and Aj−1 satisfies
Statement (2), we have Ai(s) ∈ Ae. Consider now
each ti with 1 ≤ i ≤ m. Since % is EL-safe, for some
1 ≤ ` ≤ mi we have Bi,` ∈ sig(Rv) \ Γ, so ti is notRh-
relevant by the contrapositive of Statement (3b); that
is, ti is Rv-relevant. By Statement (2), we then have
{Ri(s, ti), Bi,1(ti), . . . , Bi,mi(ti)} ⊆ Ae. Thus, Ae con-
tains the assertions matching the body of the EL-rule %
and deriving C(s); since the Hyp-rule is not applicable to
Ae and %, we have C(s) ∈ Ae; thus, Aj satisfies State-
ments (1) and (2). Furthermore, Aj satisfies Statement
(3a) because sig(C) ⊆ sig(Rv). Finally, if s is of the form
sD, then by (?) we have D ∈ sig(Rv) \ Γ, soAj satisfies
Statement (3b) vacuously.

Theorem 6. The EL Ωe-algorithm is an import-by-query
algorithm and it can be implemented such that it runs in
time polynomial in the size of Rv ∪ Av with a polynomial
number of calls to Ωe

Th,Γ.

Proof. Each application of a derivation rule adds an asser-
tion of the form C(a) or R(a, b) for C ∈ sig(Rv) ∪ {⊥}.
Since no rule removes assertions from an ABox, the total
number of rule applications is polynomial. Thus, the algo-
rithm can be implemented such that it runs in polynomial
time with a polynomial number of calls to the oracle.

Since Rh is the result of transforming Th into EL-rules,
Rv ∪ Av ∪ Th is satisfiable iffRv ∪ Av ∪Rh is satisfiable.
Let Ae and AEL be as specified in Lemma 2. Suppose
that Rv ∪Rh ∪ Av is satisfiable; hence, ⊥ /∈ AEL. By
the soundness property of Lemma 2, then ⊥ /∈ Ae so the
import-by-query algorithm returns t. Finally, suppose that

the import-by-query algorithm returns t; hence,⊥ 6∈ Ae. By
the completeness property of Lemma 2, we have ⊥ /∈ AEL,
soRv ∪ Av ∪Rh is satisfiable.

Proof of Theorem 7
We will need the following machinery to show the theorem.

Definition 10. An ABoxA is an HT-ABox if all of its asser-
tions satisfy the following conditions, for B an atomic or a
negated atomic concept, S a role, R an atomic role, a and b
named individuals, s an individual, and i and j integers.

1. Each concept assertion in A is of the form B(s) or
≥nS.B(s).

2. Each role assertion in A is of the form R(a, b), R(s, s.i),
or R(s.i, s).

3. Each negative role assertion inA is of the form ¬R(a, b),
¬R(s, s.i), or ¬R(s.i, s).

4. If an individual s.i occurs in an assertion in A, then
A contains a role assertion of the form R(s, s.i) or
R(s.i, s).

5. Each equality in A is of the form s.i ≈ s.j, s.i ≈ s,
s.i.j ≈ s, s ≈ s, or a ≈ b.i.

Lemma 3 ((Motik, Shearer, and Horrocks 2009)). LetR be
a set of HT-rules and A an ABox. Then, each ABox labeling
a node of a derivation forR and A is an HT-ABox.

Lemma 4 ((Motik, Shearer, and Horrocks 2009)). LetR be
a set of HT-rules and A a clash-free HT-ABox not contain-
ing indirectly blocked individuals. If no derivation rule is
applicable toR and A, thenR∪A is satisfiable.

Definition 11. The weakened pairwise anywhere blocking,
abbreviated w-blocking, is the same as in Definition 1, with
the difference that the following condition is used instead of
LA(s′) = LA(t′):

For each HT-rule % ∈ R containing a body atom of the
form R(x, y) or R(y, x) with R an atomic role such
that R ∈ LA(s, s′) ∪ LA(s′, s), and for each atomic
concept A occurring in %, we have that A ∈ LA(s′)
iff A ∈ LA(t′).

Lemma 5. Lemma 4 holds even if the derivation for R and
A uses w-blocking.

Proof (Sketch). Let A′ be an ABox labeling a leaf of a
derivation forR andA′; let s be an individual that is blocked
inA′ by t by w-blocking; and let s′ and t′ be the parents of s
and t. For the proof of (Motik, Shearer, and Horrocks 2009,
Lemma 6) to hold, we must show that no HT-rule is appli-
cable to an interpretation obtained by unraveling A′. Let
% ∈ R be an HT-rule. If % does not contain in the body a
role atom with a role R ∈ LA(s, s′) ∪ LA(s′, s), then the
Hyp-rule cannot be applied to % with substitution σ(x) = s.
Furthermore, if % does not contain an atomic conceptA, then
the fact that A ∈ LA(s′) but A 6∈ LA(t′) or vice versa can-
not affect the applicability of %. Thus, by a straightforward
modification of the proof of (Motik, Shearer, and Horrocks
2009, Lemma 6), we can construct a model for A and R by
unraveling A′.

It is straightforward to see that the derivation rules in
Table 4 do not invalidate Lemma 3—that is, given an HT-
ABox, they always produce an HT-ABox.

Termination
To show termination, we first show that the dependency
structure G = (∼, E, λ) for Rv ∪ Av w.r.t. Γ “overesti-
mates” the ABoxes produced by the hypertableau algorithm;
that is, we show that each ABox ρ(t) labeling a derivation
node can be homomorphically embedded into G.

Lemma 6. Let Rv be a set of HT-clauses, Av an ABox,
Γ a signature, G = (∼, E, λ) the dependency structure
for Rv ∪ Av w.r.t. Γ, Th an ALCHIQ TBox, and (T, ρ)
a derivation for Rv , Av , and Ωa

Th,Γ. Then, for each deriva-
tion node t ∈ T , a mapping µ from the individuals in ρ(t)
to the set W of equivalence classes of ∼ exists that satisfies
all of the following properties for all individuals s and s′
occurring in ρ(t):

1. C(s) ∈ ρ(t) implies C ∈ λ(µ(s)).
2. R(s, s′) ∈ ρ(t) implies R ∈ λ(µ(s), µ(s′)).
3. If s′ = s.i, then 〈µ(s), µ(s′)〉 ∈ E.
4. If s ≈ s′ ∈ ρ(t), then µ(s) = µ(s′).
5. If s is an unnamed individual in ρ(t), then µ(s) ∩ V2 6= ∅,

for V2 as in Definition 8.

Proof. We prove the lemma by induction on the structure of
the derivation. For ε ∈ T the root node of the derivation, let
µ be defined as follows:

µ = {a 7→ [va]∼ | for each individual a occurring in Av}

The ABox ρ(ε) satisfies Properties 1 and 2 by Condition 1
from Table 3. Furthermore, Properties 3 and 5 hold trivially
because ρ(ε) only contains named individuals. Property 4
also holds trivially because ρ(ε) does not contain assertions
of the form s ≈ s′.

For the induction step, assume that, for some derivation
node t ∈ T , the ABox ρ(t) satisfies the claim for some map-
ping µ. For each child node t′ ∈ T of t, we consider the
possible ways ρ(t′) can be derived from ρ(t).

• Ωa-rule: All properties hold trivially for ρ(t′) and µ.
• A-cut: We have ρ(t′) = ρ(t) ∪ {C(s)} with C of the

form A or ¬A and A ∈ Γ. Then, C ∈ λ(µ(s)) by Con-
dition 4 from Table 3, so ρ(t′) satisfies Property 1 for µ.
Finally, Properties 2–5 hold by the induction assumption.

• R-cut: First, assume that ρ(t′) = ρ(t) ∪ {R(s, s′)} with
R ∈ Γ. By Condition 2 ofR-cut we haveR′(s, s′) ∈ ρ(t)
with R′ ∈ Γ, so we have R′ ∈ λ(µ(s), µ(s′)) by the in-
duction assumption. By R ∈ Γ and Condition 5 from Ta-
ble 3, we haveR ∈ λ(µ(s), µ(s′)), so ρ(t′) satisfies Prop-
erty 2 for µ. Second, if ρ(t′) = ρ(t) ∪ {¬R(s, s′)} with
R ∈ Γ, then Property 2 holds trivially. Finally, Properties
1, 3, 4 and 5 hold trivially in both cases.

• R−-cut: Assume ρ(t′) = ρ(t) ∪ {R(s′, s)} with R ∈ Γ.
By Condition 2 of R−-cut we have R(s, s′) ∈ ρ(t), so
we have R ∈ λ(µ(s), µ(s′)) by the induction assump-
tion. By R ∈ Γ and Condition 6 from Table 3, we have

R ∈ λ(µ(s), µ(s′)), so ρ(t′) satisfies Property 2 for µ. If
ρ(t′) = ρ(t) ∪ {¬R(s′, s)} with R ∈ Γ, then Property 2
holds trivially. Properties 1 , 3, 4 and 5 hold trivially in
both cases.

• ⊥-rule: All properties hold trivially for ρ(t′) and µ.
• ≥-rule: Assume that ρ(t′) is defined as follows, where
≥nR.C(s) ∈ ρ(t) and si are fresh successors of s:

ρ(t′) = ρ(t) ∪ {ar(R, s, si), C(si) | 1 ≤ i ≤ n} ∪
{si 6≈ sj | 1 ≤ i < j ≤ n}

We have≥nR.C(s) ∈ ρ(t) by Condition 1 of the≥-rule,
so ≥nR.C(s) ∈ λ(µ(s)) by the induction assumption.
Let µ′ = µ ∪ {si 7→ [vC]∼ | 1 ≤ i ≤ n}. By Conditions
1 and 2 from Table 3 and the fact that C is atomic or a
negation of an atomic concept, for each 1 ≤ i ≤ n we
have C ∈ λ(µ′(si)) and either R ∈ λ(µ′(s), µ′(si)) if R
is an atomic role or S ∈ λ(µ′(si), µ

′(s)) ifR is an inverse
role and R = S−. Furthermore, by Condition 2 from Ta-
ble 3 we have 〈µ′(s), µ′(si)〉 ∈ E. Hence, ρ(t′) satisfies
Properties 1–3 for µ′. Also, vC ∈ V2, so ρ(t′) satisfies
Property 5 for µ′. Finally, Property 4 holds trivially.
• Hyp-rule: Assume that ρ(t′) = ρ(t) ∪ {α} for α the head

atom of an HT-rule % of the form (2). By Condition 2 of
the Hyp-rule, ρ(t) contains individuals s, s1, . . . , sn such
that the statements from the left column from the follow-
ing table holds. But then, by the induction assumption,
the statements from the right column hold as well.

Ai(s) ∈ ρ(t) ⇒ Ai ∈ λ(µ(s))
Rij(s, si) ∈ ρ(t) ⇒ Rij ∈ λ(µ(s), µ(si))
Sij(si, s) ∈ ρ(t) ⇒ Sij ∈ λ(µ(si), µ(s))
Bij(si) ∈ ρ(t) ⇒ Bij ∈ λ(µ(si))

By Condition 3 from Table 3, the statements from the fol-
lowing table then hold as well, so ρ(t′) satisfies Properties
1, 2 and 4 for µ; finally, Properties 3 and 5 hold trivially.

Ci ∈ λ(µ(s))
R′ij ∈ λ(µ(s), µ(si))
S′ij ∈ λ(µ(si), µ(s))
Dij ∈ λ(µ(si))
µ(si) = µ(sj)

• ≈-cut rule: Assume that ρ(t′) = ρ(t) ∪ {α} with α an
assertion of the form s1 ≈ s2 or s1 6≈ s2. Then, ρ(t) triv-
ially satisfies Properties 1–3 and 5 for µ. Property 4 also
holds trivially if α is of the form s1 6≈ s2, so assume that
α of the form s1 ≈ s2. Then, an individual s in ρ(t) and
atomic roles R,R′ ∈ Γ exist such that

{R(s, s1), R′(s, s2)} ⊆ ρ(t) or
{R(s, s1), R′(s2, s)} ⊆ ρ(t) or
{R(s1, s), R

′(s2, s)} ⊆ ρ(t).

We consider explicitly only the first case; the other ones
are analogous. By the induction assumption, we then have
R ∈ λ(µ(s), µ(s1)) and R′ ∈ λ(µ(s), µ(s2)). By Condi-
tion 7 from Table 3, then µ(s1) = µ(s2), so ρ(t) satisfies
Property 4 for µ.

• ≈-rule: Assume that ρ(t′) = mergeρ(t)(s→ s′). Then,
by Conditions 1 and 2 of the ≈-rule, s ≈ s′ ∈ ρ(t) with
s 6= s′. Furthermore, by the induction assumption, we
have µ(s) = µ(s′). Since merging merely replaces s with
s′, it is straightforward to check that ρ(t) satisfies Prop-
erties 1, 2, and 4 hold for µ′. Finally, Properties 3 and 5
hold trivially.

We next use Lemma 6 to prove that the length of chains
of role assertions involving a role in Γ is bounded.

Lemma 7. LetRv , Av , Γ, G = (∼, E, λ), and (T, ρ) be as
in Lemma 6 with the additional restriction that G is acyclic.
Let t ∈ T be any derivation node of (T, ρ), and let s1, . . . , s`
be unnamed individuals occurring in ρ(t) such that all of the
following conditions are satisfied for each 1 ≤ i < `:

• si+1 is a successor of si and
• ρ(t) contains an assertion Ri(si, si+1) or Ri(si+1, si)

for some Ri ∈ Γ.

Then, ` ≤ |V |.

Proof. Assume that, for some integer ` > |V |, individu-
als s1, . . . , s` satisfying the two conditions exist, and let
µ be a mapping satisfying Lemma 6. Consider now each
1 ≤ i ≤ ` and let j = i+ 1 mod `. By Lemma 6, ei-
ther Ri ∈ λ(µ(si), µ(sj)) or Ri ∈ λ(µ(sj), µ(si)) for some
Ri ∈ Γ; furthermore, µ(si) ∩ V2 6= ∅ because si is un-
named, and 〈µ(si), µ(sj)〉 ∈ E because sj is a successor of
si. Thus, each pair 〈µ(si), µ(sj)〉 is harmful by Definition 8.
Furthermore, since ` > |V |, it must be that µ(sm) = µ(sn)
for some m 6= n; thus, G contains a harmful cycle for Γ,
which is a contradiction.

We are now ready to prove our main claim.

Lemma 8 (Termination). Let Rv , Av , Γ, G = (∼, E, λ),
and (T, ρ) be as in Lemma 7. Then, (T, ρ) is finite.

Proof. Let the depth of an individual s be the number of its
ancestors, and let c and r be the numbers of atomic con-
cepts and roles, respectively, occurring in Rv and Av; fi-
nally, let W be the set of equivalence classes of ∼ and
℘ = (22cr + 1)(|W |+ 1) + 1. Consider now each deriva-
tion node t ∈ T .

Let s be an individual in ρ(t) of depth i(|W |+ 1) + 1.
By a simple induction on i, one can show that s has at least
i ancestors that are blocking-relevant. The induction base is
straightforward for i = 0; furthermore, the induction step
holds because, by Lemma 7 and the fact that ρ(t) is an HT-
ABox, the depth of the nearest blocking-relevant ancestor of
s can be at most |W |+1 less than the depth of s. Thus, each
individual s of depth ℘ has at least 22cr+1 blocking-relevant
ancestors; since there are at most 22cr possible concept and
role labelings for an individual and its predecessor, one of
the blocking ancestors of s is blocked due to the definition
of blocking; hence, s is either directly or indirectly blocked
in ρ(t). The claim of this lemma then holds analogously as
in (Motik, Shearer, and Horrocks 2009, Lemma 7).

Soundness & Completeness
Lemma 9 (Soundness). Let Rv be a set of HT-rules, Th an
ALCHIQ TBox, and A an ABox such that Rv ∪ Th ∪ A
is satisfiable. Furthermore, let A1, . . . ,An be the ABoxes
obtained by applying a derivation rule from Table 1 or 4
to Rv and A. Then, Rv ∪ Th ∪ Ai is satisfiable for some
1 ≤ i ≤ n.

Proof. Let I be a model of Rv ∪ Th ∪ A, and let us con-
sider the possible derivation rules that derive A1, . . . ,An.
The cases for the Hyp-, ≥-, ≈-, and ⊥-rule are the same as
in (Motik, Shearer, and Horrocks 2009, Lemma 5). Further-
more, by the law of excluded middle for first-order logic, the
claim is true for A, R-cut, R−-cut and ≈-cut rules. Assume
that the Ωa-rule derives ⊥—that is, that Th ∪ A|Γ is unsat-
isfiable. But then, since A|Γ ⊆ A, by the monotonicity of
first-order logicRv ∪ Th ∪ A is unsatisfiable as well, which
is a contradiction.

Lemma 10 (Completeness). LetRv be a set of HT-safe HT-
rules, Av an ABox, Γ a signature, and Th an ALCHIQ
TBox, and let Rv ∪ Av be acyclic w.r.t. Γ. If a derivation
for Rv , Av , and Ωa

Th,Γ contains a leaf node labeled with a
clash-free ABox, thenRv ∪ Av ∪ Th is satisfiable.

Proof. Let A be an ABox obtained from a clash-free ABox
labeling a leaf of a derivation for Rv ,Av , and Ωa

Th,Γ by
removing all assertions involving an indirectly blocked in-
dividual. Since Rv ∪ Av is acyclic w.r.t. Γ, A is fi-
nite by Lemma 8. It is easy to check that A is an HT-
ABox and that no derivation rule is applicable to Rv ,
A, and Ωa

Th,Γ. Furthermore, it is straightforward to see
that a mapping h from the individuals in Av to the indi-
viduals in A exists such that h(a) = a for each individ-
ual a occurring in A, C(a) ∈ Av implies C(h(a)) ∈ A,
and R(a, b) ∈ Av implies R(h(a), h(b)) ∈ A. Hence, each
model of Rv ∪ A ∪ Th can be extended to a model of
Rv ∪ Av ∪ Th by interpreting each individual a not occur-
ring in Av in the same way as h(a). Thus, we prove this
lemma by showing thatRv ∪ A ∪ Th is satisfiable.

Let Rh be the result of transforming Th into a set of HT-
rules as described by (Motik, Shearer, and Horrocks 2009);
then, Rv ∪ Av ∪ Th is equisatisfiable with Rv ∪ Av ∪Rh,
and each model of the latter is a model of the former as well.
Therefore, in the rest of the proof we extend A to a clash-
free HT-ABoxAfin such that no derivation rule is applicable
to Rv ∪Rh and Afin. By Lemma 5, then Rv ∪ Afin ∪Rh
is satisfiable, which, together with the fact that A ⊆ Afin,
implies the satisfiability of Rv ∪ A ∪Rh. Before proceed-
ing with the construction of Afin, we next introduce several
useful definitions and notational conventions.

• Let Γv = sig(Rv) ∪ sig(Av) and Γh = sig(Rh).
• The modified hypertableau algorithm is the same as the

standard hypertableau algorithm from Definition 1 with
the difference that it can be applied to an ABox containing
unnamed individuals, in which case these individuals are
treated as if they were named. Such a algorithm is clearly
sound, complete, and terminating.

• In this proof, the term “blocking” refers to the version of
blocking given in Definition 9, and the term “w-blocking”
refers to one in Definition 11.

• For each blocked individual s, we pick an arbitrary but
fixed individual s′ that blocks s, which we then call the
blocker of s.

• We say that an individual sn is Γ-connected to an in-
dividual s1 in A if individuals s2, . . . , sn−1 exist such
that Ri(si, si+1) ∈ A or Ri(si+1, si) ∈ A with Ri ∈ Γ
for each 1 ≤ i < n.

• The projection of an ABox A to a set of individuals S is
the ABox consisting of exactly those assertions from A
that contain only the individuals in S.

We now proceed with the construction of Afin. To this
end, we split A|Γ into ABoxes Anm and At as follows; we
use these ABoxes later to construct Afin.

– The ABoxAnm is the projection ofA|Γ to the set contain-
ing all named individuals in A and all unnamed individu-
als that are Γ-connected to a named individual in A.

– For each nonblocked blocking-relevant individual t in A,
the ABoxAt is the projection ofA|Γ to the set containing
t and all (unnamed) individuals that are Γ-connected to t
in A.

By the monotonicity of first-order logic, Ωa
Th,Γ(A|Γ) = t

implies Ωa
Th,Γ(Anm) = t and Ωa

Th,Γ(At) = t for each non-
blocked blocking-relevant individual t in A.

Let Anm
fin be the result of taking any clash-free ABox la-

beling a leaf of a derivation for Rh ∪ Anm by the modi-
fied hypertableau algorithm and then removing all assertions
containing an indirectly blocked individual; furthermore, for
each nonblocked blocking-relevant individual t inA, letAtfin
be obtained from At in an analogous way. ABoxes Anm

fin
and Atfin exist because Ωa

Th,Γ(Anm) = t, Ωa
Th,Γ(At) = t for

each t, and the modified hypertableau algorithm is sound and
complete. Since the supply of unnamed individuals is unlim-
ited, we assume without loss of generality that the≥-rule al-
ways introduces individuals that are “globally fresh”—that
is, that do not occur in any other ABox.

We next prove the following property (♦): Anm ⊆ Anm
fin ,

and At ⊆ Atfin for each nonblocked blocking-relevant indi-
vidual t occurring in A. We show only Anm ⊆ Anm

fin ; the
proof of At ⊆ Atfin is analogous. The proof is by an induc-
tion on the application of the derivation rules. The base of
the induction is trivial. An application of the ≥-rule, the ⊥-
rule, and the Hyp-rule clearly preserves (♦). To show that
the≈-rule preserves (♦), we consider the types of equalities
that can be derived via the Hyp-rule. Consider an application
of an HT-rule to an ABox in a derivation forRh ∪ Anm. For
the rule to derive an equality of the form s1 ≈ s2, the ABox
must contain assertions of the form R(s, s1) and R′(s, s2),
or R(s, s1) and R′(s2, s), or R(s1, s) and R′(s2, s). As-
sume now that both s1 and s2 occur in Anm. Since ≈-cut
rule is not applicable to Anm, the ABox Anm contains ei-
ther s1 ≈ s2 or s1 6≈ s2, so the derivation of s1 ≈ s2 either
makes no difference or it causes a contradiction. Finally, as-
sume that at least one of s1 and s2 does not occur in Anm.

Since the modified hypertableau algorithm treats all individ-
uals in Anm as named, merging never eliminates an individ-
ual from Anm. Thus, each application of the ≈-rule either
eventually leads to a contradiction or it preserves (♦).

We now define Afin as the ABox obtained by

1. taking the union ofA,Anm
fin , andAtfin for each nonblocked

blocking-relevant individual t in A, and
2. adding C(s) for each blocked individual s in A with

blocker s′ such that C(s′) ∈ As′fin and sig(C) ⊆ Γh.2

By Lemma 3, Anm
fin and all Atfin are HT-ABoxes, and it is

straightforward to see that Afin is an HT-ABox as well. We
next show that no hypertableau derivation rule is applicable
toRv ∪Rh and Afin.

To this end, we first show that Afin satisfies the follow-
ing useful property (∗): if α ∈ Afin, sig(α) ⊆ Γv , and all
individuals mentioned in α occur in A, then α ∈ A. If
sig(α) ⊆ Γv \ Γ, then α could not have been added in the
construction of Afin (because this construction adds only
assertions containing symbols from Γh). Furthermore, if
sig(α) ⊆ Γ, since theA-,R-, andR−-cut rules are not appli-
cable toA, extendingAnm orAt with α either makes no dif-
ference or it eventually leads to a contradiction. A straight-
forward consequence of (∗) is that the following properties
hold for all individuals u and v occurring in A:

LAfin
(u) ∩ Γv =LA(u) (12)

LAfin
(u, v) ∩ Γv =LA(u, v) (13)

We now show that no derivation rule of the hypertableau
algorithm with w-blocking is applicable to Rv ∪Rh and
Afin. We do so by considering the possible derivation rules.

(≥-rule) Suppose the ≥-rule is applicable to an assertion
≥nR.C(s) ∈ Afin, so s is not w-blocked in Afin. We now
show that s is not blocked in A, or s is not w-blocked in
Anm

fin , or s is not w-blocked in some Atfin. We prove this
claim by considering the possible origins of s.

• s occurs inA. The claim holds trivially if s is not blocked
in A. Assume that t is the blocker of s in A, so the fol-
lowing properties hold by the definition of blocking:

LA(s) =LA(t) (14)

LA(s′) =LA(t′) (15)

LA(s, s′) =LA(t, t′) (16)

LA(s′, s) =LA(t′, t) (17)

LA(s, s′) ∪ LA(s′, s) ⊆Γv \ Γ (18)

By (12) and (13), the following properties then hold as
well:

LAfin
(s) ∩ Γv =LAfin

(t) ∩ Γv (19)

LAfin
(s′) ∩ Γv =LAfin

(t′) ∩ Γv (20)

Furthermore, the second item in the construction of Afin

ensures that LAfin
(s) and LAfin

(t) coincide on each con-
cept C ∈ Γh \ Γ, which ensures the following property:

LAfin
(s) = LAfin

(t) (21)

2Note that, since s is blocked, it is blocking-relevant.

By (18), A|Γ does not contains an assertion involving in-
dividuals s and s′, or individuals t and t′. By the con-
struction of Afin, the following properties hold:

LAfin
(s, s′) =LAfin

(t, t′) (22)

LAfin
(s′, s) =LAfin

(t′, t) (23)

Consider now each rule % ∈ Rv ∪Rh. If % ∈ Rh, then no
role in the body of % occurs in LAfin

(s, s′) ∪ LAfin
(s′, s),

so % satisfies the condition of weakened pairwise any-
where blocking. If % ∈ Rv , then % satisfies the condition
of weakened pairwise anywhere blocking due to (20). To-
gether with (21), (22), (23), this property implies that s is
w-blocked by t.

• s occurs in Anm
fin but not in A. By the construction of

Afin, LAfin
(u) = LAnm

fin
(u) and LAfin

(u, v) = LAnm
fin

(u, v)
for all individuals u and v occurring in Anm

fin but not in
A; furthermore, if u occurs in both Anm

fin and A, then
LAfin

(u) ∩ Γh = LAnm
fin

(u) ∩ Γh. Thus, if s is not w-
blocked in Afin, then s is not w-blocked in Anm

fin .
• s occurs in some Atfin but not in A. This case is com-

pletely analogous to the previous one.

Let A′ be the ABox for which the above property holds.
By the construction of Afin, we have that ≥nR.C(s) ∈ A′.
Since the ≥-rule is not applicable to s in A′, we have that

A′ ⊇ {ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪
{ui 6≈ uj | 1 ≤ i < j ≤ n}

for some individuals u1, . . . , un. By the construction ofAfin

we have A′ ⊆ Afin, which then contradicts the assumption
that the ≥-rule is applicable to s and Afin.

(⊥-rule, first variant) Property (12) holds for each indi-
vidual s occurring in A, and (24) and (25) hold for each
individual s occurring in Anm

fin and Atfin, respectively.

LAfin
(s) ∩ Γh =LAnm

fin
(s) ∩ Γh (24)

LAfin
(s) ∩ Γh =LAt

fin
(s) ∩ Γh (25)

Thus, {A(s),¬A(s)} ⊆ Afin implies {A(s),¬A(s)} ⊆ A′,
where A′ can be A, or Anm

fin , or some Atfin. Since the first
variant of the ⊥-rule is not applicable to A′, it is not appli-
cable to Afin either.

(⊥-rule, second variant) Property (13) holds for each pair
of individuals s and t occurring in A. Furthermore, Anm

fin
and Atfin do not contain negative assertions other than those
already present in A. Since the second variant of the ⊥-rule
is not applicable to A, Anm

fin , and all Atfin, it is not applicable
to Afin either.

(⊥-rule, third variant) Suppose that the ⊥-rule is applica-
ble to an assertion of the form s 6≈ s ∈ Afin. By the con-
struction of Afin, then s 6≈ s ∈ A′ for A′ being A, Anm

fin , or
Atfin for some t. But then, since the ⊥-rule is not applicable
to A′, it is not applicable to Afin either.

(≈-rule) Assume now that the≈-rule is applicable toAfin.
Hence there is an assertion s ≈ s′ in Afin with s 6= s′. By
the construction of Afin, we have that s ≈ s′ ∈ A′, with
A′ = A, or A′ = Anm

fin , or A′ = Atfin for some t. But then,
since the ≈-rule is not applicable to A′, it is not applicable
to Afin either.

(Hyp-rule) Assume that the Hyp-rule is applicable to
Afin and an HT-rule % ∈ Rv ∪Rh of the form (2). Thus,
a mapping σ from the variables in % to the individuals
Afin exists such that σ(Ui) ∈ Afin for each 1 ≤ i ≤ m,
but σ(Vj) 6∈ Afin for each 1 ≤ j ≤ n. Let s = σ(x) and
ui = σ(yi). We have the following possibilities:

• % ∈ Rh. LetA′ be the ABox chosen amongAnm
fin andAtfin

containing the individual s. Consider now each ui. Then
% contains an atom of the form Rij(x, yi) or Sij(yi, x)
with Rij ∈ Γh or Sij ∈ Γh, so Afin contains an assertion
of the form Rij(s, ui) or Sij(ui, s). By the definition of
blocking, for each pair of individuals u and v that belong
to different Anm and At, the ABox A does not contain
an assertion of the form T (u, v) with T ∈ Γh; but then,
by the construction of Afin, if u and v belong to different
Anm

fin and Atfin, the ABox Afin does not contain such an
assertion either. Thus, all ui occur in A′, so the Hyp-rule
is applicable to % and A′, which is a contradiction.

• % ∈ Rv . We distinguish the following cases:
– The rule % contains no atoms of the form Rij(x, yi) or
Sij(yi, x) in the body. Since % is EL-safe, we have that
s occurs in Afin in an assertion of the form Ai(s) with
Ai ∈ Γv \ Γ. But then, s occurs in A, so by (∗) we
have that Aj(s) ∈ A for each atom Aj(s) occurring in
the body of %. Thus, % is applicable to A for σ, which
is a contradiction.

– The rule % contains at least one atom of the form
Rij(x, yi) or Sij(yi, x) in the body. We now consider
each atom of such a form.
∗ Rij ∈ Γ (analogously Sij ∈ Γ). Since % is HT-

safe, we have that s and ui occur in Afin in asser-
tions of the formAi(s) andBij(ui), respectively, with
Ai, Bij ∈ Γv \ Γ. But then, since no individual intro-
duced by the ≥-rule in Anm

fin and each Atfin occurs in
such an assertion, we have that s and ui occur in A.
Thus, by (∗) we have Ai(s) ∈ A and Bij(ui) ∈ A.

∗ Rij ∈ Γv \ Γ (analogously Sij ∈ Γv \ Γ). Since no
individual introduced by the ≥-rule in Anm

fin and each
Atfin occurs in an assertion of the form Rij(s, ui)
where Rij ∈ Γv \Γ, we have that both s and ui occur
in A. By (∗), then Rij(s, ui) ∈ A.

In both cases, σ(Ui) ∈ A for each 1 ≤ i ≤ m; further-
more, since A ⊆ Afin, we have σ(Vj) 6∈ A for each
1 ≤ j ≤ n. Thus, % is applicable to A for σ, which
is a contradiction.

Thus, no derivation rule of the hypertableau algorithm
with w-blocking is applicable to Rv ∪Rh and Afin, so
Rv ∪Rh ∪ Afin is satisfiable by Lemma 5. As explained
earlier, this then proves the claim of this lemma.

Lemmas 8, 9, and 10 immediately imply Theorem 7.

