
Reducing SHIQ− Description Logic to Disjunctive Datalog Programs

Ullrich Hustadt
Department of Computer Science

University of Liverpool
Liverpool, UK

U.Hustadt@csc.liv.ac.uk

Boris Motik
FZI Research Center for Information

Technologies at the University of Karlsruhe
Karlsruhe, Germany
motik@fzi.de

Ulrike Sattler
Department of Computer Science

University of Manchester
Manchester, UK

sattler@cs.man.ac.uk

Abstract

As applications of description logics proliferate, efficient
reasoning with large ABoxes (sets of individuals with de-
scriptions) becomes ever more important. Motivated by the
prospects of reusing optimization techniques from deduc-
tive databases, in this paper, we present a novel approach
to checking consistency of ABoxes, instance checking and
query answering, w.r.t. ontologies formulated using a slight
restriction of the description logic SHIQ. Our approach pro-
ceeds in three steps: (i) the ontology is translated into first-
order clauses, (ii) TBox and RBox clauses are saturated using
a resolution-based decision procedure, and (iii) the saturated
set of clauses is translated into a disjunctive datalog program.
Thus, query answering can be performed using the resulting
program, while applying all existing optimization techniques,
such as join-order optimizations or magic sets. Equally im-
portant, the resolution-based decision procedure we present is
for unary coding of numbers worst-case optimal, i.e. it runs
in EXPTIME.

Introduction
In recent years description logics have found their applica-
tion in various fields of computer science, including, but
not limiting to data integration, knowledge representation
and ontology modeling for the Semantic Web. Many prac-
tical DL reasoners have been built and applied to practical
problems. The experience shows that these systems per-
form well when computing the subsumption hierarchy: they
use practicable, highly optimized tableau-based algorithms
(Horrocks, Sattler, & Tobies 2000), which perform much
better on practical problems than their ExpTime worst-case
computational complexity suggests (Tobies 2001).

However, new applications, such as metadata manage-
ment in the Semantic Web, require efficient query answering
over large ABoxes, i.e., sets of ground facts. So far, attempts
have been made to answer queries by a reduction to ABox
consistency checking, which can then be solved by employ-
ing above mentioned tableau algorithms. From a theoretical
point of view, this approach is quite elegant, but from a prac-
tical point of view, it has a significant drawback: as the num-
ber of ABox individuals increases, the performance may be-
come quite poor. We believe that there are two main reasons

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

for this. Firstly, tableau-based algorithms treat all individ-
uals separately, i.e., they do not group individuals together
depending on common properties. Secondly, to answer a
query, one usually does not need to consider all ABox in-
formation. Rather, only a small subset of the ABox usually
suffices to compute the query answer. We find it difficult to
modify the tableau search strategy to take into account the
query in the search. These deficiencies have already been
acknowledged by the research community, and certain opti-
mization techniques for instance retrieval have already been
developed (Haarslev & Möller 2002). However, the perfor-
mance of query answering is still often not satisfactory.

Since techniques for reasoning in deductive databases are
nowadays mature, we believe it makes sense to examine
how to apply them to improve ABox reasoning in descrip-
tion logics. In this paper, we present a novel technique for
reducing SHIQ− knowledge bases to disjunctive datalog
programs, while preserving the semantics of the knowledge
base. SHIQ− is a very expressive description logics which
is at the core of OWL-DL, a variant of the Ontology Web
Language (OWL), the current standard for ontology mod-
eling in the Semantic Web. SHIQ− differs from SHIQ
(Horrocks, Sattler, & Tobies 2000) in the additional restric-
tion that number restrictions are allowed only for roles not
having subroles.

Our reduction to datalog does not mean that we suggest
employing non-monotonic negation or minimal model rea-
soning. Rather, we consider the disjunctive datalog for-
malism useful since it allows for optimization techniques
such as magic sets (Greco 2003) or join-order optimizations
(Abiteboul, Hull, & Vianu 1995). More precisely, the reduc-
tion to disjunctive datalog addresses the above mentioned
two points in the following way. Firstly, query answering in
disjunctive datalog can be done by manipulating individuals
in sets, and applying each inference rule to all individuals
in a set at once, rather than to each individual separately.
This enables the join order optimization, which, based on the
database statistics, estimates the amount of work done for
different join orders (Abiteboul, Hull, & Vianu 1995). The
second point is addressed by means of the magic sets trans-
formation (Beeri & Ramakrishnan 1987). Roughly speak-
ing, the query is modified so that during its evaluation, a set
of relevant facts is derived, and checking original query con-
ditions is limited to this estimation. The magic sets transfor-

mation for disjunctive programs has been presented recently
in (Greco 2003), along with the empirical evidence of its
usefulness.

Our translation of SHIQ− knowledge bases into disjunc-
tive datalog programs is based upon a basic superposition
decision procedure for SHIQ−, which is interesting in its
own right. Many resolution decision procedures for vari-
ous classes of logics have already been devised, e.g. for the
DL* class (Nivelle, Schmidt, & Hustadt 2000) or for the
(loosely) guarded fragment with equality (Ganzinger & de
Nivelle 1999). However, even though many description log-
ics are subsets of guarded fragments and number restrictions
of SHIQ can be translated into formulae with equality, we
are not aware of any translation of SHIQ into DL* or the
loosely guarded fragment with equality.

Our decision procedure is based on basic superposition, a
sophisticated clausal calculus for logics with equality (Bach-
mair et al. 1995). To show termination, we combine it with
eager elimination of redundant clauses by subsumption. In-
terestingly, we employ subsumption to restrict the depth of
clauses considered, whereas similar similar procedures typ-
ically employ subsumption to restrict the clause length.

Furthermore, our decision procedure runs in worst-case
exponential time, and is thus optimal under the assumption
of unary coding of numbers in the input. Such an assumption
is quite common in description logics, even though SHIQ
is EXPTIME-complete regardless of the coding of numbers
(Tobies 2001). In practice, this means that one should avoid
large numbers in number restrictions. Based on the vast
experience in building efficient theorem provers, we expect
this procedure to be practicable.

Due to a lack of space, for the proofs of some results in
this paper, we refer the interested reader to the accompany-
ing technical report (Hustadt, Motik, & Sattler 2003).

Preliminaries
Description Logic SHIQ. The syntax of SHIQ is given
by the following definition.

Definition 1. Let NR be the set of role names. The set of
SHIQ roles is the set NR ∪ {R

−|R ∈ NR}. For R ∈ NR,
let Inv(R) denote R− and let Inv(R−) denote R. An RBox
R over NR is a finite set of transitivity axioms Trans(R) and
role inclusion axioms R v S, where R and S are roles, such
that, if R v S ∈ R, then Inv(R) v Inv(S) ∈ R as well. Let
v∗ denote the reflexive-transitive closure of v. A role R is
transitive if Trans(S) ∈ R or Trans(Inv(S)) ∈ R for some
S with S v∗ R and R v∗ S; R is simple if there is no role
S such that S v∗ R and S is transitive; R is complex if it is
not simple.

Let NC be a set of atomic concept names. The set of
SHIQ concepts over NC and NR is defined inductively as
the smallest set for which the following holds: > and ⊥ are
SHIQ concepts, each atomic concept name A ∈ NC is a
SHIQ concept, if C and D are SHIQ concepts and R is a
role, then ¬C, C uD, C tD, ∃R.C, ∀R.C are also SHIQ
concepts, and, if C is a SHIQ concept, R a simple role
and n an integer, then ≤ nR.C and ≥ nR.C are SHIQ
concepts.

TBox T over NC andR is a finite set of concept inclusion
axioms C v D or concept equivalence axioms C ≡ D,
where C and D are SHIQ concepts.

Let NI be a set of individual names. An ABox A is a set
of concept and role membership axioms C(a) and R(a, b),
and (in)equality axioms a ≈ b and a 6≈ b, where C is a
SHIQ concept, R a role, and a and b are individuals.

A SHIQ knowledge base KB is a triple of the form
(KBR,KBT ,KBA), where KBR is an RBox, KBT is a
TBox, and KBA is an ABox.

Please note that we do not assume the unique names as-
sumption, but allow the user to axiomatize it explicitly using
inequalities, cf. (Baader et al. 2003, p. 60).

Definition 2. The semantics of a SHIQ knowledge base
KB is given by the mapping π which transforms KB axioms
into a set of first-order formulae, as presented in Table 1. We
call KB satisfiable if π(KB) is satisfiable.

Other interesting inference problems can be reduced to
satisfiability as follows, where α denotes a new individual
not occurring in KB :

Concept satisfiability. A concept C is satisfiable w.r.t. KB

if there exists a model of KB in which the interpretation
of C is not empty. This is the case iff KB ∪ C(α) is
satisfiable.

Subsumption. A concept C is subsumed by a concept D
w.r.t. KB if π(KB) |= π(C v D). This is the case iff
KB ∪ (C u ¬D)(α) is unsatisfiable.

Instance checking. An individual i is an instance of a con-
cept C w.r.t. KB if π(KB) |= π(C(i)). This is the case
iff KB ∪ ¬C(i) is unsatisfiable.

We now define a slight restriction of SHIQ description
logic to which the approach in this paper is applicable.

Definition 3. For a knowledge base KB , a role R is called
very simple if no role S different from R exists, such that
S v∗ R ∈ KBR. The description logic SHIQ− is the
fragment of SHIQ obtained by restricting number restric-
tions ≤ nR.C and ≥ nR.C to very simple roles R.

We also consider the ALCHIQ− fragment of SHIQ−,
which does not allow transitivity axioms.

Basic Superposition Calculus. The basic superposition
calculus has been developed to optimize theorem proving
with equality (Bachmair et al. 1995). A similar calculus
was developed by Nieuwenhuis and Rubio (Nieuwenhuis &
Rubio 1995).

We assume a standard notion of first-order clauses with
equality: all existential quantifiers have been eliminated us-
ing Skolemization; all remaining variables are universally
quantified; we only consider the equality predicate (all non-
equational literals A are encoded as A ≈ > in a multi-sorted
setting); and we treat ≈ as having built-in symmetry. More-
over, we assume the reader to be familiar with standard first-
order resolution (Bachmair & Ganzinger 2001).

Basic superposition is an optimized version of super-
position (a calculus for equational theories (Bachmair &

Mapping Concepts to FOL
πy(>, X)=> πy(⊥, X)=⊥
πy(A, X)=A(X) πy(¬C, X)=¬πy(C, X)

πy(C u D, X)=πy(C, X) ∧ πy(D, X) πy(C t D, X)=πy(C, X) ∨ πy(D, X)
πy(∀R.C, X)=∀y : R(X, y) → πx(C, y) πy(∃R.C, X)=∃y : R(X, y) ∧ πx(C, y)

πy(≤ n R.C, X)=∀y1, . . . , yn+1 :
∧

R(X, yi) ∧
∧

πx(C, yi) →
∨

yi ≈ yj

πy(≥ n R.C, X)=∃y1, . . . , yn :
∧

R(X, yi) ∧
∧

πx(C, yi) ∧
∧

yi 6≈ yj

Mapping Axioms to FOL
π(C v D)=∀x : πy(C, x) → πy(D, x)
π(C ≡ D)=∀x : πy(C, x) ↔ πy(D, x)
π(R v S)=∀x, y : R(x, y) → S(x, y)

π(Trans(R))=∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)
Mapping KB to FOL

π(R)=∀x, y : R(x, y) ↔ R−(y, x)
π(KBR)=

∧
α∈KBR

π(α) ∧
∧

R∈NR
π(R)

π(KBT)=
∧

α∈KBT
π(α)

π(KBA)=
∧

C(a)∈KBA
πy(C, a) ∧

∧
R(a,b)∈KBA

R(a, b) ∧
∧

a≈b∈KBA
a ≈ b ∧

∧
a6≈b∈KBA

a 6≈ b

π(KB)=π(KBR) ∧ π(KBT) ∧ π(KBA)
where X is a meta variable and is substituted by the actual variable
and πx is defined as πy by substituting x and xi for all y and yi, respectively.

Table 1: Translation of SHIQ into FOL

Ganzinger 1994)) which prohibits superposition into terms
introduced by previous unification steps, thus reducing the
number of clauses generated. Its inferences rules are formal-
ized by distinguishing two parts of a clause: (i) the skeleton
clause C and (ii) the substitution σ representing the cumula-
tive effects of previous unifications. Such a representation of
Cσ is called a closure, and is written as C ·σ. A closure can
conveniently be represented by marking the terms in Cσ oc-
curring at variable positions of C. Any position at or beneath
a marked position is called a substitution position. E.g., the
clause P (f(y))∨ g(b) ≈ b is logically equivalent to the clo-
sure (P (x) ∨ z ≈ b) · {x 7→ f(y), z 7→ g(b)}, which can
conveniently be represented as P ([f(y)]) ∨ [g(b)] ≈ b.

The calculus requires two parameters. The first is an ad-
missible ordering on terms�, i.e., a reduction ordering total
on ground terms. Such an ordering is then extended to lit-
erals (Bachmair et al. 1995). The second parameter of the
calculus is a selection function which selects an arbitrary set
of negative literals in a closure.

Given these parameters, the basic superposition calculus,
BS for short, consists of the inference rules given in Ta-
ble 2. A derivation from a closure set N0 is a sequence
of closure sets N0, N1, . . . , Ni, where Ni = Ni−1 ∪ {C},
and C is derived by applying an inference rule from Table 2
with premises from Ni−1. Roughly speaking, the set of clo-
sures Ni is saturated up to redundancy if all inferences from
premises in Ni are redundant in Ni. If this is the case, then
Ni contains the empty closure if and only if N0 is unsatis-
fiable, so BS is a sound and complete refutation procedure
(Bachmair et al. 1995). Compatible redundancy elimina-
tion rules have been presented in (Bachmair et al. 1995;
Hustadt, Motik, & Sattler 2003)

Algorithm Overview
Our algorithm for reducing a SHIQ− knowledge base to a
disjunctive datalog program DD(KB) proceeds by the fol-

lowing five steps, each of which preserves satisfiability and
entailment of ground facts of the form C(a) and R(a, b),
where R is a simple role:

1. KB is translated first into ALCHIQ− knowledge base
Ω(KB) by eliminating transitivity axioms. The size of
Ω(KB) is polynomial in |KB |.

2. Then, Ω(KB) is translated into a first-order formula, us-
ing the operator π from Table 1, which is then transformed
into a set of clauses Ξ(KB). We use structural transfor-
mation for the clausal transformation (Nonnengart & Wei-
denbach 2001; Nivelle, Schmidt, & Hustadt 2000), which
is known to be polynomial.

3. BS is applied to ΓT R = Ξ(KBT ∪ KBR), that is,
to TBox and RBox clauses of KB . We show that this
yields clauses of a rather restricted form only, so-called
ALCHIQ−-clauses, presented in Table 3. The saturated
set Sat(ΓT R) is of size exponential in |KB |.

4. In case Sat(ΓT R) does not contain the empty clause,
Sat(ΓT R) ∪ Ξ(KBA) is translated into a function-free
version FF(KB), in which each ground functional term
f(a) is simulated with a new constant af . We show that
FF(KB) is of size exponential in |KB |.

5. Since it is function-free, FF(KB) can be transformed
into a positive disjunctive datalog program with equality
DD(KB). The program DD(KB) is of size exponential
in |KB |.

The program DD(KB) can be used for query answering,
i.e., KB |= C(a) iff DD(KB) |= π(C(a)); and for a sim-
ple role R, KB |= R(a, b) iff DD(KB) |= π(R(a, b)).
For TBox reasoning tasks, such as computing the subsump-
tion hierarchy, Sat(ΓT R) suffices, i.e., KB |= C v D iff
Sat(ΓT R) |= π(C v D).

Positive superposition:
(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨ D ∨ w[t]p ≈ v) · θ

(i) σ = MGU(sρ, wρ|p),
(ii) θ = ρσ,
(iii) tθ � sθ and vθ � wθ,
(iv) (s ≈ t) · θ is SES,
(v) (w ≈ v) · θ is SES,
(vi) sθ ≈ tθ � wθ ≈ vθ,
(vii) w|p is not a variable.

Negative superposition:
(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨ D ∨ w[t]p 6≈ v) · θ

(i) σ = MGU(sρ, wρ|p),
(ii) θ = ρσ,
(iii) tθ � sθ and vθ � wθ,
(iv) (s ≈ t) · θ is SES,
(v) (w 6≈ v) · θ is ER,
(vi) w|p is not a variable.

Reflexivity resolution:
(C ∨ s 6≈ t) · ρ

C · θ

(i) σ = MGU(sρ, tρ),
(ii) θ = ρσ,
(iii) (s 6≈ t) · θ is ER.

Equality factoring:
(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

(i) σ = MGU(sρ, s′ρ),
(ii) θ = ρσ,
(iii) tθ � sθ and t′θ � s′θ,
(iv) (s ≈ t) · θ is ES.

Ordered resolution:
(C ∨ A) · ρ (D ∨ ¬B) · ρ

(C ∨ D) · θ

(i) σ = MGU(Aρ, Bρ),
(ii) θ = ρσ,
(iii) A · θ is SES,
(iv) ¬B · θ is ER.

Notes:
(i) L · σ is maximal in C · σ if there is no L′ ∈ C \ {L}

such that L′σ � Lσ.
(ii) L · σ is strictly maximal in C · σ if there is no

L′ ∈ C \ {L} such that L′σ � Lσ.
(iii) A literal L · θ is (strictly) eligible for superposition ((S)ES)

in a closure (C ∨ L) · θ if nothing is selected in
(C ∨ L) · θ and L · θ is (strictly) maximal in C · θ.

(iv) A literal L · θ is eligible for resolution (ER) in a closure
(C ∨ L) · θ if it is selected in (C ∨ L) · θ or nothing is
selected in (C ∨ L) · θ and L · θ is maximal in C · θ.

Table 2: Inference Rules of Basic Superposition

Eliminating Transitivity Axioms
In this section we show how to eliminate transitivity axioms
from a SHIQ knowledge base by transforming it into an
equi-satisfiableALCHIQ knowledge base. A similar trans-
formation may be found in (Tobies 2001), where an algo-
rithm for transforming SHIQ concepts to concepts in a re-
lated ALCIQb logic was presented. Another similar trans-
formation has been presented in (Schmidt & Hustadt 2003),
where it is demonstrated, among others, how to encode
multi-modal logic with transitive modalities K4m into plain
multi-modal logic Km. In the following, we use NNF(C) to
denote the negation-normal form of C (Horrocks, Sattler, &
Tobies 2000).

Definition 4. For some SHIQ knowledge base KB , let
clos(KB) denote the concept closure of KB , defined as the
smallest set of concepts satisfying the following conditions:

• C v D ∈ KBT implies NNF(¬C tD) ∈ clos(KB).

• C(a) ∈ KBA implies NNF(C) ∈ clos(KB).

• C ∈ clos(KB) and D being a sub-concept of C implies
D ∈ clos(KB).

• ∀R.C ∈ clos(KB), S v∗ R, and Trans(S) ∈ KBR

implies ∀S.C ∈ clos(KB).

Please note that all concepts in clos(KB) are in NNF.
Now we define the operator Ω which translates a SHIQ
knowledge base KB into an ALCHIQ knowledge base
Ω(KB).
Definition 5. For a SHIQ knowledge base KB , let Ω(KB)
denote the following ALCHIQ knowledge base:

• Ω(KB)R is obtained from KBR by removing all axioms
Trans(R),

• Ω(KB)T = KBT ∪ {∀R.C v ∀S.(∀S.C) | ∀R.C ∈
clos(KB) ∧ S v∗ R ∧ Trans(S) ∈ KBR},

• Ω(KB)A = KBA.

Observe that, for any concept C, the number of subcon-
cepts in clos(KB) is bounded by the number of subexpres-
sions in C. Furthermore, for each concept from clos(KB),
we may generate at most |NR| axioms in Ω(KB)T . Hence,
the encoding is polynomial in |KB |. Furthermore, in a way
similar to the one found in (Tobies 2001), we show in (Hus-
tadt, Motik, & Sattler 2003) that this encoding does not af-
fect satisfiability.
Theorem 1. KB is satisfiable iff Ω(KB) is satisfiable.

Notice that Ω(KB∪{(¬)C(a)}) = Ω(KB)∪{(¬)C(a)},
so KB |= (¬)C(a) iff Ω(KB) |= (¬)C(a). However, the
models of KB and Ω(KB) may differ in the interpretation
of complex roles, so Ω(KB) can be used only to prove en-
tailment of ground facts (¬)R(a, b) for a simple role R.

Deciding ALCHIQ− by Basic Superposition
In this section, we show how to decide satisfiability of an
ALCHIQ− knowledge base KB . We assume that, for all
facts C(a) ∈ KBA, C is an atomic concept. This is with-
out loss of generality since each C(a) ∈ KBA where C is
not atomic can be replaced with a pair of axioms AC(a),
AC v C for AC a new concept name while preserving the
semantics. This transformation is obviously polynomial.

Preprocessing. The first step in deciding satisfiability of
KB is to transform it into clausal form. In order to avoid
the exponential blow-up by direct clausification of π(KB),
we apply the well-known structural transformation (Non-
nengart & Weidenbach 2001). Let ϕ be some formula in
negation-normal form, and Λ a subset of positions of sub-
formulae of ϕ. By DefΛ(ϕ) we denote the definitional nor-
mal form of ϕ with respect to Λ, computed as explained in
(Nonnengart & Weidenbach 2001). Furthermore, let Cls(ϕ)
denote the set of closures obtained by the usual clausifica-
tion by structural skolemization (Nonnengart & Weidenbach
2001). It is well-known that, if ϕ does not contain nested
equivalences, then Cls(DefΛ(ϕ)) can be computed in poly-
nomial time. Furthermore, ϕ is satisfiable if and only if
Cls(DefΛ(ϕ)) is.

Let Ξ(KB) = Cls(DefΛ(π(KB))), where Λ is the set
of non-literal subformulae positions of π(KB). It is easy to

see that all closures in Ξ(KB) share some common syntactic
properties. Table 3 lists the types of so-called ALCHIQ−-
closures of Ξ(KB). We use P(x) to denote a possibly empty
disjunction (¬)P1(x) ∨ . . . ∨ (¬)Pn(x); P(f(x)) for a pos-
sibly empty disjunction P1(f1(x)) ∨ . . . ∨Pn(fn(x)); and
〈t〉 to express that t may, but need not be marked.

Lemma 1. Each closure from Ξ(KB) is of exactly one type
from Table 3. Also, for each function symbol f occurring
in Ξ(KB), there is exactly one closure of type 3 containing
f(x) unmarked; this closure is called the Rf -generator, the
disjunction P

f (x) is called the f -support, and R is called
the designated role for f and is denoted as role(f).

Proof. The first claim follows trivially from the definition of
Ξ(KB). Furthermore, each closure of type 3 is generated by
skolemizing an existentially quantified subformula by intro-
ducing a fresh function symbol, so each function symbol is
associated with exactly one closure of type 3.

Parameters for Basic Superposition. We now specify
our parameters for basic superposition.

Definition 6. We use BSDL for the calculus BS param-
eterized as follows: (i) the term ordering � is a lexico-
graphic path ordering (LPO) (Bachmair & Ganzinger 2001)
induced by a total precedence >P on function, constant
and predicate symbols, such that, for any function sym-
bol f , constant symbol c, and predicate symbol p, we have
f >P c >P p >P >; and (ii) the selection function selects,
in each closure C · σ, every negative binary literal.

In BSDL, we need to compare terms and literals only in
closures of types 3–6 and 9 from Table 3. Since LPOs are
total on ground terms, and terms in closures of type 3–6 and
9 have at most one variable, any LPO is total on non-ground
terms from these closures. In this case, we compare literals
by associating, with each literal L, the complexity measure
cL = (max(L), pL,min(L)), where max(L) (min(L)) is
the maximum (minimum) of the two terms in L, and pL is 1
if L is negative, and 0 otherwise. Then L1 � L2 if and only
if cL1

� cL2
, where cL are compared lexicographically, by

using the LPO � on terms to compare the first and the third
positions, and taking 1 � 0 for the second position. It is easy
to see that this definition of the literal ordering is compatible
with the one from (Bachmair et al. 1995).

Furthermore, observe that, if s � t, then, for any substitu-
tion σ, obviously sσ � tσ. Hence, since LPOs are total on
terms in closures of type 3–6 and 9, any two terms can al-
ways be compared, so the ordering and selection constraints
can be checked a priori, that is, before computing the uni-
fier, which is much easier to implement in practice.

Closure of ALCHIQ−-closures under Inferences. The
following lemma lies at the heart of our decision procedure.

Lemma 2. Let Ξ(KB) = N0, . . . , Ni ∪ {C} be a BSDL-
derivation, where C is the conclusion derived from premises
in Ni. Then C is either an ALCHIQ−-closure or is redun-
dant.

Proof. (Sketch) The proof is by induction on the derivation
length where, in the induction step, we consider all possi-
ble applications of all inference rules. Most importantly, we
show that we never obtain functional terms of depth greater
than 2. This is due to the properties of LPOs, the choice of
our precedence >P , and the fact that, in each closure, all
terms of depth two are of the form fi(g(x)) and, if such a
term occurs in a closure, all terms of depth one occurring in
this closure are of the form g(x). These three facts ensure
that (i) the maximal literal L of a closure is also of maxi-
mal depth, which ensures that, after unification, Lσ is still
of maximal depth; and (ii) since we only have unary func-
tions, if two terms f1(. . . fk(x) . . .) and g1(. . . g`(y) . . .) are
unifiable, then f1 . . . fk is a prefix of g1 . . . g` or vice versa,
and thus unification of two terms s, t yields terms of depth
bounded by the maximum depth of s and t.

Resolution is only applicable to a closure of type 3, 4, or
9 with a closure of type 1, 2, 7, or 8, or between closures of
type 5, 6, or 9. From the observations above, resolution will
never result in a closure with a term of depth greater than
two. Similarly, it is easy to show that reflexivity resolution
and equality factoring will always produce an ALCHIQ−-
closure. The only inferences which are more involved are
positive and negative superposition.

Since number restrictions in ALCHIQ− are restricted to
very simple roles, in all literals of the form [f1(x)] ≈ [f2(x)]
or [f1(g(x))] ≈ [f2(g(x))], f1 and f2 have the same desig-
nated role. Similarly, all literals of the form [f(g(x))] ≈ x
are generated by resolving an Rf -generator with a closure of
type 4, obtained by resolving a Inv(role(f))g-generator with
a closure of type 1. Since all functional terms are marked in
all literals considered here, basic positive or negative super-
position cannot be applied to them. Hence, conditions (5.ii),
(6.v), (6.vi), (7.viii), (8.vii), (8.viii), (9.iv) and (9.v) are al-
ways preserved.

It is easy to see that, if some closure contains f(ι), it
also contains P

f (ι). This invariant is the consequence of
the fact that the literal containing f(ι) is greater than any
literal from P

f (ι), so no inference with any P
f (ι) can take

place. Hence, conditions (5.i), (6.iii), (6.iv), (7.vii), (8.v),
(8.vi) and (9.iii) are always preserved.

In all terms of the form f(g(x)), the subterm g(x) oc-
curs always marked, so superposition is allowed only at the
outer-most position. Hence, all superposition inferences into
a closure of type 5, 6, or 9, produce a closure of type 5,
6, or 9. The only other possible superpositions are into a
closure (D ∨ w ≈ v) · ρ of type 3, say with a free vari-
able x′. By the ordering constraints, superposition is possi-
ble only into R(x′, f(x′)). If superposition is from a literal
[f(ι)] ≈ [g(ι)], the unifier σ is {x′ 7→ ι}, and the conclu-
sion is P

f ([ι]) ∨ R([ι] , [g(ι)]) ∨ C · ρ where C · ρ contains
P

g([ι]). However, by conditions (5.ii), (6.v) and (6.vi), the
Rg-generator of the form P

g(y) ∨ R(y, g(y)) exists, and it
subsumes the inference conclusion via substitution {y 7→ ι},
so this inference is redundant. In a similar way, one can
show that, for any superposition into a closure of type 3,
there is always a closure which subsumes the conclusion, so
any such superposition is redundant.

1 ¬R(x, y) ∨ Inv(R)(y, x)
2 ¬R(x, y) ∨ S(x, y)

3 Pf (x) ∨ R(x, 〈f(x)〉)

4 Pf (x) ∨ R([f(x)] , x)
5 P1(x) ∨ P2(〈f(x)〉) ∨

∨
[fi(x)] ≈ [fj(x)] ∨

∨
〈fi(x)〉 6≈ 〈fj(x)〉

(i): for each fi(x) the closure contains Pfi(x),
(ii): for each [fi(x)] ≈ [fj(x)] we have role(fi) = role(fj).

6 P1(x) ∨ P2([g(x)]) ∨ P3(〈t〉) ∨
∨

[ti] ≈ [tj] ∨
∨

〈ti〉 6≈ 〈tj〉
(i): there is at least one term of the form fi([g(x)]),

(ii): terms t, ti and tj are of the form x or fi([g(x)]),
(iii): for each fi([g(x)]), the closure contains Pfi([g(x)]),
(iv): the closure contains Pg(x),
(v): for each [fi(g(x))] ≈ [fj(g(x))], we have role(fi) = role(fj),

(vi): for each [fi(g(x))] ≈ x, there is a closure P g(x) ∨ role(fi)([g(x)] , x).
7

∨
¬R([u] , yi) ∨ P1(y) ∨ P2(x) ∨ P3([f(x)]) ∨

∨
[ti] ≈ [tj] ∨ G

(i): there is at least one literal ¬R([u] , yi),
(ii): terms ti and tj are of the form yi, a constant c, or a term f([u]),

(iii): u is the variable x or u is a constant and x does not appear in the closure,
(iv): each yi occurs as the second argument of exactly one ¬R([u] , yi),
(v): for each pair of variables yi and yj , there is a literal yi ≈ yj ,

(vi): G is a closure of type 9,
(vii): for each fi(u), the closure contains Pfi([u]),

(viii): for each [fi(u)] ≈ [fj(u)], we have role(fi) = role(fj).
8

∨
¬R([g(x)] , yi) ∨ P1(y) ∨ P2(x) ∨ P3([g(x)]) ∨ P4([f(g(x))]) ∨

∨
[ti] ≈ [tj]

(i): there is at least one literal ¬R([g(x)] , yi),
(ii): terms ti and tj are of the form yi, x or fi([g(x)]),

(iii): each yi occurs as the second argument of exactly one ¬R([g(x)] , yi),
(iv): for variable yi, there is a literal yi ≈ x,
(v): for each fi([g(x)]) the closure contains Pfi([g(x)]),

(vi): the closure contains Pg(x),
(vii): for each [fi(g(x))] ≈ [fj(g(x))], we have role(fi) = role(fj),

(viii): for each [fi(g(x))] ≈ x, there is a closure P g(x) ∨ role(fi)([g(x)] , x).
9 R(〈a〉 , 〈b〉) ∨ P1(〈a〉) ∨ P2([f(a)]) ∨

∨
〈ti〉 ≈ 〈tj〉 ∨

∨
〈ti〉 6≈ 〈tj〉

(i): terms ti and tj are of the form a or fi([a]),
(ii): equality literals may contain only constant terms non-marked,

(iii): for each fi([a]) the closure contains Pfi([a]),
(iv): for each [fi(a)] ≈ [fj(a)], we have role(fi) = role(fj),
(v): for each [fi(a)] ≈ [b] there is an R(a, b)-witness R(〈a〉 , 〈b〉) ∨ D · σ, where D · σ

does not contain functional terms, it is contained in this closure, and R = role(fi).

Table 3: Types of ALCHIQ−-closures

A slight optimization is possible. Namely, any closure of
type 7 with n binary literals can be resolved with n premises
in n! ways. However, closures of type 7 in Ξ(KB) are sym-
metric with respect to variables yi, so all of the n! resolu-
tions will result in the same closure. Obviously, this can be
optimized by ordering the premises and performing just one
resolution. We formalize this idea by attaching a constraint
T = y1 � . . . � yn to closures of type 7 in Ξ(KB) and re-
solving binary literals in closures of type 7 and 8 from left to
right. Each time a closure of type 7 participates in a resolu-
tion with unifier σ, we compute Tσ. If ordering constraints
are not satisfied, the conclusion is deleted; otherwise, the
constraint Tσ is attached to it.
Lemma 3. The constraint inheritance explained above does
not affect soundness or completeness of BSDL.

Termination and Complexity Analysis. We now show
that BSDL terminates on ALCHIQ−. Let |KB | be the

size of the knowledge base, measured as the number of sym-
bols needed to encode KB on the input tape of a Turing
machine, by using a single symbol for each atomic concept,
role and individual. For each syntactic construct of KB , its
size can be computed recursively by adding up the sizes of
all parts. Furthermore, we assume unary coding of numbers,
so | ≥ nR.C| = | ≤ nR.C| = n + 2 + |C|.

Lemma 4. Let Ni be any closure set obtained in a deriva-
tion as defined in Lemma 2. If C is a closure in Ni, then the
number of literals in C is at most polynomial in |KB |, for
unary coding of numbers in KB input. Furthermore, |Ni| is
at most exponential in |KB |, for unary coding of numbers in
KB input.

Proof. By Lemma 2, Ni can contain only ALCHIQ−-
closures. Since redundancy elimination is applied eagerly,
Ni cannot contain closures with duplicate literals or closures
identical up to variable renaming. Let r denote the number

of role predicate names, c the number of concept predicate
names, i the number of individual names and f the number
of function symbols occurring in the signature of Ξ(KB).
Then r and i are obviously linear in |KB |. Furthermore,
c is also linear in |KB | since the number of new concept
names introduced during preprocessing is bounded by the
number of subconcepts of each concept, which is linear in
|KB |. The number f is bounded by the sum of all num-
bers n in ≥ nR.C or ≤ nR.C plus one for each ∃R.C and
∀R.C in KB . Since unary coding of numbers is employed,
f is linear in |KB |. Let n denote the maximal number oc-
curring in number restrictions in KB . For unary coding, n
is linear in |KB |.

No inference from BSDL increases the number of vari-
ables in a closure, so the number of variables is bounded by
n. Then, we have at most (f + 1)2(n + i) terms of depth at
most 2, which by counting in all possible markings, yield at
most t = 2(f + 1)2(n + i) terms in a closure. This yields
at most ct + rt2 atoms, which, together with the equality
literals, and allowing each atom to occur negatively, gives at
most ` = 2(ct + (r + 1)t2) literals in a closure, which is
obviously polynomial in |KB | for unary coding of numbers.

Each closure can contain an arbitrary subset of these lit-
erals, so the total number closures is bounded by 2`, so the
number of closures unique up to variable renaming is expo-
nential in |KB | for unary coding of numbers.

Using binary coding of numbers, it is possible to encode
the number n in log2 n bits. In this case, f and n are expo-
nential in |KB |, thus giving an exponential bound on the
number of literals in a closure, and a double exponential
bound on the number of closures.

Theorem 2. For an ALCHIQ− knowledge base KB ,
BSDL decides satisfiability of KB and runs in time expo-
nential in the size of the input for unary coding of numbers.

Proof. The translation of KB to Ξ(KB) can be performed
in time polynomial in the size of KB and contains only
ALCHIQ−-closures by Lemma 1. Let c denote the max-
imal number of closures occurring in the closure set in a
derivation as specified in Lemma 2, and let l denote the
maximal number of literals in a closure. By Lemma 4, c
is exponential, and l polynomial in |KB |, for unary coding
of numbers. Hence, ordering constraints can be checked in
polynomial time. In the worst case, a single subsumption
check requires exponential time in the number of literals of
the clauses involved (Gottlob & Leitsch 1985). Furthermore,
a subsumption check is performed at most for each pair of
closures. Hence, subsumption checking takes exponential
time in |KB |. Each closure can potentially participate in an
inference with each other closure, resulting in c2 combina-
tions. Furthermore, an inference rule can be applied to any
pair of literals, resulting in l2 combinations. Finally, any
of the 5 inference rules may be applied. Hence, the num-
ber of applications of inference rules of BSDL is bounded
by 5c2l2, which is exponential in |KB |, for unary coding of
numbers. Now it is obvious that, after at most an exponen-
tial number of steps, the set of closures will be saturated,
and the procedure will terminate. Since BSDL is sound and

complete with eager application of redundancy elimination
rules, the claim of the theorem follows.

Reducing ALCHIQ− to Disjunctive Datalog
Based on the decision procedure from the previous section,
we show now how to reduce anALCHIQ− knowledge base
KB to a disjunctive datalog program. Marking information
is not relevant for the reduction to datalog, so in this section
we consider any closure C · σ equivalent to the clause Cσ.

Eliminating Function Symbols. For some ALCHIQ−

knowledge base KB , let ΓT R = Ξ(KBT ∪ KBR). Let
SatR(ΓT R) denote the relevant set of saturated clauses, that
is, clauses of type 1, 2, 5, 7 obtained by saturating ΓT R

using BSDL with eager application of redundancy elimina-
tion rules. Finally, let Γ = SatR(ΓT R) ∪ Ξ(KBA). In-
tuitively, Sat(ΓT R) contains all non-redundant clauses fol-
lowing from the TBox and RBox. From this clause set, any
further inference involved in deriving the empty clause will
involve an ABox clause, which cannot participate in an in-
ference with a clause of type 3, 4, 6 or 8. Hence, we may
safely delete these clauses and consider only the SatR(ΓT R)
subset.

Lemma 5. KB is unsatisfiable iff Γ is unsatisfiable.

Proof. KB is unsatisfiable iff the set of clauses derived
by the saturation of Ξ(KB) by BSDL contains the empty
clause. Since choosing the premises of each inference rule
is don’t-care non-deterministic, we may perform all non-
redundant inferences among clauses from ΓT R first. Let us
denote the resulting set of intermediate clauses with Ni =
Sat(ΓT R) ∪ Ξ(KBA). If Ni contains the empty clause, Γ
contains it by definition as well (the empty clause is of type
5), and the claim of the lemma follows. Otherwise, we con-
tinue with saturation of Ni. Obviously, each Nj , j > i, in
the derivation, will be obtained from Nj−1 by applying an
inference rule involving at least one clause not in Ni, which
can only be a clause of type 7 where u is a constant, or a
clause of type 9. By Lemma 3, we may safely consider only
derivations where the variables yk in a clause are assigned
terms in the decreasing order. Hence, Nj may not be ob-
tained by resolving a clause of type 7 where u is a constant
with a clause of type 3: this would assign yk to f(u), which
is obviously larger than the constant that was assigned to
some yk′ , k′ < k. Furthermore, from the proof of Lemma 2,
one may see that a clause of type 7 where u is a constant can-
not participate in a resolution with a clause of type 3, since
the unifier never exists. The same lemma shows that any
other inferences with clauses of types 3, 4, 6 or 8 are either
not possible, or are redundant. Therefore, we may conclude
that no clause of type 3, 4, 6 or 8 from Ni participates in
deriving Nj , j > i. Hence, Ni may safely be replaced by
Γ. Any set of clauses Nj , j > i, which can be obtained by
saturation from Ξ(KB) may be obtained by saturation from
Γ as well, modulo clauses of type 3, 4, 6 or 8. Hence, the
saturation of Γ by BSDL derives the empty clause iff the
saturation of Ξ(KB) by BSDL derives the empty clause, so
the claim of the lemma follows.

We now show how to eliminate function symbols from
clauses in Γ. Intuitively, the idea is to replace each ground
functional term f(a) with a new constant, denoted as af . For
each function symbol f we introduce a new predicate sym-
bol Sf , containing, for each constant a, a tuple of the form
Sf (a, af). Thus, Sf contains the f -successor of each con-
stant. Any reference to a term f(x) in some clause is then
replaced with a new variable xf , with the literal ¬Sf (x, xf)
being added to the clause. Thus, for some a, resolving
¬Sf (x, xf) with S(a, af) will bind the value of xf to af ,
which plays the role of f(a). The Herbrand universe of the
clause set becomes thus finite, so it can be represented as a
finite relation HU containing all constants a and af , and is
used to bind unsafe variables.

In order to formalize this process, we first define an opera-
tor λ which eliminates functional terms and binds all unsafe
variables in a clause.

Definition 7. Let KB be an ALCHIQ− knowledge base.
For some ground functional term f(a), let λ(f(a)) denote a
globally unique constant af , not occurring in KB

1. For an
ALCHIQ−-clause C, we define λ(C) as follows:

1. For each term of the form f(x) in C, introduce a fresh
variable xf not occurring in C. Replace each occurrence
of f(x) with xf .

2. Replace each ground functional term f(a) with λ(f(a)).
3. For each variable xf introduced in the first step, append

the literal ¬Sf (x, xf).
4. If after steps 1–3 some variable x occurs in a positive

literal but not in a negative literal, append the literal
¬HU (x).

If p is a position in a clause C, let λ(p) denote the corre-
sponding position in λ(C). Let λ− denote the inverse of λ
(i.e. λ(λ−(C)) ≡ C for any clause C).

Let FF(KB) = FFλ(KB)∪FFSucc(KB)∪FFHU (KB)∪
Ξ(KBA) denote the function-free version of Ξ(KB), where
FFλ, FFSucc and FFHU are defined as follows, where a and
f range over all constant and function symbols in Ξ(KB):

FFλ(KB) =
⋃

C∈SatR(ΓT R) λ(C)
FFSucc(KB) =

⋃
Sf (a, λ(f(a)))

FFHU (KB) =
⋃

HU (a) ∪
⋃

HU (λ(f(a)))

We now show that KB and FF(KB) are equi-satisfiable.

Lemma 6. KB is unsatisfiable iff FF(KB) is unsatisfiable.

Proof. We show that Γ and FF(KB) are equi-satisfiable.
Since KB and Γ are equi-satisfiable by Lemma 5, the claim
of the lemma follows.

(⇐) If FF(KB) is unsatisfiable, since hyperresolution with
superposition and splitting is sound and complete (Bachmair
& Ganzinger 1994), a derivation of an empty clause exists.
We now show that each such a derivation can be reduced
to a derivation of the empty clause in Γ by sound inference

1Globally unique means that, for some f and a, the constant af

is always the one and the same.

rules, in particular, hyperresolution, paramodulation, instan-
tiation and splitting. In FF(KB), all clauses are safe, so elec-
trons are always positive ground clauses, and each hyperre-
solvent is a positive ground clause. Furthermore, since su-
perposition into variables is not necessary for completeness,
superposition-related inferences are necessary only among
ground clauses. Finally, splitting ground clauses simplifies
the proof, since all ground clauses on each branch are unit
clauses.

Let B be a branch branch FF(KB) = N0, . . . , Nn of a
derivation by hyperresolution with superposition and eager
splitting from FF(KB). We show now by induction on n
that, for any branch B, there exists a corresponding branch
B′ in a derivation from Γ by sound inference steps, and a set
of clauses N ′

m on B′ such that: (*) if C is some clause in
Nn not of the form Sf (u, v) or HU (u), then N ′

m contains
the counterpart clause of C, equal to λ−(C). The induction
base n = 0 is obvious, as FF(KB) and Γ contain only one
branch, on which, other than Sf (u, v) or HU (u), all ground
clauses are ABox clauses. Now assume that the proposition
(*) holds for some n and consider all possibilities for the
inference of a clause C from clauses in Nn, forming Nn+1:

• Superposition into a literal HU (u) is redundant, since
the predicate HU is instantiated for each constant occur-
ring in FF(KB), so the conclusion already appears on the
branch.

• Assume that the inference is a superposition from s ≈ t
into the ground unit clause L. If L is of the form Sf (u, v),
then the proposition obviously holds. Otherwise, clauses
s ≈ t and L are derived in at most n steps on B, so
by induction assumption counterpart clauses λ−(s ≈ t)
and λ−(L) are derivable in B′. Thus, superposition can
be performed on these clauses in B′, so the proposition
holds.

• Reflexivity resolution can only be performed on some
clause u 6≈ u in B. By induction hypothesis λ−(u 6≈ u)
is then derivable in B′, and reflexivity resolution can be
applied there, so the proposition holds.
• Equality factoring is not applicable to B, since all positive

clauses in B are ground unit clauses.
• Assume that the inference is a hyperresolution infer-

ence with nucleus C, the set of positive ground electrons
E1, . . . , Ek, and the unifier σ, resulting in the hyperre-
solvent H . We construct the substitution σ′ as follows:
for each variable x ∈ dom(σ) not of the form xf , we
include a mapping x 7→ λ−(xσ). Let us now perform
on B′ an instantiation step C ′ = (λ−(C))σ′. Obviously,
λ−(Cσ) and C ′ may differ only at a position p in C, at
which a variable of the form xf occurs. Let us denote
with p′ the position λ−(p) in C ′. Furthermore, the term
at p′ in λ−(C) is f(x), so with p′x we denote the posi-
tion of the inner x in f(x). In the hyperresolution in-
ference generating H , the variable xf is instantiated by
resolving ¬Sf (x, xf) with some ground literal Sf (u, v).
Hence, Cσ contains at p the term v, whereas C ′ con-
tains at p′ the term f(u), and λ−(v) 6= f(u). We show
now how to eliminate all such discrepancies in B ′. Ob-
serve that the literal Sf (u, v) is on B obtained from some

R = Sf (a, af) by n or less superposition inference steps.
Let us denote by ∆1 (∆2) the sequence of ground unit
equalities applied to the first (second) argument of R. All
si ≈ ti from ∆1 or ∆2 are derivable in n steps or less
on B, so corresponding equalities λ−(si ≈ ti) are deriv-
able on B′ by induction hypothesis. Let us denote these
corresponding sequences with ∆′

1 and ∆′
2. We may now

perform superposition with equalities from ∆′
1 to C ′ at

p′x in the reverse order. After this, p′x will contain the
constant a, and p′ will contain the term f(a). Hence, we
may now apply superposition with equalities from ∆′

2 at
p′ in the original order. After this is done, each position
p′ will contain the term λ−(v). Let us denote with C ′′ the
result of removing discrepancies at all positions. Obvi-
ously, C ′′ = λ−(Cσ). All electrons Ei are derivable in n
steps or less on B, so if Ei is not of the form Sf (u, v) or
HU (u), λ−(Ei) is derivable on B′. We may now hyper-
resolve these electrons with C ′′ to obtain H ′. Obviously,
H ′ = λ−(H), so the proposition holds.

• If some ground clause C of length k causes the branch
B to be split into k sub-branches, then λ−(C) is also of
length k and B′ can be split into k sub-branches, where
each of them satisfies (*), so the proposition holds.

Hence, if there is a derivation of the empty clause on all
branches from FF(KB), then there is a derivation of the
empty clause on all branches from Γ as well.

(⇒) If Γ is unsatisfiable, sinceBSDL is sound and complete,
a derivation of an empty clause exists. We now show that
each such derivation can be reduced to a derivation of the
empty clause in FF(KB) by sound inference rules.

Let B′ be a derivation Γ = N ′
0, . . . , N

′
n by BSDL. We

show by induction on n that there exists a corresponding
derivation B of the form FF(KB) = N0, . . . , Nm by sound
inference steps, such that: (**) if C ′ is some clause in N ′

n,
then Nm contains the counterpart clause C = λ(C ′). The
induction base n = 0 is trivial. Assume now that (**)
holds for some n and consider possible inferences deriving
N ′

n+1 = N ′
n ∪ {C

′}, where the clause C ′ is derived from
premises P ′

1 and P ′
2 in N ′

n. By induction hypothesis, we
know that there is a derivation B from FF(KB) with a clause
set Nm containing the counterpart clauses of the premises
P ′

1 and P ′
2, denoted with P1 and P2, respectively. We now

consider each possible inference that might have lead to the
derivation of C ′ and show how to construct a derivation of
C = λ(C ′) from Nm.

Assume that the inference is by ordered resolution on lit-
erals L′

1 ∈ P ′
1 and L′

2 ∈ P ′
2. Then resolution may be applied

on corresponding literals L1 and L2 of P1 and P2, respec-
tively, resulting in a clause D. Unification of a non-ground
functional term f(x) with some other term or variable in
L′

1 and L′
2 corresponds to the unification of xf with some

other term or variable in L1 and L2. The differences be-
tween λ(C ′) and D may have the following causes:

• C ′ may have some term f(a) appearing in C ′ at position
p, while D contains xf at λ(p). However, D then con-

tains the literal ¬Sf (a, xf), which can be resolved with
S(a, af), to produce af at position λ(p).

• λ(C ′) and D may differ in some literal of the form
¬HU(u). Since, for any constant u, any set of clauses
on B contains HU(u), this discrepancy can easily be re-
moved by resolving C with HU(u).

By successively removing differences between D and
λ(C ′), we eventually obtain a clause C such that C =
λ(C ′).

If the inference is by equality factoring or reflexivity reso-
lution, then the premise P ′

1 is ground and the inference may
be applied to P1 in the same way.

Assume the inference is by positive or negative basic su-
perposition. If both P1 and P2 are ground, since superposi-
tion into Skolem function symbols is not needed, superposi-
tion can be applied to P1 and P2 in the same way. Otherwise,
P1 is a clause of type 5. Let superposition be performed at
position p into a term of the form f(x) with the term in P2

being of the form f(a), with unifier {x 7→ a}. This infer-
ence can be simulated in Nm as follows: P1 must contain
a literal ¬Sf (x, xf) and the variable xf must occur at po-
sition λ(p). One can first resolve P1 with Sf (a, af), which
will produce af at position λ(p). Now one may perform su-
perposition with P2 at λ(p) to obtain the clause C. Since
P1 contains xf , is it safe and does not contain any ¬HU (x)
literals, so C = λ(C ′).

Hence, if there is a derivation of the empty clause from Γ,
then there is a derivation of the empty clause from FF(KB)
as well.

The result above means that KB |= α iff FF(KB) |= α,
where α may be of the form (¬)A(a) or (¬)R(a, b), where
A is an atomic concept. The proof also reveals the fact that,
in checking satisfiability of FF(KB), it is not necessary to
perform superposition into literals HU (a).

In case the knowledge base uses only constructs from the
ALCHI subset, further optimizations are possible, since
Ξ(KB) then does not contain equalities. The proof of
Lemma 2 implies that clauses of type 5 containing a func-
tional term cannot participate in any inference with clauses
of type 9: superposition into f(x) is not possible, so no
ground literal containing a functional term may be gener-
ated. In this case, SatR(ΓT R) should contain only function-
free clauses from the saturated set. Also, FF(KB) should
contain only HU (a) for each constant a.

Removing Irrelevant Clauses. The saturation of ΓT R de-
rives new clauses which enable the reduction to FF(KB).
However, the same process introduces lots of clauses which
are not necessary. Consider, for example, the knowledge
base KB = {A v C,C v B}. If the predicate ordering
is C � B � A, then the saturation process will derive the
clause ¬A(x) ∨ B(x), which is not necessary: all ground
consequences of this clause may be obtained by combin-
ing ground consequences of the first two. Hence, we now
present an optimization, by which we reduce the number of
clauses in the resulting disjunctive datalog program.

Definition 8. Let C ∈ FF(KB) be a clause such that λ−(C)
was derived in the saturation of ΓT R from premises Pi,
1 ≤ i ≤ k, by an inference with a substitution σ. Then
C is irrelevant in FF(KB) if, for each premise Pi, λ(Pi) is
defined, λ(Pi) ∈ FF(KB), and each variable occurring in
λ(Piσ) occurs in C. A clause C is relevant iff it is not irrele-
vant. Finally, we use FFR(KB) to set of all clauses relevant
in FF(KB).

Removing irrelevant clauses preserves satisfiability, as
demonstrated by the following lemma.

Lemma 7. FFR(KB) is unsatisfiable iff FF(KB) is unsat-
isfiable.

Proof. Let C be an irrelevant clause in FF(KB), where
λ−(C) is derived in the saturation of ΓT R from premises Pi

by an inference rule ξ with a substitution σ. Let N be a (not
necessarily proper) subset of FF(KB), such that C ∈ N and
λ(Pi) ∈ N , i ≤ i ≤ k. We now demonstrate the following
property (***): N is unsatisfiable iff N \ {C} is unsatisfi-
able. The (⇐) direction is trivial, since N \ {C} ⊂ N .

For the (⇒) direction, by Herbrand’s theorem, N is unsat-
isfiable iff some finite set M of ground instances of N is
unsatisfiable. For such M , we construct the set of ground
clauses M ′ in the following way, where λ(σ) is the substitu-
tion obtained from σ by changing each x 7→ t into x 7→ λ(t):

• For each D ∈ M such that D is not a ground instance of
C, let D ∈M ′.

• For each D ∈ M such that D is a ground instance of C
with substitution τ , let λ(Pi)λ(σ)τ ∈M ′, 1 ≤ i ≤ k.

Let τ be a ground substitution for C and D = Cτ . Since
Pi can be clauses of type 1 – 5, and σ is the most general
unifier, it can contain only mappings of the form x 7→ c,
x 7→ x′ or x 7→ f(x′). Hence, the set of variables in λ(Piσ)
and λ(Pi)λ(σ) coincide, and since τ instantiates all vari-
ables from λ(Piσ), the clauses in M ′ are indeed ground
instances of N \ {C}. Furthermore, it is easy to see that
λ(Pi)λ(σ)τ ⊆ λ(Piσ)τ . If the inclusion is strict, this is due
to literals of the form ¬Sf (a, b) in the latter clause which are
not in the first one because σ instantiates some variable from
Pi to a functional term f(x′) originating from some premise
Pj . But then λ(Pj) contains the literal ¬Sf (x′, x′

f), so
λ(Pj)λ(σ)τ contains ¬Sf (a, b). Therefore, all λ(Pi)λ(σ)τ
can participate in an ground inference corresponding to ξ
deriving D, so if M is unsatisfiable, M ′ is unsatisfiable as
well. Since M ′ is an unsatisfiable set of ground instances of
N \ {C}, N \ {C} is unsatisfiable by Herbrand’s theorem.

Let derives be a binary relation on clauses in FF(KB),
such that C1 derives C2 if λ−(C1) was used as a premise
for deriving λ−(C2) in the saturation of ΓT R. Obviously,
derives is a directed acyclic graph, so it can be topologi-
cally sorted into a sequence C1, . . . , Cn, such that for each
1 ≤ i < j ≤ n, no Ci derives some Cj (i.e. each
clause has a smaller index than the clauses it was derived
from). Consider now a sequence of clause sets N0 =
FFR(KB), N1, . . . , Nn, where Ni = Ni−1 if Ci is relevant
in FF(KB), and Ni = Ni−1 \ {Ci} if Ci is irrelevant in

FF(KB), 1 ≤ i ≤ n. By induction on n, Nn is unsatisfi-
able iff FF(KB) is unsatisfiable: if Ci is irrelevant, since all
premises deriving λ−(Ci) are in Ni, the conditions of (***)
are satisfied. Furthermore, all irrelevant clauses are elimi-
nated in Nn. Hence, Nn = FFR(KB), and the claim of the
lemma follows.

Reduction to Disjunctive Datalog. Computing the reduc-
tion of an ALCHIQ− knowledge base KB to disjunctive
datalog is now easy.

Definition 9. Reduction of KB to a disjunctive datalog pro-
gram DD(KB) is obtained by simply rewriting each clause
A1 ∨ . . . ∨An ∨¬B1 ∨ . . . ∨¬Bm in FFR(KB) as the rule
A1 ∨ . . . ∨An ← B1, . . . , Bm.

Theorem 3. Let KB be an ALCHIQ− knowledge base
and let DD(KB) be its reduction to disjunctive datalog2.
Then the following claims hold:

1. KB is unsatisfiable iff DD(KB) is unsatisfiable.
2. KB |= α iff DD(KB) |=c α, where α is of the form A(a)

or R(a, b) and A is an atomic concept.
3. KB |= C(a) with C being a non-atomic concept iff

DD(KB ∪ {C v Q}) |=c Q(a).
4. The number of rules in DD(KB) is at most exponential,

the number of literals in each rule is at most polynomial,
and DD(KB) can be computed in exponential time in
|KB |, for unary coding of numbers in the input.

Proof. The first claim is an obvious consequence of Lemma
7. The second claim follows from the first one, since
DD(KB ∪ {¬α}) = DD(KB) ∪ {¬α} is unsatisfiable iff
DD(KB) |=c α. Also, KB |= C(a) iff KB ∪ ¬C(a) is
unsatisfiable, which is the case iff KB ∪ {¬Q(a),¬Q v
¬C} = KB ∪ {¬Q(a), C v Q} is unsatisfiable. Now the
third claim follows from the second one, and the fact that Q
is atomic.

By Lemma 4, |Sat(ΓT R)| is at most exponential in |KB |,
and, for each clause C in it, the number of literals is at most
polynomial in |KB |. It is easy to see that the application of λ
to C can be performed in time polynomial in the number of
terms and literals in C. The number of constants af added
to DD(KB) is equal to i · f , where i is the number of indi-
viduals, and f the number of function symbols. By Lemma
4, if numbers are unarily coded, both i and f are polynomial
in |KB |, so the number of constants af is also polynomial in
|KB |. By Theorem 2, Sat(ΓT R) can be computed in time at
most exponential in |KB |, so the fourth claim follows.

In (Hustadt, Motik, & Sattler 2003), we show that all cer-
tain answers of DD(KB) of the form Q(a), where the predi-
cate Q does not occur in the body of some rule in DD(KB),
can be computed by saturating DD(KB) by hyperresolution
and basic superposition under any ordering where all liter-
als with the predicate Q are smallest. Furthermore, we have
shown that saturation can be performed in exponential time,

2With P |=c A we denote the cautious entailment of A from
P , where A must be contained in every minimal model of P .

so the reduction to disjunctive datalog preserves the theoreti-
cally optimal complexity. This might be surprising given the
significantly higher data and program complexity of datalog
(Eiter, Gottlob, & Mannila 1997). However, our disjunctive
datalog programs have limited structure, and thus can be de-
cided with more efficient algorithms.

Conclusion
Motivated by the prospects of optimizing ABox reasoning
by reusing optimization techniques from disjunctive deduc-
tive databases, in this paper, we present a technique for re-
ducing ALCHIQ− knowledge bases to disjunctive datalog
programs. In order to do that, we devise a decision pro-
cedure for satisfiability checking based on basic superposi-
tion. Our decision procedure runs in EXPTIME in the size
of the knowledge base for unary coding of numbers in the
input. We also show how to use this procedure to reduce any
ALCHIQ− knowledge base to a disjunctive datalog pro-
gram. Since any SHIQ− knowledge base can be polyno-
mially encoded as an ALCHIQ− knowledge base without
affecting satisfiability or entailment of ground facts C(a),
our approach provides means for handling a great number
of interesting description logics. In particular, it is useful in
the Semantic Web context, since it can handle a substantial
portion of OWL-DL.

We believe that our approach will enable efficient ABox
reasoning primarily because reduction to disjunctive datalog
allows us to use various optimizations, such as join order
optimizations or the magic sets transformation. The latter
has been shown to dramatically improve the evaluation of
disjunctive datalog programs, as it reduces the number of
models of the disjunctive program.

For our future work, we see five theoretical challenges:
dropping the constraint on very simple roles, extending
the logic with nominals, providing a decision procedure in
EXPTIME regardless of the coding of numbers, investigating
whether basic superposition can be used to decide answer-
ing conjunctive queries over ALCHIQ knowledge bases,
and providing support for reasoning with data types. For the
more practical part, we are currently implementing a new
description logic inference system based on the approach
presented here, and will have to compare it to the state-of-
the-art.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations
of Databases. Addison-Wesley.
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2003. The Description Logic
Handbook. Cambridge University Press.
Bachmair, L., and Ganzinger, H. 1994. Rewrite-based
Equational Theorem Proving with Selection and Simplifi-
cation. Journal of Logic and Computation 4(3):217–247.
Bachmair, L., and Ganzinger, H. 2001. Resolution The-
orem Proving. In Robinson, A., and Voronkov, A., eds.,
Handbook of Automated Reasoning, volume I. Elsevier
Science. chapter 2, 19–99.

Bachmair, L.; Ganzinger, H.; Lynch, C.; and Snyder, W.
1995. Basic Paramodulation. Information and Computa-
tion 121(2):172–192.
Beeri, C., and Ramakrishnan, R. 1987. On the power of
magic. In Proceedings of the Sixth ACM Symposium on
Principles of Database Systems, 269–293.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunc-
tive Datalog. ACM Transactions on Database Systems
22(3):364–418.
Ganzinger, H., and de Nivelle, H. 1999. A superposition
decision procedure for the guarded fragment with equality.
In Proc. of the 14th IEEE Symposium on Logic in Computer
Science, 295–305. IEEE Computer Society Press.
Gottlob, G., and Leitsch, A. 1985. On the efficiency of
subsumption algorithms. J. of the ACM 32(2):280–295.
Greco, S. 2003. Binding Propagation Techniques for the
Optimization of Bound Disjunctive Queries. IEEE Trans.
on Knowledge and Data Engineering 15(2):717–736.
Haarslev, V., and Möller, R. 2002. Optimization Strategies
for Instance Retrieval. In Proc. Int’l Workshop on Descrip-
tion Logics (DL-2002).
Horrocks, I.; Sattler, U.; and Tobies, S. 2000. Practical
Reasoning for Very Expressive Description Logics. Logic
Journal of the IGPL 8(3):239–263.
Hustadt, U.; Motik, B.; and Sattler, U. 2003. Reducing
SHIQ− Description Logic to Disjunctive Datalog Pro-
grams. Technical Report 1-8-11/03, FZI, Germany.
http://www.fzi.de/wim/eng/publikationen.php?id=1103.
Nieuwenhuis, R., and Rubio, A. 1995. Theorem Proving
with Ordering and Equality Constrained Clauses. Journal
of Logic and Computation 19(4):312–351.
Nivelle, H. D.; Schmidt, R. A.; and Hustadt, U. 2000.
Resolution-Based Methods for Modal Logics. Logic Jour-
nal of the IGPL 8(3):265–292.
Nonnengart, A., and Weidenbach, C. 2001. Comput-
ing Small Clause Normal Forms. In Robinson, A., and
Voronkov, A., eds., Handbook of Automated Reasoning,
volume I. Elsevier Science. chapter 6, 335–367.
Schmidt, R. A., and Hustadt, U. 2003. A Principle
for Incorporating Axioms into the First-Order Transla-
tion of Modal Formulae. In Baader, F., ed., Automated
Deduction—CADE-19, volume 2741 of Lecture Notes in
Artificial Intelligence, 412–426. Springer.
Tobies, S. 2001. Complexity Results and Practical Al-
gorithms for Logics in Knowledge Representation. Ph.D.
Dissertation, RWTH Aachen, Germany.

