
Deciding Expressive Description Logics in the

Framework of Resolution

Ullrich Hustadt a Boris Motik b Ulrike Sattler c

aDepartment of Computer Science, University of Liverpool, Liverpool, UK

bComputing Laboratory, University of Oxford, Oxford, UK

cSchool of Computer Science, University of Manchester, Manchester, UK

Abstract

We present a decision procedure for the description logic SHIQ based on the ba-
sic superposition calculus, and show that it runs in exponential time for unary
coding of numbers. To derive our algorithm, we extend basic superposition with
a decomposition inference rule, which transforms conclusions of certain inferences
into equivalent, but simpler clauses. This rule can be used for general first-order
theorem proving with any resolution-based calculus compatible with the standard
notion of redundancy.
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1 Introduction

Description logics (DLs) are a family of knowledge representation formalisms
with a well-defined model-theoretic semantics and well-understood reasoning
problems [1]. Most DLs can be viewed as decidable fragments of first-order
logic. The basic building blocks of DL ontologies are concepts, which can be
understood as unary predicates, and roles, which can be understood as binary
predicates. Using concept constructors, atomic concepts and roles can be com-
bined into complex concepts. The terminological part of a DL knowledge base
KB , called TBox, consists of concept inclusion axioms of the form C ⊑ D.
For example, the TBox axiom Person ⊑ ∃hasFather .(Person⊓Male) specifies
that each person must have a father who is a male person. Additionally, a
TBox may contain role inclusions such as hasFather ⊑ hasParent . The asser-
tional part of a knowledge base, called ABox, contains axioms that (partially)
specify the actual state of the world. For example, the axiom Person(Peter)
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states that Peter is a Person, and the axiom hasFather(Peter ,Bob) states
that Peter has a father Bob. A standard reasoning service for DLs is deciding
subsumption between two concepts with respect to a TBox—that is, checking
whether, in all models of the TBox, an instance of the first concept is also
an instance of the second one. Other standard reasoning services are deciding
whether a concept is satisfiable w.r.t. a knowledge base, or deciding whether an
individual from an ABox is an instance of a concept in all models of the knowl-
edge base. Description logics have found their application in various fields of
computer science. For example, they are used in information integration [1,
Chapter 16] for schema modeling, and the DLs SHIQ and SHOIQ form the
logical underpinning of the Web Ontology Language (OWL) [2]. These DLs
provide a rich set of concept constructors, such as Boolean operators on con-
cepts, existential and universal value restrictions, inverse and transitive roles,
and qualified number restrictions—concepts of the form ≥ n S.C and ≤ n S.C
that restrict the number of S-successors in C that an object can have to at
least (at most) n. For example, Person ⊓≤ 2 hasChild .Man describes persons
having at most two sons.

Various DL reasoning systems have been implemented and applied to practical
problems. 1 These systems are usually based on tableau algorithms [3], which
perform quite well mainly due to sophisticated heuristics [4,5]. SHIQ and
SHOIQ are ExpTime- and NExpTime-complete, respectively [6], whereas
most tableau algorithms run in 2NExpTime. Hence, tableau algorithms for
these logics are not worst-case optimal. An exception is the worst-case optimal
algorithm for ALC by Donini and Massacci [7]; however, this algorithm is very
complex, it supports only a very simple logic, and, to the best of our knowledge,
it has not been implemented. Hence, finding a practical, worst-case optimal
algorithm for expressive DLs remains an open problem.

Resolution-based calculi are nowadays among the most widely used calculi for
first-order theorem proving. On the theoretical side, the original resolution
calculus has been significantly refined. On the practical side, implementation
techniques for efficient theorem provers have been devised and applied in prac-
tice; an overview of such techniques is given in [8]. Resolution-based calculi
can be used to reason about DL knowledge bases, as most DLs can be trans-
lated into a first-order theory. This approach has been implemented and tested
in MSPASS—an implementation of decision procedures for a variety of DLs
based on the resolution theorem prover SPASS [9].

Following this translation-based approach, we present in this paper a prac-
tical, worst-case optimal decision procedure for the DL SHIQ based on ba-
sic superposition—a refutational theorem proving method for first-order logic
with equality. Equality is used in the translation of DL number restrictions

1 See http://www.cs.man.ac.uk/~sattler/reasoners.html.
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into first-order logic. For example, the concept Person ⊓≤ 2 hasChild .Man is
translated into first-order logic as

Person(x) ∧ ∀y1, y2, y3 :
∧

1≤i≤3

[hasChild(x, yi) ∧ Man(yi)] →
∨

1≤i<j≤3

yi ≈ yj.

To the best of our knowledge, this is the first decision procedure based on
basic superposition. While similar procedures employ subsumption to restrict
the number of variables in a clause and thus limit the clause length, our al-
gorithm employs subsumption to restrict the clause depth. Interestingly, basic
superposition alone is not restrictive enough to yield a decision procedure for
SHIQ. Therefore, we extend basic superposition with decomposition—a new
inference rule that can be used to simplify the syntactic structure of certain
conclusions. Decomposition is a very general rule with applications not limited
to DL reasoning. We show that it is sound and complete when combined with
basic superposition; however, we argue that decomposition can be combined
with any calculus compatible with the standard notion of redundancy [10]. Our
combination with basic superposition is interesting because of a nonstandard
approach to lifting.

This procedure is also important because it is used as the first step in an
algorithm for reducing a SHIQ knowledge base into a disjunctive datalog
program [11]. The latter algorithm is particularly suitable for reasoning with
knowledge bases containing large ABoxes as it allows one to reuse optimization
techniques known from the field of deductive databases.

To verify the practicability of our algorithm, we have implemented it in a
new DL reasoner KAON2. 2 Our initial experiments with practical problems
have revealed significant potential for optimization. By reducing the number of
clauses produced after translation into first-order logic, one can significantly
reduce the search space of the theorem prover. We summarize all relevant
optimizations in this paper. After incorporating the optimizations into our
system, we conducted experiments whose results are summarized in [12]. The
results show that, for ontologies with large ABoxes, the reduction algorithm
exhibits performance improvements for query answering of one or more orders
of magnitude. Furthermore, for TBox reasoning, the resolution-based algo-
rithm performs similarly to existing reasoners. Hence, the algorithm from this
paper can be seen as another stepping stone towards DL reasoners that can
be used in realistic applications.

This paper describes an extended version of the results presented in [11,13].

2 http://kaon2.semanticweb.org/
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2 Preliminaries

2.1 Description Logic SHIQ

The syntax of SHIQ is given by the following definition [3].

Definition 1 For NR a set of atomic roles, the set of roles is defined as
NR ∪ {R−|R ∈ NR}. For R ∈ NR, let Inv(R) = R− and Inv(R−) = R. For R
and S roles, a role inclusion axiom is a statement of the form R ⊑ S, and
a transitivity axiom is a statement of the form Trans(R). An RBox KBR

over NR is a finite set of role inclusion and transitivity axioms. Let ⊑∗ be
the reflexive-transitive closure of {R ⊑ S, Inv(R) ⊑ Inv(S) | R ⊑ S ∈ KBR}. A
role R is transitive if Trans(S) ∈ KBR or Trans(Inv(S)) ∈ KBR for some S
with S ⊑∗ R and R ⊑∗ S. A role R is simple if there is no role S such that
S ⊑∗ R and S is transitive; R is complex if it is not simple.

Let NC be a set of atomic concepts. The set of concepts over NC and KBR is
the smallest set such that ⊤, ⊥, A, ¬C, C⊓D, C⊔D, ∃R.C, ∀R.C, ≤ n S.C,
and ≥ n S.C are concepts, for an atomic concept A, concepts C and D, a
role R, a simple role S, and a nonnegative integer n. Possibly negated atomic
concepts are called literal concepts. A concept C is a subconcept of a concept
D if C syntactically occurs in D.

A concept inclusion axiom is a statement of the form C ⊑ D, for C and D
concepts. A TBox KBT over NC and KBR is a finite set of concept inclusion
axioms.

Let NI be a set of individuals. An assertion is a statement of the form C(a),
R(a, b), ¬S(a, b), and an (in)equality axiom is a statement of the form a ≈ b,
for C a concept, R a role, S a simple role, and a and b individuals. An ABox
KBA is a finite set of assertions and (in)equality axioms.

A SHIQ knowledge base KB is a triple (KBR,KBT ,KBA). Furthermore,
|KB | is the size of KB with numbers in number restrictions coded in unary.

The semantics of SHIQ is defined by translating KB into a first-order formula
π(KB), as shown in Table 1. This translation maps each atomic concept into a
unary predicate, each atomic role into a binary predicate, and each individual
into a constant. Each inverse role R− is mapped into a binary predicate with
the name R−, and π(R) axiomatizes the required relationship between R and
R−. We typically do not distinguish an atomic concept, role, or an individual
from the first-order (predicate or constant) symbol used to represent it. The
translation of number restrictions uses counting quantifiers ∃≥n and ∃≤n. It is
well known that these can be represented in first-order logic using standard
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Table 1
Semantics of SHIQ by Mapping to FOL

Translating Concepts to FOL

πx(⊤) = ⊤ πy(⊤) = ⊤

πx(⊥) = ⊥ πy(⊥) = ⊥

πx(A) = A(x) πy(A) = A(y)

πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)

πx(C ⊓ D) = πx(C) ∧ πx(D) πy(C ⊓ D) = πy(C) ∧ πy(D)

πx(C ⊔ D) = πx(C) ∨ πx(D) πy(C ⊔ D) = πy(C) ∨ πy(D)

πx(∃R.C) = ∃y : [R(x, y) ∧ πy(C)] πy(∃R.C) = ∃x : [R(y, x) ∧ πx(C)]

πx(∀R.C) = ∀y : [R(x, y) → πy(C)] πy(∀R.C) = ∀x : [R(y, x) → πx(C)]

πx(≥ n S.C) = ∃≥ny : [S(x, y) ∧ πy(C)] πy(≥ n S.C) = ∃≥nx : [S(y, x) ∧ πx(C)]

πx(≤ n S.C) = ∃≤ny : [S(x, y) ∧ πy(C)] πy(≤ n S.C) = ∃≤nx : [S(y, x) ∧ πx(C)]

Translating Axioms to FOL

π(C ⊑ D) = ∀x : [πx(C) → πx(D)]

π(R ⊑ S) = ∀x, y : [R(x, y) → S(x, y)]

π(Trans(R)) = ∀x, y, z : [R(x, y) ∧ R(y, z) → R(x, z)]

π(C(a)) = πx(C){x 7→ a}

π(R(a, b)) = R(a, b)

π(a ≈ b) = a ≈ b

π(a 6≈ b) = a 6≈ b

Translating KB to FOL

π(R) = ∀x, y : [R(x, y) ↔ R−(y, x)] for each atomic role R

π(KB) =
∧

R∈NR
π(R) ∧

∧

α∈KBT ∪KBR∪KBA
π(α)

quantifiers and equality as follows, for y a vector of variables:

∃≥nx : ϕ(x,y) = ∃x1, . . . , xn :





n
∧

i=1

ϕ(xi,y) ∧
∧

1≤i<j≤n

xi 6≈ xj



(1)

∃≤nx : ϕ(x,y) = ∀x1, . . . , xn+1 :





n+1
∧

i=1

ϕ(xi,y) →
∨

1≤i<j≤n+1

xi ≈ xj



(2)

Definition 2 The semantics of a SHIQ knowledge base KB is defined as the
formula π(KB) of first-order logic with equality and counting quantifiers, where
π is defined in Table 1. KB is satisfiable if and only if π(KB) is satisfiable.
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All other standard inference problems can be reduced to satisfiability [1, Chap-
ter 2]. We now define several restrictions of SHIQ.

Definition 3 For a knowledge base KB, a role R is called a leaf role if no
role S different from R exists such that S ⊑∗ R. The description logic SHIQ−

is the fragment of SHIQ obtained by requiring the role R in number restric-
tions ≤ n R.C and ≥ n R.C to be a leaf role. The description logic ALCHIQ
(ALCHIQ−) is the fragment of SHIQ (SHIQ−) that does not allow for
transitivity axioms.

For a concept C, with nnf(C) we denote the negation-normal form of C—
the concept equivalent to C in which negation occurs only in front of atomic
concepts. It is well-known that nnf(C) can be computed from C in polynomial
time by repeated application of de Morgan laws [1].

SHIQ is a very expressive DL. In particular, it can express most features
of conceptual data models [14], such as the entity-relationship model [15] or
UML. 3 The following is a simple SHIQ knowledge base that demonstrates
the expressivity of SHIQ. Axiom (3) states that every person must have
exactly one social security number. Axioms (4)–(5) define Person as a partition
of Man and Woman. Finally, (6) defines the range of hasSSN—it states that
hasSSN can point only to social security numbers.

Person ⊑ ∃hasSSN .SSN ⊓ ≤ 1 hasSSN .⊤(3)

Person ⊑ Man ⊔ Woman(4)

Man ⊓ Woman ⊑ ⊥(5)

∃hasSSN−.⊤ ⊑ SSN(6)

2.2 Basic Superposition Calculus

The basic superposition calculus [16,17] was developed to optimize theorem
proving with equality. We use the standard definitions of terms, atoms, and
literals. For convenience, we assume function symbols to have a nonzero arity,
and constants to be of zero arity. We write positive equality literals as s ≈ t,
and negative equality literals as s 6≈ t. A clause is a finite multiset of literals.
A position p is a finite sequence of integers that describes the “address” of
a subterm in a term. A subterm of t at position p is denoted by t|p, and a
replacement of a subterm of t at position p with the term s is denoted by t[s]p.

It is common practice in equational theorem proving to consider logical the-
ories containing only the equality predicate, as this simplifies the theoretical
treatment without loss of generality. A literal P (t1, . . . , tn), where P is not

3 http://www.omg.org/uml/
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the equality predicate, is encoded as P (t1, . . . , tn) ≈ tt, where tt is a new
constant. Assuming that P and tt are of a sort different from the sort of
terms ti, this encoding preserves satisfiability. Technically speaking, P thus
becomes a function symbol; however, when ambiguity does not arise, we call
it a “predicate symbol” and we take P (t1, . . . , tn) to be a syntactic shortcut for
P (t1, . . . , tn) ≈ tt. Furthermore, we assume the predicate ≈ to have built-in
symmetry: a literal s ≈ t should also be read as t ≈ s, and a literal s 6≈ t
should also be read as t 6≈ s.

The inference rules of basic superposition work with closures. A closure C · σ
consists of a skeleton clause C and a substitution σ. A closure C · σ can con-
veniently be represented by marking the terms in Cσ occurring at variable
positions of C with [·]. A position at or below a marked position is called
a substitution position. For example, the clause P (f(y)) ∨ g(b) ≈ b is logi-
cally equivalent to the closure (P (x) ∨ z ≈ b) · {x 7→ f(y), z 7→ g(b)}, which
can conveniently be represented as P ([f(y)]) ∨ [g(b)] ≈ b. Semantically, C · σ
is equivalent to Cσ. A closure C · σ is ground if Cσ does not contain a variable.

The basic superposition calculus requires two parameters. The first parameter
is an admissible ordering ≻ on terms—that is, a reduction ordering total on
ground terms. The second parameter is a selection function, which selects an
arbitrary (possibly empty) set of negative literals in each closure.

A standard admissible term ordering is the lexicographic path ordering (LPO)
[18,19]. Given a well-founded strict ordering > over function, predicate, and
constant symbols (also called a precedence), it is defined as follows: s ≻lpo t if

(1) t is a variable occurring as a proper subterm of s, or
(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and at least one among the following

conditions holds:
(a) f > g and, for all i with 1 ≤ i ≤ n, s ≻lpo ti, or
(b) f = g and, for some j, (s1, . . . , sj−1) = (t1, . . . tj−1), sj ≻lpo tj , and

s ≻lpo tk for all k with j < k ≤ n, or
(c) sj �lpo t for some j with 1 ≤ j ≤ m.

A term ordering ≻ is extended to literals by identifying a positive literal s ≈ t
with a multiset {{s}, {t}}, a negative literal s 6≈ t with a multiset {{s, t}}, and
by comparing multisets using a two-fold multiset extension of ≻; 4 we denote
the literal ordering also with ≻. A literal L · θ is (strictly) maximal w.r.t. a
closure C · θ if there is no literal L′ ∈ C such that L′θ ≻ Lθ (L′θ � Lθ).

4 For ≻ a strict ordering on some set D, the multiset extension of ≻, written ≻mul,
is the strict ordering on finite multisets on D and is defined as follows: M ≻mul N

if (i) M 6= N , and (ii) if N(s) > M(s) for some s, then there is some t ≻ s such
that M(t) > N(t), where M(s) is the number of occurrences of s in M .
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Table 2
Inference Rules of Basic Superposition

Positive superposition:
(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨ D ∨ w[t]p ≈ v) · θ

where (i) σ = MGU(sρ, wρ|p) and θ = ρσ, (ii) tθ � sθ and vθ � wθ, (iii) (s ≈ t) · θ is strictly
eligible for superposition in (C ∨ s ≈ t) · θ, (iv) (w ≈ v) · θ is strictly eligible for superposition in
(D ∨ w ≈ v) · θ, (v) sθ ≈ tθ � wθ ≈ vθ, (vi) w|p is not a variable.

Negative superposition:
(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨ D ∨ w[t]p 6≈ v) · θ

where (i) σ = MGU(sρ, wρ|p) and θ = ρσ, (ii) tθ � sθ and vθ � wθ, (iii) (s ≈ t) · θ is strictly
eligible for superposition in (C∨s ≈ t) ·θ, (iv) (w 6≈ v) ·θ is eligible for resolution in (D∨w 6≈ v) ·θ,
(v) w|p is not a variable.

Reflexivity resolution:
(C ∨ s 6≈ t) · ρ

C · θ

where (i) σ = MGU(sρ, tρ) and θ = ρσ, (ii) (s 6≈ t) · θ is eligible for resolution in (C ∨ s 6≈ t) · θ.

Equality factoring:
(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

where (i) σ = MGU(sρ, s′ρ) and θ = ρσ, (ii) tθ � sθ and t′θ � s′θ, (iii) (s ≈ t) · θ is eligible for
superposition in (C ∨ s ≈ t ∨ s′ ≈ t′) · θ.

Ordered Hyperresolution:
(C1 ∨ A1) · ρ . . . (Cn ∨ An) · ρ (D ∨ ¬B1 ∨ . . . ∨ ¬Bn) · ρ

(C1 ∨ . . . ∨ Cn ∨ D) · θ

where (i) σ is the most general substitution such that Aiθ = Biθ for 1 ≤ i ≤ n and θ = ρσ,
(ii) each Ai ·θ is strictly eligible for superposition in Ei, (iii) either ¬Bi ·θ are selected, or nothing
is selected, n = 1, and ¬B1 · θ is maximal w.r.t. D · θ.

A literal L · θ is (strictly) eligible for superposition in a closure (C ∨ L) · θ if
there are no selected literals in (C ∨L) · θ and L · θ is (strictly) maximal w.r.t.
C ·θ. A literal L·θ is eligible for resolution in a closure (C∨L)·θ if it is selected
in (C ∨L) ·θ, or there are no selected literals in (C ∨L) ·θ and L ·θ is maximal
w.r.t. C · θ. The basic superposition calculus, BS for short, consists of the
inference rules presented in Table 2. As usual in resolution calculi, we assume
that the premises do not share a common variable (neither in the skeleton nor
in the substitution part). The last premise of all inference rules from the table
is called the main premise, and all other premises are called side premises.
Ordered hyperresolution is a “macro” inference that combines the effects of
several negative superposition inferences with eager elimination of the literals
tt 6≈ tt; we use it in our work for convenience.

It is important to distinguish an inference rule from an inference. An inference
rule can be understood as a template that specifies actions to be applied to
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any premises. An inference is an application of an inference rule to concrete
premises. An inference ξ′ is an instance of an inference ξ if ξ′ is obtained by
applying a substitution σ to all premises and the conclusion of ξ; the inference
ξ′ is also written as ξσ. An inference is ground if all its closures are ground.

Basic superposition is compatible with powerful redundancy elimination rules
that allow us to delete certain redundant closures [16]. Some of the redun-
dancy elimination rules of BS rely on the notion of η-domination: for a sub-
stitution η, a term s · σ is η-dominated by a term t · θ, written s · σ ⊑η t · θ,
if (i) sση = tθ, and (ii) a substitution ρ exists such that sρ = t. For liter-
als, (s ≈ t) · σ ⊑η (w ≈ v) · θ if s · σ ⊑η w · θ and t · σ ⊑η v · θ, or s · σ ⊑η v · θ
and t · σ ⊑η w · θ. The definition is analogous for negative literals. For clo-
sures, C · σ ⊑η D · θ if a permutation π of literals of D · σ exists such that
Li · σ ⊑η L′

π(i) · θ for each Li · σ ∈ C · σ and the corresponding L′
π(i) · θ ∈ D · θ.

A closure C · σ subsumes a closure D · θ if |D| < |C| and a substitution η
exists such that D · θ ⊑η C · σ. Each closure C that is subsumed by some
closure from a set of closures N is redundant in N . Furthermore, tautologies
are redundant in any closure set.

For N0 a set of closures of form C · {}, a derivation is a sequence of closure
sets N0, N1, . . . , Ni, where Ni = Ni−1∪{D ·ρ} and D ·ρ is derived by applying
a BS inference rule to premises from Ni−1, or Ni = Ni−1 \ {D · ρ} and D · ρ is
redundant in Ni−1. Each derivation is required to be fair ; intuitively, no infer-
ence should be postponed infinitely often. For a precise definition of fairness
and for ways of achieving it, please refer to [10,8]. BS [16,17] is refutationally
complete: N0 is satisfiable if and only if each derivation from N0 contains a
closure set Ni that is saturated up to redundancy and does not contain the
empty closure.

Our proofs are based on the completeness proof for BS [17,16], which we sum-
marize next. We assume familiarity with the basic definitions of term rewrit-
ing [19]. For equational theories, models are represented using a ground and
convergent rewrite system. The main difference between basic and ordinary
superposition lies in their approach to lifting: in basic superposition, a non-
ground closure C ·σ represents only those ground instances of Cσ whose terms
at substitution positions are in normal form w.r.t. the rewrite system defining
the candidate model. This intuition is captured by the following definitions.

Let R be a ground and convergent rewrite system and C · σ a ground clo-
sure. A variable x in the skeleton C is variable irreducible w.r.t. R if (i) xσ
is irreducible by R, or (ii) x occurs in C only in literals of the form x ≈ s
such that xσ ≻ sσ, and xσ is irreducible by those rules l ⇒ r ∈ R for which
xσ ≈ sσ ≻ l ≈ r. Furthermore, C · σ is variable irreducible w.r.t. R if all vari-
ables from C are variable irreducible w.r.t. R. For C · σ a possibly nonground
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closure, irredR(C · σ) is the set of all ground closures C · στ that are variable
irreducible w.r.t. R. For N a set of closures, irredR(N) =

⋃

C·σ∈N irredR(C · σ).
For a BS inference ξ, the ground inference ξτ is variable irreducible w.r.t. R
if all closures in ξτ are variable irreducible w.r.t. R.

We extend the literal ordering ≻ to closures by multiset extension, and we
denote it also by ≻. With irredR(N)≺D we denote the subset of irredR(N) of
closures that are smaller than some ground closure D. For N a set of closures,
the notion of redundancy for BS is defined as follows. A closure C ·σ is redun-
dant in N if, for all rewrite systems R and all ground substitutions τ such that
C · στ is variable irreducible w.r.t. R, we have R ∪ irredR(N)≺C·στ |= C · στ .
An inference ξ with premises D1 · σ and D2 · σ and a conclusion C · ρ is re-
dundant in N if, for all rewrite systems R and all ground substitutions τ such
that ξτ is variable irreducible w.r.t. R, we have R ∪ irredR(N)≺D |= C · ρτ , for
D = max(D1 · στ, D2 · στ). A set of closures N is saturated up to redundancy
by BS if all inferences from the premises in N are redundant in N .

A set of closures N is well-constrained if irredR(N) ∪ R |= N for any rewrite
system R. If ρ is empty for all C ·ρ ∈ N , then N is well-constrained, since each
variable reducible position of a ground instance of C · ρ can be reduced by R
to a closure in irredR(N). Furthermore, N ′ is well-constrained if it is obtained
from a well-constrained set N by a sound inference rule.

For R a ground and convergent rewrite system, R∗ is the smallest Herbrand
interpretation such that a ≈ b ∈ R∗ if and only if a and b have the same normal
form in R. Let N be a closure set not containing the empty closure, obtained
by saturating a well-constrained set N0 up to redundancy by BS. Using the
model building technique [16,17], one can generate a ground convergent rewrite
system RN such that RN

∗ |= irredRN
(N). Finally, RN ⊆ RN

∗ and N is well-
constrained, so RN

∗ |= N . Hence, N is satisfiable, and so is N0.

3 Decision Procedure Overview

The fundamental principles for deciding a first-order fragment L by resolution
have been formulated by Joyner [20]. First, one selects a sound and complete
resolution calculus C. Then, one identifies a set of clauses NL such that

(1) each formula ϕ ∈ L, when translated into clauses, yields clauses from NL;
(2) NL is finite for a finite signature; and
(3) NL is closed under C—that is, applying an inference of C to clauses from

NL produces a clause in NL.
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This is sufficient to obtain a refutation decision procedure for L: in the worst
case, C will derive all clauses of NL.

A minor problem in applying these principles to deciding satisfiability of a
SHIQ knowledge base KB is caused by transitivity axioms, which produce
clauses without covering literals—literals containing all variables of a clause
[21]. As shown in [22], termination of resolution on such clauses is very difficult
to achieve. To address this, we show in Section 4 how to eliminate transitivity
axioms by polynomially encoding a SHIQ knowledge base KB into an equi-
satisfiable ALCHIQ knowledge base Ω(KB). After this initial transformation
step, we consider only ALCHIQ knowledge bases.

A more complex problem is that, due to an interaction between role hierar-
chies, inverse roles, and number restrictions, basic superposition may produce
closures with terms of ever increasing depth in a derivation, thus preventing
the calculus from terminating. We deal with this problem in two stages: we
first derive a decision procedure for a slightly weaker logic ALCHIQ−, and
then extend it to the full ALCHIQ.

In Section 5, we present a procedure for deciding satisfiability of an ALCHIQ−

knowledge base KB . We start by preprocessing KB into a set of closures
Ξ(KB) as explained in Section 5.1. We then saturate Ξ(KB) under BSDL

with eager application of redundancy elimination rules, where BSDL is the BS
calculus with its two parameters, ordering and selection function, instantiated
according to Definition 9 in Section 5.2. Since BSDL is sound and complete
[16], the saturated set of closures contains the empty closure if and only if
Ξ(KB) is unsatisfiable. To show in Sections 5.3 and 5.4 that saturation always
terminates, we use the following proof-theoretic argument:

• We give a syntactic characterisation of sets of ALCHIQ−-closures and show
in Lemma 8 that Ξ(KB) is such a set.

• In Lemma 11, we show that, in any BSDL-derivation starting from Ξ(KB),
each inference produces either a set of ALCHIQ−-closures, or a closure
that is redundant and can therefore be deleted.

• In Lemma 13, we show that, assuming a finite knowledge base, each set of
ALCHIQ−-closures occurring in each BSDL-derivation is finite.

• Termination is a consequence of Lemmas 11 and 13 and the fact that we
do not produce too many redundant closures. The bound on the size of the
maximal set of ALCHIQ−-closures yields the algorithm’s complexity, as
shown in Theorem 14.

To handle ALCHIQ, in Section 6.1 we extend the BS calculus with a decom-
position inference rule that transforms certain closures into simpler ones. We
show that decomposition is sound and complete, and, in Section 6.2, we show
that it guarantees the termination of basic superposition for ALCHIQ.
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4 Eliminating Transitivity Axioms

In this section, we show how to eliminate transitivity axioms from a SHIQ
knowledge base KB by transforming it into an equisatisfiable ALCHIQ knowl-
edge base Ω(KB). Since Ω(KB) is satisfiable if and only if KB is, in the re-
maining sections we can indeed restrict our attention to ALCHIQ knowledge
bases without loss of generality.

Definition 4 For KB a SHIQ knowledge base, clos(KB) is the smallest set
satisfying the following conditions:

• nnf(¬C ⊔ D) ∈ clos(KB) if C ⊑ D ∈ KBT ;
• nnf(C) ∈ clos(KB) if C(a) ∈ KBA;
• D ∈ clos(KB) if C ∈ clos(KB) and D is a subconcept of C;
• nnf(¬C) ∈ clos(KB) if ≤ n R.C ∈ clos(KB);
• ∀S.C ∈ clos(KB) if ∀R.C ∈ clos(KB), S ⊑∗ R, and S is transitive.

Ω(KB) is the ALCHIQ knowledge base obtained from KB by removing all
transitivity axioms, and by adding an axiom ∀R.C ⊑ ∀S.(∀S.C) for each con-
cept ∀R.C ∈ clos(KB) and each transitive role S with S ⊑∗ R.

This encoding is similar to the transformation of formulae of modal logic K4
into formulae of modal logic K by Schmidt and Hustadt [23]. Another related
algorithm for transforming SHIQ concepts to ALCIQb concepts was pre-
sented by Tobies [6]. Intuitively, clos(KB) is the set of the “relevant” concepts
occurring in KB ; it is analogous to the Fisher-Ladner closure of propositional
dynamic logic [24] or the set of subformulae of a modal formula. The trans-
formation Ω(KB) is based on the following observation: if some individual a
is an instance of some concept ∀R.C and R is transitive, then each individual
reachable from a through an R-path must be an instance of C; this can be
ensured by propagating the concept ∀R.C along a single R step in the path,
which is achieved by an axiom of the form ∀R.C ⊑ ∀R.∀R.C . Definition 4 dif-
fers from the well-known transformations mainly by taking into account role
hierarchies: given ∀R.C, the concept C can be propagated to each individual
connected by a path consisting of the transitive subroles of R. Furthermore,
in number restrictions ≤ n R.C, the concept C occurs effectively negatively,
so clos(KB) must contain the negation-normal form of ¬C, and not just C.

We remind the reader that the definition of SHIQ allows only simple roles—
that is, roles without transitive subroles—to occur in number restrictions. This
restriction is necessary because allowing transitive roles in number restrictions
makes the logic undecidable [3]. Thus, Definition 4 does not need to propagate
number restriction concepts along transitive roles.

12



The presented encoding is polynomial in |KB |: the number of concepts in
clos(KB) stemming from a concept C is bounded by 2 · |C| · |NR| and, for each
concept from clos(KB), we generate at most |NR| axioms in Ω(KB)T . Our
transformation differs only slightly from existing ones, so we leave the proof
of the following theorem to [25].

Theorem 5 ([25]) KB is satisfiable if and only if Ω(KB) is satisfiable.

The models of KB and Ω(KB) may differ on complex roles. Therefore, in
Definition 1, we require the role S to be simple in assertions ¬S(a, b).

5 Deciding ALCHIQ− by Basic Superposition

We now present an algorithm for deciding satisfiability of an ALCHIQ−

knowledge base KB by basic superposition.

5.1 Preprocessing

To decide satisfiability of KB , we transform it into clausal form. A straightfor-
ward transformation of π(KB) into conjunctive normal form might exponen-
tially increase the formula size and could destroy the structure of the formula.
Therefore, before clausification, we apply to KB the structural transformation
[26–28], also known as renaming.

Definition 6 For KB an ALCHIQ knowledge base, Θ(KB) is the knowledge
base obtained by applying the structural transformation to KB, where the op-
erator Θ is defined in Table 3. Furthermore, Ξ(KB) is the set of closures
obtained by skolemizing π(Θ(KB)) and rewriting it into conjunctive normal
form (see, e.g., [27]). The designated role for a function symbol f , written
role(f), is the role occurring in the concept whose skolemization introduced f .

Definition 7 generalizes the closures of Ξ(KB) to closures that can be obtained
from Ξ(KB) by basic superposition.

Definition 7 A set of closures N is a set of ALCHIQ−-closures if each clo-
sure in N is of the form from Table 4 and it satisfies Conditions ( i)–( vii).

Note that one cannot determine whether a closure alone is an ALCHIQ−-
closure, since properties (iii)–(vii) from Table 4 require existence of other
closures. Therefore, we only speak of sets of ALCHIQ−-closures, and not of
individual ALCHIQ−-closures. This is in contrast with the usual definitions
(e.g., [29]), which typically can consider each clause in isolation.

13



Table 3
The Structural Transformation of KB

Θ(KB) =
⋃

α∈KBR∪KBA
Θ(α) ∪

⋃

C1⊑C2∈KBT
Θ(⊤ ⊑ nnf(¬C1 ⊔ C2))

Θ(C(a)) = {QC(a)} ∪ Θ(QC ⊑ C)

Θ(A ⊑ C1 ⊓ C2) = Θ(A ⊑ C1) ∪ Θ(A ⊑ C2)

Θ(A ⊑ C1 ⊔ C2) = {A ⊑ QC1
⊔ QC2

} ∪ Θ(QC1
⊑ C1) ∪ Θ(QC2

⊑ C2)

Θ(A ⊑ ∃R.C) = {A ⊑ ∃R.QC} ∪ Θ(QC ⊑ C)

Θ(A ⊑ ∀R.C) = {A ⊑ ∀R.QC} ∪ Θ(QC ⊑ C)

Θ(A ⊑ ≥ n R.C) = {A ⊑ ≥ n R.QC} ∪ Θ(QC ⊑ C)

Θ(A ⊑ ≤ n R.C) = {A ⊑ ≤ n R.¬QD} ∪ Θ(QD ⊑ D) for D = nnf(¬C)

Θ(β) = {β} for any other type of axiom β

Note: A and B are atomic concepts or ⊤; C, C1, and C2 are arbitrary concepts;
R and S are roles; and QX is a new atomic concept not occurring in KB that
is unique for the concept X.

We now summarize the properties of preprocessing:

Lemma 8 For KB an ALCHIQ− knowledge base, the following claims hold:

(1) KB is satisfiable if and only if Ξ(KB) is satisfiable.
(2) Ξ(KB) can be computed in time polynomial in |KB | for unary coding of

numbers in input.
(3) Ξ(KB) is a set of ALCHIQ−-closures.

PROOF. (Claim 1) Since the operator Θ can be seen as a syntactic variant
of the structural transformation [26–28], Θ(KB) is satisfiable if and only if
KB is satisfiable. This is because each model I of Θ(KB) is clearly a model of
I; furthermore, each model I of KB can be extended to a model of Θ(KB) by
interpreting each new atomic concept QX as the concept X. Finally, Ξ(KB)
is computed from Θ(KB) using satisfiability-preserving transformations.

(Claim 2) The operator Θ is applied at most once for each subconcept occur-
ring in KB , so the number of new concepts QX is linear in |KB |, and Θ(KB)
can be computed in polynomial time. The number of function symbols in-
troduced by skolemizing an existential quantifier is bounded by the maximal
number occurring in a number restriction. For unary coding of numbers, this
number is linear in |KB |, so Ξ(KB) can be computed in polynomial time.

(Claim 3) By the definition of π from Table 1, inverse properties yield closures
of type 1; role inclusions yield closures of type 2; ABox axioms yield closures
of types 8. For TBox axioms, observe that Θ(KB) contains only axioms of the
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Table 4
ALCHIQ−-Closures

1 ¬R(x, y) ∨ Inv(R)(y,x)

2 ¬R(x, y) ∨ S(x, y)

3 P(x) ∨ R(x, 〈f(x)〉)

4 P(x) ∨ R([f(x)] , x)

5 P1(x) ∨ P2(〈f(x)〉) ∨
∨

〈fi(x)〉 ⊲⊳ 〈fj(x)〉

6 P1(x) ∨ P2([g(x)]) ∨ P3(〈f([g(x)])〉) ∨
∨

〈ti〉 ⊲⊳ 〈tj〉
where ti and tj are either of the form f([g(x)]) or of the form x

7 P1(x) ∨
∨n

i=1
¬R(x, yi) ∨

∨n

i=1
P2(yi) ∨

∨n

i=1

n
j=i+1yi ≈ yj

8 R(〈a〉 , 〈b〉) ∨ P(〈t〉) ∨
∨

〈ti〉 ⊲⊳ 〈tj〉
where t, ti, and tj are either a constant b or a term fi([a])

Conditions:

(i) In each term f(t), the inner term t occurs marked.

(ii) In all positive equality literals with at least one function symbol, both sides are marked.

(iii) For each function symbol f occurring in N , the set N contains exactly one generator

closure Pf (x)∨ R(x, f(x)) with f(x) unmarked; role(f) = R; and Pf (x) is the unique
disjunction of unary literals from the generator for f .

(iv) Each closure that contains a term f(t), contains Pf (t) as well.

(v) In each literal of the form [fi(t)] ≈ [fj(t)], we have role(fi) = role(fj).

(vi) In each literal of the form [f(g(x))] ≈ x, we have role(f) = Inv(role(g)).

(vii) For each [fi(a)] ≈ [b] in a closure C, a witness closure of C exists in N that is of form
R(〈a〉 , 〈b〉)∨D, role(fi) = R, D does not contain function symbols or negative binary
literals, and D is contained in C.

Notation: P(t) is a possibly empty disjunction of the form (¬)P1(t) ∨ . . . ∨ (¬)Pn(t);
P(f(x)) is a possibly empty disjunction of the form P1(f1(x)) ∨ . . . ∨ Pm(fm(x)); 〈t〉 means
that the term t may, but need not be marked; each closure of type 6 contains at least one
term f(g(x)); and the symbol ⊲⊳ denotes either ≈ or 6≈.

form A ⊔ (¬)D, where A is a an atomic concept and D is a SHIQ concept
containing only literal subconcepts. An existential restriction D yields closures
of type 3 and 4; an at-least number restriction D yields closures of types 3,
4, and 5; a conjunction or disjunction of literals D yields a closure of type
5; a universal restriction or at-most number restriction D yields a closures of
type 7. Conditions (i), (ii), and (iv)–(vii) are trivially true for Ξ(KB). For
Condition (iii), notice that each function symbol f is obtained by skolemizing
∃R.C or ≥ n R.C, producing a closure of type 3 for each f . 2

Using binary coding, a number n can be represented using ⌈log2 n⌉ bits, so in
the presence of number restrictions in a knowledge base KB , the number of
function symbols introduced by skolemization is exponential in |KB |. Hence,
for binary coding of numbers, our translation incurs an exponential blowup.
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5.2 Parameters for Basic Superposition

To understand the following definition, remember that literals P (t1, . . . , tn)
are encoded as P (t1, . . . , tn) ≈ tt, as discussed in Section 2.2.

Definition 9 Let BSDL denote the BS calculus parameterized as follows. The
term ordering ≻ is any admissible ordering that satisfies the following condi-
tions, for all unary predicates P , P ′, and P ′′, binary predicates R, function
symbols f and g, and constants a and b:

• P ′′(f(g(x))) ≻ f(g(x)) ≻ P ′(g(x)) ≻ g(x) ≻ P (x) ≻ tt,
• R(x, f(x)) ≻ f(x),
• R(f(x), x) ≻ f(x),
• P (f(a)) ≻ f(a) ≻ P ′(b) ≻ c, and
• f(a) ≻ R(b, c).

Furthermore, the selection function selects every negative binary literal.

Definition 9 may seem redundant, since most term orderings used in practice
have the subterm property : t ≻ t|p for each term t and a nonempty position
p. Note, however, that an admissible ordering need not have the subterm
property in general.

A term ordering compatible with Definition 9 can be obtained by instantiat-
ing a lexicographic path ordering (LPO) with any precedence over function,
constant, and predicate symbols such that f > c > P > tt for each function
symbol f , constant symbol c, and a predicate symbol P . It is easy to see
that such an LPO is compatible with Definition 9. Any LPO has the subterm
property [19], so f(t) ≻ t. Furthermore, because f > P for each f and P , we
have f(t) ≻ P (t). Now this immediately gives us the first three properties of
Definition 9. The other properties follow similarly.

ALCHIQ−-closures of types 1, 2, and 7 contain selected literals so, to apply
BSDL to Ξ(KB), we need to compare literals only in closures of types 3–6
and 8 from Table 4. Definition 9 requires the literals from such closures to
be comparable, which allows us to use a simplified definition of the literal
ordering. For each literal L = s ⊲⊳ t with ⊲⊳ ∈ {≈, 6≈}, we consider the triple
cL = (max(s, t), pL, min(s, t)), where (i) max(s, t) is the larger of the two
terms; (ii) pL = 1 if ⊲⊳ is 6≈; (iii) pL = 0 if ⊲⊳ is ≈; and (iv) min(s, t) is the
smaller of the two terms. Then, L1 ≻ L2 if and only if cL1

≻ cL2
, where cLi

are compared lexicographically, using the term ordering ≻ for the first and
the third position, and using 1 ≻ 0 for the second position. On ALCHIQ−-
closures of types 3–6 and 8, this definition is equivalent to the one based on
the two-fold multiset extension from Section 2.2.
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5.3 Closure of ALCHIQ−-Closures under Inferences by BSDL

We now state a lemma that shows which literals can be maximal under the
ordering and the selection function of BSDL. The proof follows immediately
from the properties of the term ordering of BSDL from Definition 9.

Lemma 10 The maximal literal of an ALCHIQ−-closure that participates
in an inference by BSDL satisfies the following conditions:

• In a closure of type 3, the literal R(x, 〈f(x)〉) is always maximal.
• In a closure of type 4, the literal R([f(x)] , x) is always maximal.
• In a closure of type 5, a literal (¬)P (x) can be maximal only if the closure

does not contain a term f(x).
• In a closure of type 6, the maximal literal contains a term f([g(x)]).
• In a closure of type 8, a literal (¬)R(a, b), (¬)P (a), a ≈ b, or a 6≈ b can be

maximal only if the closure does not contain a function symbol.

To simplify the presentation, we make a technical assumption that, whenever
BSDL derives a conclusion of the form C · ρ ∨ t 6≈ t, this conclusion is eagerly
simplified to C · ρ. Since an application of reflexivity resolution to C · ρ ∨ t 6≈ t
produces C · ρ, and C · ρ makes C · ρ ∨ t 6≈ t redundant, this simplification
does not affect completeness of BSDL.

We now prove that ALCHIQ−-closures are closed under BSDL.

Lemma 11 Let N be a set of ALCHIQ−-closures and C · ρ a closure ob-
tained by applying a BSDL inference to premises from N . Then, either C · ρ
is redundant in N or N ∪ {C · ρ} is a set of ALCHIQ−-closures.

PROOF. We show that all possible inferences by BSDL on all types of
ALCHIQ−-closures produce a closure with syntactic structure from Table 4,
for which we then verify Conditions (i)–(vii).

Consider any inference between closures of types 5, 6, or 8. Because the term
g(x) in some f([g(x)]) is marked, such an inference unifies unary terms only
at their root positions. Hence, each unifier used in such an inference is either
empty, or it has the form σ = {x 7→ t}, where the depth of t is limited
by the difference of the depths of the terms from the premises. Thus, the
depth of terms in the conclusion is also bounded by the depth of the terms in
the premises. Notice that superposition from f(g(x)) ≈ x into f(g(x′)) 6≈ x′

results in x′ 6≈ x′, and superposition from P (t) ≈ tt into P (s) 6≈ tt results in
tt 6≈ tt; these literals are eagerly eliminated by reflexivity resolution. Hence,
the conclusion is of type 5, 6, or 8.
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Because negative binary literals are always selected, a closure C of type
7 can participate only in a hyperresolution inference as the main premise.
The side premises can have the maximal literals of the form R(xi, 〈fi(xi)〉),
R([gi(xi)] , xi), or R(〈a〉 , 〈bi〉). The following combinations are possible:

• Assume that the first side premise has the maximal literal R([g(x′)] , x′).
Because g(x′) is unified with x, each other premise of type 4 must have a
maximal literal of the form R([g(x′′)] , x′′); however, because the closure C
contains a literal yi ≈ yj for each i and j, the conclusion contains x ≈ x, so
it is a tautology. For a nonredundant conclusion, since g(x′) does not unify
with a constant, side premises for i > 1 must be of type 3, so the unifier has
the form σ = {x 7→ g(x′), xi 7→ g(x′), y1 7→ x′, yi 7→ fi(g(x′)) for 2 ≤ i ≤ n}.
If n = 1, the conclusion is of type 5; otherwise, it is of type 6.

• Assume that R(xi, 〈fi(xi)〉) is the maximal literal in all side premises. The
unifier σ is of the form {xi 7→ x, yi 7→ fi(x)}, so the conclusion is of type 5.

• Assume that some side premises have the maximal literal R(xi, 〈fi(xi)〉),
for 1 ≤ i ≤ k, and R(〈a〉 , 〈bi〉) for k < i ≤ n (the latter literals must
have the same first argument since all these arguments must unify with x).
The unifier σ contains mappings of the form x 7→ a, xi 7→ a, yi 7→ fi(a) for
1 ≤ i ≤ k, and yi 7→ bi for k + 1 ≤ i ≤ n, so the conclusion is of type 8.

Consider a superposition into a closure of type 3 with a free variable x′. By
Lemma 10, (w ≈ v) · ρ can only be the literal R(x′, f(x′)), with R being the
designated role for f . There are three possibilities:

• (C ∨ s ≈ t) · ρ is of type 5, 6, or 8 with (s ≈ t) · ρ being [f(u)] ≈ [g(u)].
Then, σ = {x′ 7→ u}, so the conclusion is S = Pf([u])∨R([u] , [g(u)])∨C ·ρ,
where Pg([u]) ⊆ C · ρ. By Condition (v), role(f) = role(g), so by Condition
(iii), Pg(y)∨R(y, g(y)) exists; it subsumes S via the substitution {y 7→ u}.

• (C ∨ s ≈ t) · ρ is of type 6 with (s ≈ t) · ρ being [f(g(x))] ≈ x. Then, σ =
{x′ 7→ g(x)}, so the conclusion is S = Pf([g(x)])∨R([g(x)] , x)∨C ·ρ, where
Pg(x) ⊆ C · ρ. By Condition (vi), role(f) = Inv(role(g)), so by Condition
(iii), the closure Pg(y)∨ Inv(R)(y, g(y)) exists. Because Inv(R)(y, g(y)) and
R(g(y), y) are semantically equivalent, the latter closure subsumes S via the
substitution {y 7→ x}.

• (C ∨ s ≈ t) · ρ is of type 8 with (s ≈ t) · ρ being [f(a)] ≈ [b]. The unifier
is σ = {x′ 7→ a}, so the conclusion is S = Pf ([a]) ∨ R([a] , [b]) ∨ C · ρ. By
Condition (vii), a witness of the form R(〈a〉 , 〈b〉)∨D with D ⊆ C ·ρ exists,
and it subsumes S via the empty substitution.

Equality factoring is possible only for a closure of type 5, 6, or 8. Such closures
contain only one variable, so, due to occurs-check in unification, the unifier
between literals within the closure is always empty. Similarly, reflexivity res-
olution can only be applied to a closure of type 5, 6, or 8 with the empty
unifier. Hence, the conclusion of these two inferences is always of type 5, 6,
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or 8. The conclusion of reflexivity resolution always subsumes the premise,
so this inference rule should always be applied eagerly. The only remaining
inference is hyperresolution of a closure of type 1 or 2 with a closure of type
3, 4, or 8, which obviously yields a closure of type 3, 4, or 8.

We now show that all the Conditions (i)–(vii) from Table 4 hold for each
nonredundant inference conclusion. No inference removes markers from a clo-
sure. Condition (i) holds for a conclusion of each inference because each term
f(t) in the conclusion either stems from some premise, or it is obtained by
instantiating some f(x) to f([t]). Condition (ii) holds because all equality
literals containing functional terms are generated by instantiating a literal
yi ≈ yj in a hyperresolution inference with a closure of type 7. Condition (iii)
holds because all conclusions of type 3 are produced by resolving a closure of
type 3 or 4 with a closure of type 1 or 2.

If a closure contains f([t]) and satisfies Condition (iv), by Lemma 10, literals
from Pf ([t]) cannot participate in an inference. Furthermore, a variable x is
instantiated simultaneously in f([t]) and Pf ([t]). The terms containing func-
tion symbols occurring in an inference conclusion always stem from one of the
inference premises, so Condition (iv) holds for each conclusion.

All equality literals containing function symbols are generated by hyperres-
olution with a main premise of type 7. Since the role R occurring in the
premise is a leaf role, a closure of type 3 or 4 containing R cannot be resolved
with a closure of type 2. Hence, for all side premises Pf(x) ∨ R(x, 〈f(x)〉),
we have role(f) = R, and, for a side premise Pg(x) ∨ R([g(x)] , x), we have
role(g) = Inv(R). Hence, Conditions (v) and (vi) are satisfied for each con-
clusion of such a hyperresolution inference. Furthermore, by Condition (ii),
superposition into positive equality literals containing function symbols is not
possible, and, in each [fi(x)] ≈ [fj(x)], the variable x is instantiated simulta-
neously. Hence, Conditions (v) and (vi) hold for each inference conclusion.

Finally, all literals of the form [f(a)] ≈ [b] are generated by hyperresolution
involving a side premise E1 of type 8 with the maximal literal R(〈a〉 , 〈b〉), and
a side premise E2 of type Pf (x)∨R(x, 〈f(x)〉). Since the role associated with
R occurring in such C is a leaf role, a closure of type 8 cannot be resolved
on R with a closure of type 2, so role(f) = R. Since the literal R(〈a〉 , 〈b〉) is
maximal in E1, by Lemma 10, no literal from E1 contains a function symbol,
and E2 does not contain a negative binary literal. Hence, the conclusion of
such an inference satisfies Condition (vii). Assume now that Condition (vii)
holds for some closure C, which contains a literal [f(a)] ≈ [b] whose witness
is some closure D. Since no literal from D contains a function symbol and no
such D is a negative binary literal, by Lemma 10, no literal from C occurring
in D can participate in an inference, so all literals from D are present in each
conclusion; hence, Condition (vii) holds for a conclusion of each inference. 2
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The following corollary follows from the case analysis of Lemma 11:

Corollary 12 Superposition into an ALCHIQ−-closure of type 3 always re-
sults in a redundant conclusion.

5.4 Termination and Complexity Analysis

We now show that the number of ALCHIQ−-closures is finite for a finite
signature. This, in combination with Lemma 11 and the soundness and com-
pleteness of BSDL, implies that BSDL with eager application of redundancy
elimination rules decides satisfiability of ALCHIQ− knowledge bases.

To simplify the following presentation, we make several technical assumptions
about the implementation of the saturation process. First, instead of physically
deleting redundant closures, we just mark them as deleted, thus preventing
them from participating in future inferences. In this way we ensure that sub-
sumption does not delete generator and witness closures from the closure so
Conditions (iii) and (vii) always hold, and we ensure that no inference be-
tween the same set of premises is performed twice. Second, due to Corollary
12, we assume that BSDL does not perform any superposition inferences into
ALCHIQ−-closures of type 3.

Lemma 13 Let N0, N1, . . . , Ni be a BSDL derivation such that N0 = Ξ(KB)
and C is a closure from some Ni. Then, |C| is at most polynomial in |KB |,
and |Ni| is at most exponential in |KB |, for unary coding of numbers in the
input.

PROOF. By a straightforward inductive application of Lemma 11, each Ni

contains only ALCHIQ−-closures. Let r be the number of role predicates, a
the number of atomic concept predicates, c the number of constants, f the
number of function symbols, and v the number of variables in a closure from
Ni. Obviously, r, c, and a are linear in |KB |. The number f is bounded by the
sum of all numbers n in ≥ n R.C and ≤ n R.C, plus one for each ∃R.C and
∀R.C occurring in KB . Since numbers are coded in unary, f is linear in |KB |.
Similarly, no BSDL inference on ALCHIQ−-closures derives a closure of type
7, so v is bounded by the maximal number in a number restriction, and it is
linear in |KB | for unary coding of numbers.

The number of unary terms in a closure is bounded by t = (f 2 + f) · (v + c).
Hence, the number of unary literals is bounded by ℓ1 = 2a · 2t, the num-
ber of equality literals by ℓ2 = 2(2t)2, and the number of binary literals by
ℓ3 = 2r · (2t)2 (the leading factor 2 takes into account that each atom can be
positive or negative, and 2t takes into account that each term can be marked
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or not). Obviously, the number of different literals ℓ = ℓ1+ℓ2+ℓ3 is polynomial
in |KB |. Each closure contains a subset of these literal, and there are 2ℓ such
subsets, so the number of closures in Ni is exponential in |KB |. 2

Theorem 14 For an ALCHIQ− knowledge base KB, saturation of Ξ(KB)
by BSDL with eager elimination of redundancy decides satisfiability of KB,
and it runs in time exponential in |KB | for unary coding of numbers.

PROOF. The set Ξ(KB) can be computed in polynomial time by Lemma 8.
Furthermore, by Lemmas 8 and 11, starting from Ξ(KB), all nonredundant
closures derived by BSDL are ALCHIQ−-closures. By Lemma 13, the number
of literals ℓ in an ALCHIQ−-closure is polynomial in |KB |, and the number
c of different ALCHIQ−-closures is exponential in |KB |. Then, each infer-
ence involves at most cℓ premises, so the number of different inferences on
ALCHIQ−-closures is exponential in |KB |. Subsumption can be checked in
time exponential in the closure size [30]. Hence, Ξ(KB) can be saturated by
BSDL in exponential time. Finally, BSDL is sound and complete, so Ξ(KB) is
satisfiable if and only if the empty closure is derived in the saturation. 2

6 Removing the Restriction to Leaf Roles

Without the restriction to leaf roles, saturation of Ξ(KB) by BSDL can pro-
duce a closure set whose closures correspond in structure to Table 4, but for
which Conditions (iii)–(vii) do not hold. For example, consider a KB contain-
ing axioms (7)–(15) and the corresponding set Ξ(KB):

R ⊑ T ¬R(x, y) ∨ T (x, y)(7)

S ⊑ T ¬S(x, y) ∨ T (x, y)(8)

C ⊑ ∃R.⊤ ¬C(x) ∨ R(x, f(x))(9)

⊤ ⊑ ∃S−.⊤ S−(x, g(x))(10)

⊤ ⊑ ≤ 1 T ¬T (x, y1) ∨ ¬T (x, y2) ∨ y1 ≈ y2(11)

∃S.⊤ ⊑ D ¬S(x, y) ∨ D(x)(12)

∃R.⊤ ⊑ ¬D ¬R(x, y) ∨ ¬D(x)(13)

⊤ ⊑ C C(x)(14)

¬S−(x, y) ∨ S(y, x)(15)

Consider a saturation of Ξ(KB) by BSDL; the notation R(xx;yy) means that
a closure is derived by (hyper)resolving closures xx and yy:

S([g(x)] , x) R(10;15)(16)
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¬C(x) ∨ T (x, [f(x)]) R(7;9)(17)

T ([g(x)] , x) R(8;16)(18)

¬C([g(x)]) ∨ [f(g(x))] ≈ x R(11;17;18)(19)

Condition (vi) from Table 4 is not satisfied for the closure (19): we have
role(f) = R 6= Inv(role(g)) = Inv(S−) = S. This is because a number restric-
tion occurs in (11) on a role that is not a leaf role. Now (19) can be superposed
into (9), resulting in (20):

(20) ¬C([g(x)]) ∨ R([g(x)] , x)

No closure exists that subsumes (20); notice that this does not contradict
Corollary 12 since (19) does not satisfy Condition (vi).

Hence, we must keep (20), which is obviously not of the form from Table 4. This
might cause termination problems since, in general, (20) might be resolved
with some closure of type 6 of the form C([g(h(x))]), producing a closure of
the form R([g(h(x))] , [h(x)]). The term depth in a binary literal is now two,
and resolving such a closure with a closure of type 7 can yield closures with
even deeper terms. Hence, the number of closures that can be derived is no
longer finite and, indeed, saturation does not terminate.

We did not find a way to refine the ordering or the selection function that
would solve this problem. Furthermore, (20) is necessary for completeness.
The knowledge base KB is unsatisfiable, and the empty closure is derived by
the following derivation, which involves (20):

D([g(x)]) R(12;16)(21)

¬D([g(x)]) ∨ ¬C([g(x)]) R(13;20)(22)

¬C([g(x)]) R(21;22)(23)

2 R(14;23)(24)

6.1 Transformation by Decomposition

To solve the outlined termination problem, we introduce decomposition—a
transformation that can be applied to the results of certain BS inferences. It
is generally applicable and is not limited to DL reasoning. Here, we show that
it can be combined with basic superposition but, in a similar vein, it can be
combined with any clausal calculus compatible with the standard redundancy
notion [10]. Unlike the inference rules of BS, decomposition can extend the
signature of a closure set with new predicate symbols. In order to reuse these
symbols whenever possible, an application of decomposition depends on the
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previous applications of decomposition in a derivation, and not only on the
current closure set.

In the following, for x a vector of distinct variables x1, . . . , xn and t a vector of
(not necessarily distinct) terms t1, . . . , tn, let {x 7→ t} denote the substitution
{x1 7→ t1, . . . , xn 7→ tn}, and let Q([t]) denote Q([t1] , . . . , [tn]).

Definition 15 The closures C1 · ρ and C2 · θ and a vector of m terms t con-
stitute a decomposition of a closure C · ρ if C · ρ = C1 · ρ ∨ C2 · θ{x 7→ t},
where x is a vector of m free variables of C2θ. The closure C2 · θ is called the
fixed part and the closure C1 · ρ is called the variable part.

Let N0, N1, . . . , Nn ∪ {C · ρ} be a BS derivation and C1 · ρ, C2 · θ, and t a
decomposition of C · ρ. Then, an application of decomposition to C · ρ pro-
duces the closure set Nn ∪ {C1 · ρ ∨ Q([t]), ¬Q(x) ∨ C2 · θ}. If decomposition
has previously been applied in the derivation with the same variable part C2 · θ,
then Q is reused; otherwise, it is a fresh predicate. The predicate Q is called the
definition predicate. The ordering ≺ used to parameterize the inferences of BS
must be admissible over the signature that includes all definition predicates.
An application of decomposition is written as follows:

C · ρ  
C1 · ρ ∨ Q([t])

C2 · θ ∨ ¬Q(x)

Let ξ be a BS inference with a side premise Ds · η, a main premise Dm · η,
a most general unifier σ, and a conclusion C · ρ; furthermore, let Lm · η be
the literal from Dm · η on which the inference takes place. Then, C · ρ is
eligible for decomposition with a definition predicate Q if, for each ground
substitution τ such that ξτ satisfies the ordering constraints of BS, we have
¬Q(t)τ ≺ Lmηστ . If the conclusion of a BS inference ξ is eligible for decom-
position, we say that ξ itself is eligible for decomposition. Finally, BS+ is the
BS calculus in which conclusions of eligible inferences are possibly decomposed.

For example, [f(g(x))] ≈ [h(g(x))] can be superposed into C(x) ∨ R(x, f(x)),
resulting in C([g(x)]) ∨ R([g(x)] , [h(g(x))]). This closure is not of type from
Table 4; however, it can be decomposed into C([g(x)]) ∨ QR,f ([g(x)]) and
¬QR,f (x) ∨ R(x, [h(x)]), which are both of types from Table 4. The inference
is eligible for decomposition if we parameterize basic superposition with a term
ordering such that ¬QR,f (g(x)) ≺ R(g(x), f(g(x))).

We now show that decomposition is sound. Since decomposition can reuse the
predicate Q in a derivation, soundness must be considered w.r.t. a derivation,
and not only w.r.t. a single inference.
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Lemma 16 If a set of closures N0 is satisfiable, then each set Ni in a deriva-
tion N0, N1, . . . , Ni by BS+ is satisfiable as well.

PROOF. We inductively construct a model Ii of Ni satisfying the following
property (*): each definition predicate Q is interpreted exactly as the corre-
sponding variable part C2θ. For the base case, any model I0 of N0 satisfies
(*) since N0 does not contain definition predicates. For the induction step, we
consider the inference steps deriving a closure C · ρ from premises in Ni−1,
and possibly decomposing C · ρ into C1 · ρ ∨ Q([t]) and ¬Q(x) ∨ C2 · θ. The
inference rules of BS ensure that C · ρ is true in Ii−1.

• If C · ρ is not decomposed, then Ii := Ii−1 is a model of Ni satisfying (*).
• If C ·ρ is decomposed and the predicate Q is not new, we set Ii := Ii−1. Now

C · ρ is true in Ii−1, and, because Ii−1 satisfies (*) by induction assumption,
C1 · ρ ∨ Q([t]) is true in Ii. Furthermore, Ii obviously satisfies (*).

• If C · ρ is decomposed and the predicate Q is new, then we extend Ii−1 to
Ii by making Q(x) true exactly for those x for which C2θ is true in Ii−1.
Clearly, Ii is a model of Ni and it satisfies (*).

2

We next show that decomposition is compatible with the standard notion of
redundancy. This is the key step in showing completeness of BS+.

Lemma 17 Let ξ be a BS inference applied to premises from a closure set N ,
resulting in a closure C · ρ. If ξ is eligible for decomposition of C · ρ into
C1 ·ρ∨Q([t]) and C2 ·θ∨¬Q(x), and the two latter closures are both redundant
in N , then ξ is redundant in N as well.

PROOF. Let ξ be an inference on a literal Lm · η from a main premise
Dm · η and a side premise Ds · η, with a most general unifier σ, resulting in
C · ρ. Furthermore, let R be a rewrite system and τ a ground substitution
such that ξτ satisfies the ordering constraints of BS and ξτ is a variable
irreducible ground instance of ξ w.r.t. R. Finally, let E1 = (C1 ·ρ∨Q([t]))τ and
E2 = (¬Q(x)∨C2 ·θ){x 7→ t}τ . Note that max(Dm ·ηστ, Ds ·ηστ) = Dm ·ηστ ,
so let D = Dm · ηστ .

By the ordering constraints of BS inference rules, Dsηστ ≺ Lmηστ . Further-
more, superposition inferences are allowed only from the maximal side of an
equality, so the inference always produces a literal L′ηστ ≺ Lmηστ . Finally,
because ξ is eligible for decomposition, ¬Q(t)τ ≺ Lmηστ . Thus, if a literal
Lηστ ≻ Lmηστ occurs n times in E1∪E2, then it also occurs n times in D. In
other words, both E1 and E2 contain at most those literals larger than Lmηστ
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that also occur in D. All other literals in E1 or E2 are smaller than Lmηστ .
Since Lmηστ ∈ D, we conclude that E1 ≺ D and E2 ≺ D.

The vector of terms t is “extracted” from the substitution part of C ·ρ. Hence,
if a term t occurs in E1 and E2 at a substitution position, then t occurs in
C · ρτ also at a substitution position. Therefore, if ξτ is variable irreducible
w.r.t. R, so is C · ρτ , and so are E1 and E2.

By assumption, E1 is redundant in N , so R∪irredR(N)≺E1 |= E1; since E1 ≺ D,
we have R ∪ irredR(N)≺D |= E1. Similarly, R ∪ irredR(N)≺D |= E2. Since
{E1, E2} |= C · ρτ , we have R ∪ irredR(N)≺D |= C · ρτ . 2

Soundness and compatibility with the standard notion of redundancy imply
that BS+ is a sound and complete calculus, as shown by Theorem 18. To
obtain the saturated set N , we can use any fair saturation strategy [10].

Theorem 18 For N0 a set of closures of the form C · {}, let N be a set of
closures obtained by saturating N0 under BS+. Then, N0 is satisfiable if and
only if N does not contain the empty closure.

PROOF. The (⇒) direction follows immediately from Lemma 16. For the
(⇐) direction, assume that N is saturated under BS+. Then, by Lemma 17,
N is saturated under BS as well. Using the model generation method [16,17],
we can build a rewrite system R such that R∗ |= irredR(N). Unlike for basic
superposition without decomposition, the set of closures N does not need to
be well-constrained, so we cannot immediately conclude that R∗ is a model
of N . We can, however, conclude that R∗ |= irredR(N0): consider a closure
C ∈ N0 and its variable irreducible ground instance Cτ . If C ∈ N , then
R∗ is obviously a model of Cτ . Furthermore, C /∈ N only if it is redundant
in N ; then, for any τ , there are ground closures Diτ ∈ irredR(N) such that
D1τ, . . . , Dnτ |= Cτ . Since R∗ |= Diτ by assumption, we have R∗ |= Cτ .

Now consider a closure C ∈ N0 and its (not necessarily variable irreducible)
ground instance Cη. Let η′ be a substitution obtained by replacing each map-
ping x 7→ t in η with x 7→ t′, where t′ is the normal form of t w.r.t. R. Since
the substitution part of C is empty, Cη′ ∈ irredR(N0), so R∗ |= Cη′ implies
R∗ |= Cη. Hence, R∗ |= N0, and by Lemma 16, there is a model of N . 2

Discussion. Decomposition is essentially structural transformation applied
in the course of a theorem proving process. Since the formulae obtained by
structural transformation are equisatisfiable with the original formula, decom-
position is sound.
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A potential problem might be that decomposition somehow interferes with the
markers of basic superposition. This does not occur because, for any rewrite
system R, decomposing C · ρ into C1 · ρ ∨ Q([t]) and ¬Q(x) ∨ C2 · θ actu-
ally decomposes any variable irreducible ground instance of the premise into
corresponding variable irreducible ground instances of the conclusions. Hence,
for each variable irreducible ground instance of the premise, there are variable
irreducible ground instances of the conclusions that imply the ground instance
of the premise in question. Therefore, we do not lose any variable irreducible
ground instance used in detecting a potential inconsistency of the closure set.
Note that, for an arbitrary rewrite system R, the closures C1 · ρ ∨ Q([t]) and
¬Q(x) ∨ C2 · θ can have variable irreducible ground instances that do not
correspond to a variable irreducible ground instance of C · ρ. These variable
irreducible ground instances, however, do not cause problems since decompo-
sition is sound.

Another potential problem might arise if a closure C · ρ is derived and decom-
posed into C1 · ρ∨Q([t]) and ¬Q(x)∨C2 · θ an infinite number of times. This
might happen if the ordering constraints on predicates require the fixed and
the variable parts to be resolved on Q([t]) and ¬Q(x): obviously, the theorem
proving process would be stuck in an infinite loop. This is avoided by requir-
ing an inference to be eligible for decomposition, which makes decomposition
compatible with the standard notion of redundancy. Hence, the fixed and the
variable parts together make the original inference redundant, so the inference
need not be repeated in a derivation.

The completeness argument for decomposition relies on the standard com-
pleteness argument of basic superposition, which in turn relies on the fact
that the ordering ≺ used in BS+ is admissible. This must hold for the entire
signature, including not only the predicates and function symbols used in the
original closure set, but also all the definition predicates introduced in the
saturation. It this condition is satisfied, decomposition can even be applied
an infinite number of times in a saturation. As long as each application of
decomposition satisfies the eligibility condition, the final set will be saturated,
and we can generate a model using the standard model construction method
of basic superposition.

If decomposition is used to obtain a decision procedure, as it is the case in
Section 6.2, then the number of the introduced definition predicates must be
bounded. Thus, the entire signature is bounded, so an ordering ≺ admissible
on that signature can be readily constructed.

Notion of Eligibility. Eligibility, as defined in Definition 15, ensures that
the closures obtained by decomposing the conclusion of an inference ξ are
smaller than the main premise of ξ. Consider the following BS inference ξ,
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followed by decomposition (the unifier is σ = {x′ 7→ x}):

¬A(x) ∨ B(x) ∨ C(y) ∨ D(y) A(x′) ∨ E(x′)

B(x) ∨ E(x) ∨ C(y) ∨ D(y)  
B(x) ∨ C(y) ∨ Q(x, y)

¬Q(x, y) ∨ E(x) ∨ D(y)

To check if ξ is eligible for decomposition, we have a problem: ¬A(x) is the
main literal on which the inference takes place, and it is not comparable with
¬Q(x, y) since Q(x, y) contains an additional variable y. The remedy is to con-
sider each ground substitution τ such that ξτ satisfies the ordering constraints
of BS. If ¬A(x) is not selected, ¬A(x)στ ≻ (B(x) ∨ C(y))στ must hold, imply-
ing that xστ ≻ yστ . If we compare literals, say, using an LPO in which A > Q,
then ¬A(x)στ ≻ ¬Q(x, y)στ , so the eligibility condition is satisfied. On the
other hand, assume that ¬A(x) is selected. Then, ¬A(x)στ is not necessarily
larger than (B(x) ∨ C(y))στ . Therefore, we cannot conclude that xστ ≻ yστ ,
and that ¬A(x)στ ≻ ¬Q(x, y)στ . Indeed, for τ = {x 7→ a, y 7→ f(a)}, we have
¬A(x)στ ≺ Q(x, y)στ even if the term ordering is based on an LPO in which
A > Q; hence, the eligibility condition is not satisfied. Next, we present two
simpler eligibility tests:

Proposition 19 Let ξ be an inference by BS as in Definition 15. Then, ξ is
eligible for decomposition if

(1) ¬Q(t) ≺ Lmησ, or
(2) the side premise Ds · η contains a literal L · η such that ¬Q(t) ≺ Lησ.

PROOF. (1) Since ≺ is stable under substitutions, we have ¬Q(t)τ ≺ Lmηστ
for each τ .

(2) For ξ a BS inference and τ a ground substitution as in Definition 15, the
ordering conditions of BS ensure that Lsηστ ≺ Lmηστ , where Ls · η is the
maximal literal of the side premise. Because ≺ is stable under substitutions,
the assumption implies ¬Q(t)τ ≺ Lηστ � Lsηστ ≺ Lmηστ . 2

Combining Decomposition with Other Calculi. Lemma 16 applies to
any sound clausal calculus. Furthermore, for any calculus compatible with the
standard notion of redundancy [10], Lemma 17 can be proved in a similar
manner with minor modifications.
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6.2 Deciding ALCHIQ by Decomposition

We now extend the decision procedure from Section 5 with the decomposition
rule from Section 6.1 to obtain an algorithm for ALCHIQ, and, by the results
from Section 4, for SHIQ as well.

Definition 20 Let BS+
DL be the BSDL calculus where conclusions are, when-

ever possible, decomposed according to the following pattern, for any term t:

D · ρ ∨ R([t] , [f(t)])  D · ρ ∨ QR,f ([t])

¬QR,f (x) ∨ R(x, [f(x)])

D · ρ ∨ R([f(x)] , x)  D · ρ ∨ QInv(R),f (x)

¬QInv(R),f (x) ∨ R([f(x)] , x)

In addition to the requirements of Definition 9, the term ordering ≻ must be
such that R(x, f(x)) ≻ ¬QS,g(x) and f(x) ≻ x for each binary predicate R,
function symbol f , and definition predicate QS,g.

A term ordering satisfying Definition 20 can be obtained by instantiating an
LPO with a precedence such that f > c > P > tt, for each function symbol
f , constant c, and predicate P (including definition predicates). Note that
the number of definition predicates QR,f is quadratic in the size of the initial
closure set Ξ(KB), so such an LPO indeed exists.

By Definition 15, for a (possibly inverse) role S and a function symbol f ,
the definition predicate QS,f is unique. Furthermore, a strict application of
Definition 15 would require introducing a distinct definition predicate Q′

R,f for
R([f(x)] , x). By the definition of the operator π for translating KB into first-
order logic, however, R([f(x)] , x) and Inv(R)(x, [f(x)]) are logically equivalent.
Therefore, QInv(R),f can be used as the definition predicate for R([f(x)] , x)
instead of Q′

R,f , thus avoiding the need to introduce an additional predicate
in the second form of decomposition in Definition 20. This optimization is not
essential for the correctness of our results; however, it is good practice to keep
the number of predicate symbols minimal. We next relax the conditions of
ALCHIQ−-closures to ALCHIQ-closures:

Definition 21 A set of closures N is a set of ALCHIQ-closures if each clo-
sure in N is of the form from Table 4 and it satisfies Conditions ( i)–( ii).

As we shall see next, decomposition ensures that all non-ALCHIQ-closures
derived in a saturation are decomposed into ALCHIQ-closures. Furthermore,
since the definition predicate QR,f is unique for a pair of role and function
symbols R and f , at most a polynomial number of definition predicates is
introduced during saturation. Since the number of ALCHIQ-closures is finite
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according to Lemma 13, saturation by BS+
DL terminates.

Theorem 22 For an ALCHIQ knowledge base KB, saturation of Ξ(KB) by
BS+

DL decides satisfiability of KB, and runs in time exponential in |KB | for
unary coding of numbers.

PROOF. We first show that inferences of BS+
DL, when applied to ALCHIQ-

closures, always produce ALCHIQ-closures. The proof of Lemma 11 applies
even if Conditions (iii)–(vii) from Table 4 do not hold; the only exception is
a superposition into a generator closure Pf(x) ∨R(x, f(x)) with the maximal
literal Lmη = R(x, f(x)) and a most general unifier σ. There are three differ-
ent types of such inferences, depending on the structure of the premise that
superposition is performed from:

• For [f(t)] ≈ [g(t)] ∨ D · ρ of type 5, 6, or 8, where t is either a vari-
able x′, a term h(x′), or a constant a, we get D · ρ ∨ Pf([t]) ∨ R([t] , [g(t)]).
This conclusion is decomposed into a closure ¬QR,g(x) ∨ R(x, [g(x)]) of
type 3 and a closure D · ρ ∨ Pf([t]) ∨ QR,g([t]) of type 5, 6, or 8. Clearly,
Lmησ = R(t, f(t)). By Definition 20, R(x, f(x)) ≻ ¬QR,g(x). Since ≻ is sta-
ble under substitutions, R(t, f(t)) ≻ ¬QR,g(t) as well. Hence, the inference
is eligible for decomposition by Proposition 19.

• For [f(g(x′))] ≈ x′∨D·ρ of type 6, we get D · ρ ∨Pf ([g(x′)]) ∨ R([g(x′)] , x′).
This conclusion is decomposed into a closure ¬QInv(R),g(x) ∨ R(x, [g(x)]) of
type 4 and a closure D · ρ ∨ Pf([g(x′)]) ∨ QInv(R),g(x

′) of type 5 or 6. Since
R([g(x′)] , x′) and Inv(R)(x′, [g(x′)]) are logically equivalent due to the trans-
lation operator π, the predicate QInv(R),g can be used as the definition predi-
cate for R([g(x′)] , x′). Clearly, Lmησ = R(g(x′), f(g(x′))). By Definition 20,
R(x′, f(x′)) ≻ ¬QInv(R),g(x

′). Each reduction ordering is stable under con-
texts [19]: s ≻ t implies u[s]p ≻ u[t]p for all terms s, t, u and positions p.
Thus, g(x′) ≻ x′ implies R(g(x′), f(g(x′))) ≻ R(g(x′), f(x′)) ≻ R(x′, f(x′)),
so R(g(x′), f(g(x′))) ≻ ¬QInv(R),g(x

′), and the inference is eligible for decom-
position by Proposition 19.

• Superposition from a closure of type 8 of the form [f(a)] ≈ [b]∨D ·ρ results
in a closure of the form Pf(a) ∨ R([a] , [b]) ∨ D · ρ, which is of type 8.

Hence, the conclusion of each inference of BS+
DL is an ALCHIQ-closure.

Let r be the number of roles and f the number of function symbols occurring
in Ξ(KB); as in Lemma 13, both r and f are linear in |KB | for unary coding of
numbers. The number of definition predicates QR,f introduced by decomposi-
tion is bounded by r ·f , which is quadratic in |KB |, so the number of different
predicates is polynomial in |KB |. Hence, Lemma 13 applies in this case as
well, which, together with Theorem 18, implies the claim of this theorem. 2
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Note that Definition 20 applies decomposition eagerly; however, in some cases,
decomposition can be made optional. For example, a resolution of a closure of
type 3 or 4 with a closure of type 1 or 2 produces a closure of type 3; similarly,
a superposition from [f(x)] ≈ [g(x)] ∨ C(x) into D(x) ∨ R(x, f(x)) produces
D(x)∨C(x)∨R(x, [g(x)]), which is also of type 3. Decomposing such a closure
is not strictly necessary to obtain termination.

7 Optimizations of Clausification

To obtain a practical procedure, it is important keep the input closure set as
small as possible. In this section, we present several optimizations that were
crucial to obtain an algorithm capable of solving practical problems [25].

Optional Positions. Certain complex concepts need not be replaced with
an atomic concept in the clausification process. For example, by Definition 6,
Θ(A ⊑ ∃R.B) = {A ⊑ ∃R.Q1, Q1 ⊑ B}; that is, the concept B is replaced
with Q1. Clausifying A ⊑ ∃R.B, however, produces closures of the form from
Table 4 even if B is not replaced with Q1.

Definition 23 Optimized structural transformation is obtained by modifying
the definition of the operator Θ from Table 3 such that

Θ(L ⊑ C ⊔
⊔

Li) = {L ⊑ C ⊔
⊔

Li}

if C contains only literal subconcepts and L(i) are literal concepts.

Proposition 24 Each closure in Ξ(KB) is of type from Table 4, even if
Θ(KB) is computed by using the optimized structural transformation.

Renaming concepts can be beneficial. Consider the knowledge base KB , con-
sisting of axioms shown in (25)–(27) on the left-hand side:

A ⊑ ∃R.C  

¬A(x) ∨ R(x, f(x))

¬A(x) ∨ C(f(x))
(25)

B ⊑ ∃R.C  

¬B(x) ∨ R(x, g(x))

¬B(x) ∨ C(g(x))
(26)

D ⊑ ∀R.C  ¬D(x) ∨ ¬R(x, y) ∨ ¬C(y)(27)

In (25) and (26), the concepts ∃R.C need not be renamed, so KB can be
clausified without introducing new predicates. This yields closures shown in
(25)–(27) on the right-hand side.
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The concept ∃R.C is now skolemized twice, yielding ¬A(x) ∨ R(x, f(x)) and
¬B(x)∨R(x, g(x)) as candidates for an inference with (27). Additional axioms
Ai ⊑ ∃R.C would produce additional closures ¬Ai(x)∨R(x, f(x)), which could
participate in an inference with (27), thus increasing the search space.

The search space can be reduced by renaming ∃R.C, even though this is
not strictly necessary. The axioms and the closures obtained by applying the
structural transformation to KB are shown in (28)–(31):

A ⊑ Q  ¬A(x) ∨ Q(x)(28)

B ⊑ Q  ¬B(x) ∨ Q(x)(29)

Q ⊑ ∃R.C  

¬Q(x) ∨ R(x, f(x))

¬Q(x) ∨ C(g(x))
(30)

D ⊑ ∀R.C  ¬D(x) ∨ ¬R(x, y) ∨ ¬C(y)(31)

This set contains only one closure ¬Q(x) ∨ R(x, f(x)), which can participate
in an inference with (31); also, any additional axiom Ai ⊑ ∃R.C produces
only a closure ¬Ai(x) ∨Q(x). Note that renaming ∃R.C pays off because the
concept occurs in KB twice.

Hence, Definition 23 can be modified to rename the concept C if it occurs in
KB more than once. Tableau algorithms use similar techniques, such as lazy
unfolding and introducing new names for early clash detection [3,31].

Functional Roles. Let KB be the knowledge base consisting of the axioms
shown on the left-hand side of (32)–(34):

⊤ ⊑ ≤ 1 R  ¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(32)

A ⊑ ∃R.C  

¬A(x) ∨ R(x, f(x))

¬A(x) ∨ C(f(x))
(33)

B ⊑ ∃R.D  

¬B(x) ∨ R(x, f(x))

¬B(x) ∨ D(f(x))
(34)

The role R is functional by (32), which means that an object in a model can
have at most one R-successor. This allows us to use the same function symbol
f in skolemizing ∃R.C and ∃R.D, yielding closures (32)–(34) shown on the
right-hand side.

The main benefit of such clausification is that resolving ¬A(x)∨R(x, f(x)) and
¬B(x) ∨ R(x, f(x)) with (32) produces a closure with a literal f(x) ≈ f(x),
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which is a tautology. Without reusing function symbols, clausifying (33) pro-
duces ¬B(x) ∨ R(x, g(x)), which, resolved with ¬A(x) ∨R(x, f(x)) and (32),
produces a closure containing a literal f(x) ≈ g(x). Such a closure is not a
tautology and it participates in further inferences.

Definition 25 Clausification with optimized skolemization is obtained from
Definition 6 such that, if ⊤ ⊑ ≤ 1 R ∈ KB, then the existential quantifiers in
∃R.C and ≥ n R.C are skolemized using a function symbol fR unique for R.

Proposition 26 KB and Ξ(KB) are equisatisfiable, even if clausification with
optimized skolemization is used.

8 Related Work

Joyner has established the basic principles for deriving resolution-based de-
cision procedures [20]. He observed that, if clauses derivable in a saturation
by a resolution refinement have a bounded term depth and clause length,
then saturation necessarily terminates. By choosing appropriate refinements,
he presented decision procedures for the Ackermann class, the Monadic class,
and the Maslov class. Joyner’s approach was applied to numerous other decid-
able classes such as E+ [32], PVD [33], and PVDg

= [34], to name just a few.
An overview of these results is given in [35].

De Nivelle, Hustadt, and Schmidt studied extensively the decidability of de-
scription logics in the resolution framework [29,36,21]. They embed the de-
scription logic ALB into the DL* clausal class, which they decide using the
resolution framework by Bachmair and Ganzinger [10]. The main advantage
of using this framework lies in its effective redundancy elimination methods,
which were shown to be essential for the practical applicability of resolution
calculi. ALB is a very expressive logic: it allows for Boolean role expressions
and inverse roles; however, it does not provide for counting quantifiers.

Ganzinger, Hustadt, Meyer, and Schmidt developed a decision procedure for
the modal logic with a single transitive modality K4 [37]. To deal with tran-
sitivity, the algorithm is based on the ordered chaining calculus [38]. This
calculus consists of inference rules aimed at optimizing theorem proving with
chains of binary roles. Unfortunately, our attempts to decide SHIQ using
ordered chaining proved unsuccessful due to certain negative chaining infer-
ences that produced undesirable equality literals. Therefore, we adopted the
approach for eliminating transitivity presented in Section 4.

Andréka, van Benthem, and Németi introduced the guarded fragment to ex-
plain and generalize the good properties of modal and description logic, such
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as decidability [39]. De Nivelle presented a decision procedure by resolution
using a nonliftable ordering [40]; this approach was later modified to handle
the (loosely) guarded fragment with equality [41] by basing the algorithm on
superposition [42]. Since the basic description logic ALC is actually a syn-
tactic variant of the multi-modal logic Km [43], it can be embedded into the
guarded fragment and decided using an algorithm by Ganzinger and de Niv-
elle [41]. Using the approach by Hustadt and Schmidt, certain extensions of
ALC—such as role transitivity—can be encoded into ALC knowledge bases
[23], so the algorithm by Ganzinger and de Nivelle can decide these extensions
as well. SHIQ is, however, not a fragment of the (loosely) guarded fragment
because of the counting quantifiers: equality is available in the guarded frag-
ment, but each two pairs of free variables of a guarded formula must occur in
a guard atom. In fact, Hodkinson has shown that the guarded fragment has
the finite-model property [44], which does not hold for SHIQ [3], and Grädel
et. al have shown that combining the guarded fragment with counting quanti-
fiers or transitive roles leads to undecidability [45]—thus suggesting that other
mechanisms are necessary for handling the latter logic.

SHIQ can easily be embedded into the two-variable fragment of first-order
logic with counting quantifiers C2. This fragment was shown to be decidable
[45,46], and a decision procedure based on a combination of resolution and inte-
ger programming was presented by Pratt-Hartmann [47]. Deciding satisfiabil-
ity of C2, however, is NExpTime-complete [46], and SHIQ is an ExpTime-
complete logic [6]. Thus, the decision procedure by Pratt-Hartmann is not
worst-case optimal for SHIQ.

The decomposition rule is closely related to structural transformation [26–
28]. Structural transformation is, however, usually applied as a preprocessing
step and not in the theorem proving process. De Nivelle [48] and Riazanov
and Voronkov [49] proposed splitting by propositional symbols, which can split
variable-disjoint subsets of a clause and connect them by a propositional sym-
bol. Hustadt and Schmidt introduced the separation rule to decide fluted
logic [9], which is a generalisation of splitting by propositional symbols. They
show that resolution remains complete if the separation rule is applied a finite
number of times during saturation. In contrast to these related approaches,
our rule decomposes complex terms. Moreover, we demonstrate compatibil-
ity of the decomposition rule with the standard redundancy notion. Finally,
extending basic superposition with decomposition is not trivial, due to the
nonstandard approach to lifting employed by basic superposition.
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9 Conclusion

In this paper, we presented a worst-case optimal decision procedure for rea-
soning in the description logic SHIQ. The algorithm is based on basic su-
perposition and is, to the best of our knowledge, the first decision procedure
based on that calculus. Basic superposition alone decides only the slightly
weaker logic SHIQ−, in which number restrictions are allowed only on roles
that do not have subroles. To obtain a decision procedure for full SHIQ, we
introduced decomposition—a new inference rule that can be used to simplify
the conclusions of some inferences. This is a general inference rule, and it is
not restricted to DL reasoning. Furthermore, it can be combined with any
calculus compatible with the standard notion of redundancy.

The practicability of our algorithms has been confirmed by our implementation
in a DL reasoner KAON2 and experiments, as discussed in [25]. Hence, we
believe this algorithm to be an important step towards obtaining a practical
alternative to tableau calculi, capable of reasoning over DL knowledge bases
with large ABoxes.
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