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Abstract

As applications of description logics (DLs) proliferate, efficient reasoning with large
ABoxes (sets of individuals with descriptions) becomes ever more important. Mo-
tivated by the prospects of reusing optimization techniques of deductive databases,
we developed a novel algorithm for reasoning in description logic, which reduces
a DL knowledge base to a disjunctive datalog program without changing the set
of relevant consequences. This allows to answer queries by applying optimization
techniques, such as join-order optimizations or magic sets. The algorithm supports
the very expressive logic SHIQ(D), so the reduction is quite technically involved.
In this paper we present a simplified algorithm for the basic logic ALC. Whereas
this algorithm is much easier to understand, it is based on the same principles as
the general one.

1 Introduction

In recent years description logics (DLs) have found their application in various
fields of computer science, so several DL reasoners were built and applied to
practical problems. The state-of-the-art systems are based on tableau algo-
rithms [11], and they perform quite well when computing the subsumption
hierarchy, mainly due to sophisticated heuristics [10].

However, new applications, such as metadata management in the Semantic
Web, require efficient query answering over large ABoxes (i.e., sets of ground
facts). Query answering is currently implemented by a reduction to ABox con-
sistency checking, which can then be solved by tableau algorithms. Whereas
this is quite elegant from a theoretical point of view, it does not provide
good performance in practice, mainly due to the following two reasons. First,
tableau-based algorithms treat all individuals separately; that is, they do not
group individuals on common properties. Second, to answer a query, one



usually does not need to consider all ABox information; rather, only a small
subset of the ABox usually suffices to compute the query answer. These defi-
ciencies were already acknowledged, and certain optimization techniques were
developed [9]; however, the performance of query answering is still often not
satisfactory in practice.

Since techniques for reasoning in deductive databases are nowadays ma-
ture, it makes sense to examine if they can be used to improve ABox reasoning
in description logics. To facilitate that, we developed a novel technique for re-
ducing a SHIQ(D) knowledge base to a disjunctive datalog program without
changing the set of entailed ground facts [13,14,12]. This algorithm addresses
the mentioned points in the following way. First, query answering in dis-
junctive datalog can be implemented by manipulating individuals in sets, and
applying each inference rule to all individuals in a set at once, rather than to
each individual separately. This allows to apply the join order optimization,
which uses database statistics to compute the data access path promising the
least cost [1]. Second, the magic sets transformation [4] can be used to iden-
tify the subset of the database relevant to the query; this transformation was
recently generalized to disjunctive programs [6].

SHIQ(D) is a complex logic, with modeling primitives such as number
restrictions and concrete datatypes. This makes the reduction algorithm fairly
complex, mainly because it is based on basic superposition [3,18]—a sophis-
ticated calculus for theorem proving with equality. In this paper, we present
the algorithm scaled down to the basic description logic ALC. This makes
the algorithm much simpler; in particular, it is based on the well-known or-
dered resolution calculus [2]. However, ALC exhibits features characteristic
of most DLs, such as boolean concept constructors, existential and universal
quantification, as well as general concept inclusion axioms, so this simplified
algorithm succinctly demonstrates the important points of the general one.

Our results seem to integrate two fundamentally different logics. Therefore,
in this paper we also answer common questions about the apparent mismatch
in complexity between the two formalisms, or why a logic based on general
first-order semantics and without unique name assumption can be embedded
into a logic based on minimal-model semantics and unique name assumption.

2 Preliminaries

In this section we introduce the formalisms used in the paper.

2.1 Description Logics

Let NR be a set of roles, and NC a set of concept names. The set of ALC
concepts is the minimal set satisfying the following conditions: (i) ⊤ and ⊥
are ALC concepts; (ii) each A ∈ NC is an ALC concept; and (iii) ¬C, C ⊓D,
C⊔D, ∀R.C, and ∃R.C are ALC concepts, for C and D ALC concepts and R



Table 1
Semantics of ALC by Mapping to FOL

Translating Concepts to FOL

πy(⊤, X) = ⊤ πy(⊥, X) = ⊥

πy(A, X) = A(X) πy(¬C, X) = ¬πy(C, X)

πy(C ⊓ D, X) = πy(C, X) ∧ πy(D, X) πy(C ⊔ D, X) = πy(C, X) ∨ πy(D, X)

πy(∀R.C, X) = ∀y : R(X, y) → πx(C, y) πy(∃R.C, X) = ∃y : R(X, y) ∧ πx(C, y)

Translating Axioms to FOL

π(C(a)) = πy(C, a) π(R(a, b)) = R(a, b)

π(C ⊑ D) = ∀x : πy(C, x) → πy(D, x) π(KB) =
V

α∈KBT ∪KBA
π(α)

X is a meta variable and is substituted by the actual variable.

πx is obtained from πy by simultaneously substituting in the

definition x(i) for all y(i), respectively, and πy for πx.

a role. Concept names are also called atomic concepts, and other concepts are
also called complex concept. A literal concept is a possibly negated concept
name. A TBox KBT is a finite set of concept inclusion axioms of the form
C ⊑ D. An ABox KBA is a finite set of axioms C(a) and R(a, b), for C anALC
concept and R a role. An ALC knowledge base KB is a tuple (KBT ,KBA).

The semantics of KB is given by translating it into first-order logic by
the operator π from Table 1. The main inference problem is checking KB
satisfiability—that is, determining if a first-order model of π(KB) exists. An
individual a is an instance of a concept C w.r.t. KB if π(KB) |= πy(C, a),
which is the case if and only if KB ∪ {¬C(a)} is unsatisfiable.

We measure the size of concepts by their length. An ALC concept is
in negation-normal form (NNF) if negations occur only in front of concepts
names. An ABox is extensionally reduced if all ABox axioms contain only
literal concepts. If KB is not extensionally reduced, it can be easily trans-
formed into an extensionally reduced knowledge base: for each axiom C(a)
where C is not a literal concept, one should introduce a new atomic concept
AC , add the axiom AC ⊑ C to the TBox, and replace C(a) with AC(a). Such
a transformation is obviously polynomial, so without losing generality it is
safe to assume that a knowledge base is extensionally reduced.

We adapt the notions of positions to DL formulae. A position p is a finite
sequence of integers; the empty position is denoted with ǫ. If a position p1 is
a proper prefix of a position p2, then p1 is above p2, and p2 is below p1. For
a concept α, the subterm at a position p, written α|p, is defined as follows:
α|ǫ = α; (¬D)|1p = D|p; (D1 ◦D2)|ip = Di|p for ◦ ∈ {⊓,⊔} and i ∈ {1, 2}; and
α|1 = R and α|2p = D|p for α = 3R.D and 3 ∈ {∃,∀}. A replacement of a
subterm of α at position p with a term β is defined in the standard way and
is denoted as α[β]p.



2.2 Disjunctive Datalog

A datalog term is a constant or a variable, and a datalog atom has the form
A(t1, . . . , tn), where ti are datalog terms. A disjunctive datalog program P is
a finite set of rules of the form A1 ∨ ... ∨ An ← B1, ..., Bm where Ai and Bj

are datalog atoms. Each rule is required to be safe; that is, each variable
occurring in the rule must occur in at least one body atom. A fact is a rule
with m = 0. For the semantics, we take a rule to be equivalent to a clause
A1 ∨ ... ∨ An ∨ ¬B1 ∨ ... ∨ ¬Bm. We consider only Herbrand models, and
say that a model M of P is minimal if there is no model M ′ of P such that
M ′ ( M . A ground literal A is a cautious answer of P (written P |=c A) if
A is true in all minimal models of P . First-order entailment coincides with
cautious entailment for positive ground atoms.

2.3 Ordered Resolution

We assume the reader to be familiar with standard definitions of first-order
logic and clausal theorem proving. Ordered resolution [2] is one of the most
widely used calculi for theorem proving in first-order logic. It is parameterized
with an admissible ordering ≻ on literals (for details about the condition of
admissibility please refer to [2]), and by a selection function S which assigns
to each clause C a possibly empty subset of negative literals of C. With R
we denote the calculus consisting of the following inference rules:

Positive factoring:
C ∨ A ∨B

Cσ ∨ Aσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ∨Bσ,
and no literal is selected in Cσ ∨ Aσ ∨Bσ.

Ordered resolution:
C ∨ A D ∨ ¬B

Cσ ∨Dσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect to Cσ,
and no literal is selected in Cσ∨Aσ, (iii) ¬Bσ is either selected in Dσ∨¬Bσ,
or it is maximal with respect to Dσ and no literal is selected in Dσ ∨ ¬Bσ.

The clauses C∨A∨B and D∨¬B are the main premises, C∨A is the side
premise, and Cσ ∨ Aσ and Cσ ∨Dσ are the conclusions. Ordered resolution
is sound and complete: if a set of clauses N is saturated up to redundancy by
R, then N is satisfiable if and only if it does not contain the empty clause.

3 The Main Difficulty in Reducing DLs to Datalog

For an ALC knowledge base KB , our goal is to derive a disjunctive datalog
program DD(KB) such that KB |= α if and only if DD(KB) |= α, for α of



the form A(a) or R(a, b). In other words, KB and DD(KB) should entail the
same set of positive ground facts. We may thus use DD(KB) instead of KB
for query answering, and in doing so we may apply all optimization techniques
known from the field of deductive databases.

As shown by the definition of ALC and by Borgida [5], there is a close
correspondence between description logics and first-order logic. Consider a
knowledge base KB = {A ⊑ ∃R.A, ∃R.∃R.A ⊑ B, A(a)}. A näıve attempt
to reduce KB into disjunctive datalog is to compute a first-order formula
π(KB), skolemize it, translate it into conjunctive normal form, and rewrite the
obtained set of clauses as rules, yielding the following logic program LP(KB):

R(x, f(x))← A(x)(1)

A(f(x))← A(x)(2)

B(x)← R(x, y), R(y, z), A(z)(3)

A(a)(4)

Clearly, KB and LP(KB) entail the same set of ground facts. However,
LP(KB) contains a function symbol in a recursive rule (2). This raises the issue
of how to answer queries in LP(KB). Namely, well-known query evaluation
techniques, such as bottom-up saturation, will not terminate on LP(KB): we
shall derive A(f(a)), R(a, f(a)), A(f(f(a))), R(f(a), f(f(a))), B(a), and so
on. Note that we need all previously derived facts to derive B(a) from LP(KB),
and that we do not know when all relevant ground facts have been derived.

To eliminate potential problems with termination, our goal is to derive a
true disjunctive datalog program DD(KB)—that is, a program without func-
tion symbols. For such a program, queries can be evaluated using any stan-
dard technique; furthermore, all known optimization strategies can be applied.
Hence, the main problem that we address is how to eliminate function symbols
from LP(KB).

To obtain the desired reduction, we start off with a slightly simpler task of
deriving a program DD(KB) that is satisfiable if and only if KB is satisfiable.
This we base on the following simple idea. Let us assume that unsatisfiability
of KB can be demonstrated by a refutation in some sound and complete
calculus C. If it is possible to simulate inferences of C on KB using a datalog
program DD(KB), a refutation in KB by C can be reduced to a refutation
in DD(KB). Conversely, if DD(KB) is unsatisfiable, there is a refutation in
DD(KB). If it is possible to simulate inferences in DD(KB) by the calculus C
on KB , then a refutation in DD(KB) can be reduced to a refutation in KB .

To obtain a sound, complete, and terminating algorithm, we must select
an appropriate calculus C, capable of effectively deciding satisfiability of KB .
Disjunctive datalog is strongly related to clausal first-order logic, so simulating
inferences is easier if C is a clausal refutation calculus. Hence, to obtain a
reduction algorithm, we first derive a decision procedure for ALC based on
the ordered resolution calculus R. In particular, in Section 4.1 we show how



to translate KB into an equisatisfiable set of clauses Ξ(KB), and in Section
4.2 we show that exhaustive application of the inference rules of R on Ξ(KB)
eventually terminates. Since R is sound and complete, R decides satisfiability
of Ξ(KB), and therefore of KB as well.

Based on such a procedure, in Section 5 we derive the desired reduction of
KB to a disjunctive datalog program. It turns out that, for ALC, simulating
inferences ofR in disjunctive datalog is quite straightforward. After presenting
several simple examples in Section 6, in Section 7 we discuss some interesting
aspects of our algorithms.

4 Deciding Satisfiability of KB by Resolution

We now present an algorithm for deciding satisfiability of KB by ordered reso-
lution. In the following sections, with Cls we denote the standard clausification
operator: for a first-order formula ϕ, Cls(ϕ) is the set of clauses obtained by
solemizing ϕ and translating it into conjunctive normal form.

4.1 Translating KB into Clauses

The first step in deciding satisfiability of an ALC knowledge base KB by the
ordered resolution calculus R is to transform KB into an equisatisfiable set
of clauses Ξ(KB). A straightforward way to do so is to apply the operator
Cls; however, such an algorithm has two important drawbacks. First, the size
of Cls(π(KB)) could be exponential in the size of π(KB), due to nesting of ⊓
and ⊔ connectives. Second, since KB is an ALC knowledge base, the formula
π(KB) is of a particular syntactic structure, which we exploit in the decision
procedure. Therefore, we apply the structural transformation, introduced in
[19]. Next, we present an alternative, but equivalent definition.

Definition 4.1 Let C be an ALC concept in negation-normal form. A po-
sition p 6= ǫ in C is eligible for replacement if C|p is of the form

⊔

Li,
d

Li,
∀R.L, or ∃R.L, where L(i) are all literal concepts. The definitorial form of C,
written Def(C), is defined recursively as follows:

Def(C) =







{C} if C is a literal concept

{¬Q ⊔ C|p} ∪ Def(C[Q]p) if p is eligible for replacement in C

For example, Def(∃R.(∀S.¬A)) = {∃R.Q, ¬Q ⊔ ∀S.¬A}. Note that the
concept ¬Q ⊔ ∀S.¬A can be interpreted as Q ⊑ ∀S.¬A, which defines Q as
a new name for ∀S.¬A. Furthermore, as shown by the following lemma, this
transformation does not affect satisfiability.

Lemma 4.2 For a concept C in negation-normal form, the axiom ⊤ ⊑ C is
satisfiable if and only if the set of axioms {⊤ ⊑ Di |Di ∈ Def(C)} is satisfiable.



Table 2
Types of ALC-clauses

1 P(x) ∨R(x, f(x))

2 P1(x) ∨P2(f(x))

3 P1(x) ∨ ¬R(x, y) ∨P2(y)

4 P(a)

5 (¬)R(a, b)

Proof. We apply induction on the number of recursive invocations of Def.
The induction base is trivial, so we consider the induction step.

(⇒) Let I be a model satisfying ⊤ ⊑ C, and let I ′ be an extension of I

such that QI′ = (C|p)
I . Obviously, I ′ satisfies ⊤ ⊑ C[Q]p and ⊤ ⊑ ¬Q ⊔ C|p.

(⇐) Observe that in each model I of ⊤ ⊑ ¬Q⊔C|p, we have QI ⊆ (C|p)
I .

By induction on the structure of D = C[Q]p, it is easy to show that, for each
position q in D, (D|q)

I ⊆ (C|q)
I . Since △I ⊆ (D|q)

I for each q, I is a model
of ⊤ ⊑ C. 2

The set of clauses Ξ(KB), encoding an ALC knowledge base KB in first-
order logic, is defined as follows:

Definition 4.3 The operator Cls is extended to ALC concepts as follows:

Cls(C) =
⋃

D∈Def(NNF(C))

Cls(∀x : πy(D, x))

For an extensionally reduced ALC knowledge base KB , Ξ(KB) is the smallest
set of clauses such that (i) Cls(π(α)) ⊆ Ξ(KB) for each ABox axiom α in
KB ; and (ii) Cls(¬C ⊔ D) ⊆ Ξ(KB) for each TBox axiom C ⊑ D in KB .
If KB is not extensionally reduced, then Ξ(KB) = Ξ(KB ′), where KB ′ is an
extensionally reduced knowledge base obtained from KB as shown in Section
2.1.

We define ALC-clauses to be clauses of the form from Table 2. For a term
t, P(t) denotes a possibly empty disjunction (¬)P1(t) ∨ . . . ∨ (¬)Pn(t), and
P(f(x)) denotes a possibly empty disjunction P1(f1(x)) ∨ . . . ∨ Pm(fm(x)).
Note that this allows each Pi(fi(x)) to contain positive and negative literals.

We now show that clausification does not affect the semantics of a knowl-
edge base, and that it produces only ALC clauses:

Lemma 4.4 Let KB be an ALC knowledge base. Then, ( i) KB is satisfi-
able if and only if Ξ(KB) is satisfiable; ( ii) Ξ(KB) can be computed in time
polynomial in |KB |; and ( iii) each clause in Ξ(KB) is an ALC clause.

Proof. Equisatisfiability of KB and Ξ(KB) is an easy consequence of Lemma
4.2. Furthermore, the number of recursive invocations of Def, and the number



of new concepts Q are linear in the number of subconcepts of C. Hence,
|Def(C)| is linear in |C|, so |Ξ(KB)| is polynomial in |KB |. Finally, observe
that Def(C) can contain only concepts of the form D or ¬Q⊔D, where D is of
the form

⊔

Li,
d

Li, ∀R.L, or ∃R.L, and all L(i) are literal concepts. Hence,
for D = ∃R.L, Cls(D) contains clauses of type 1 and 2; for D = ∀R.L a clause
of type 3; and for D =

⊔

Li or D =
d

Li clauses of type 2. Clauses of types
4 and 5 are obtained by clausifying ABox axioms. 2

4.2 Deciding Satisfiability of Ξ(KB) by R

Since R is a sound and complete calculus, we can use it to check satisfiability
of Ξ(KB). To obtain a decision procedure, we just need to ensure that each
saturation of Ξ(KB) by R terminates. The basic principle to achieve this has
been outlined by Joyner [16]: we simply ensure that the number of clauses
that can be derived in a saturation is bounded.

There are two main reasons why a calculus might derive an infinite number
of clauses in a saturation. First, we might keep deriving clauses with deeper
and deeper terms. Consider N1 = {C(a), ¬C(x) ∨ C(f(x))}. If we select
¬C(x) in the second clause and apply resolution, we shall derive C(f(a)),
C(f(f(a))), and so forth. Second, we might keep deriving clauses with more
and more variables. Consider N2 = {¬R(x, y) ∨ ¬R(y, z) ∨ R(x, z), C(x) ∨
R(x, y)∨D(y), E(x)∨R(x, y)∨ F (y)}. If we select ¬R(x, y) and ¬R(y, z) in
the first clause, by resolution we obtain C(x)∨D(y)∨E(y)∨ F (z)∨R(x, z),
which contains more variables than the side premises involved in the inference;
further inferences will additionally increase the number of variables.

By choosing these parameters appropriately, it is possible to restrict the
resolution inferences, allowing us to establish a bound on the term depth and
on the number of variables. Consider again the set of clauses N1: instead of
selecting ¬C(x), if we ensure that C(f(x)) ≻ ¬C(x), then the second clause
can participate in an inference only on literal C(f(x)). Furthermore, C(f(x))
and C(a) do not unify, so no inference of R is applicable to N1. Hence, N1 is
saturated, and, since it does not contain the empty clause, it is satisfiable. In
the following definition we choose the parameters for R that achieve such an
effect on ALC-clauses.

Definition 4.5 Let RDL denote the calculus R parameterized as follows:

• In the literal ordering, R(x, f(x)) ≻ ¬C(x) and D(f(x)) ≻ ¬C(x), for all
function symbols f , and predicates R, C, and D.

• The selection function selects in each clause every negative binary literal.

We now prove the following central lemma:

Lemma 4.6 Each RDL inference, when applied to ALC-clauses, produces an
ALC-clause.



Table 3
Possible Inferences by RDL on ALC-clauses

P1(x) ∨P2(f(x)) ∨ ¬A(g(x)) A(x) ∨P3(x)

P1(x) ∨P2(f(x)) ∨P3(g(x))
(2+2=2)

P1(x) ∨ ¬A(x) A(x) ∨P2(x)

P1(x) ∨P2(x)
(2+2=2)

P1(x) ∨P2(f(x)) ∨ ¬A(g(x)) A(g(x)) ∨P3(h(x)) ∨P4(x)

P1(x) ∨P2(f(x)) ∨P3(h(x)) ∨P4(x)
(2+2=2)

P1(x) ∨R(x, f(x)) P2(x) ∨ ¬R(x, y) ∨P3(y)

P1(x) ∨P2(x) ∨P3(f(x))
(1+3=2)

P1(a) ∨ ¬A(b) A(x) ∨P2(x)

P1(a) ∨P2(b)
(4+2=4)

P1(a) ∨ ¬A(b) A(b) ∨P2(c)

P1(a) ∨P2(c)
(4+4=4)

R(a, b) P1(x) ∨ ¬R(x, y) ∨P2(y)

P1(a) ∨P2(b)
(5+3=4)

R(a, b) ¬R(a, b)

2

(5+5=2)

Proof. The lemma can easily be proved by considering all possibleRDL infer-
ences on all types of ALC-clauses, which are summarized in Table 3. For the
sake of brevity, we omit inferences in which literals participating in inferences
are complemented. The notation (n + m = k) next to each inference specifies
that the inference premises are of types n and m, and the conclusion is of type
k. Observe that, due to the requirement on the literal ordering ≻, a literal of
the form (¬)A(x) occurring in a clause C can participate in an inference only
if C does not contain a literal of the form (¬)B(f(x)) or R(x, f(x)). Further-
more, a ground literal A(a) does not unify with a literal A(f(x)), and R(a, b)
does not unify with R(x, f(x)). Hence, ground clauses can participate only in
inferences with clauses not containing terms of the form f(x). 2

We now show that, for a finite knowledge base KB , the number of ALC-
clauses is finite. In fact, this bound can be used to estimate the complexity
of the algorithm.

Lemma 4.7 For an ALC knowledge base KB, the longest ALC-clause over
the signature of Ξ(KB) is polynomial in |KB |, and the number of such clauses
different up to variable renaming is exponential in |KB |.

Proof. Let c be the number of unary predicates, r the number of binary
predicates, f the number of unary function symbols, and i the number of
constants in the signature of Ξ(KB). Then, c is linear in |KB |, since each
concept introduced in Def(C) corresponds to one nonliteral subconcept of C.



Similarly, f is linear in |KB |, since each function symbol is introduced by
skolemizing one concept ∃R.C. Finally, i is trivially linear in |KB |.

Consider now the the maximal ALC-clause Cm. It may contain at most
t = 2+ i+f terms: a term can be the variable x, the variable y, an individual,
or of the form f(x). Hence, Cm contains at most ℓ = 2ct + 2rt2 literals (the
factor 2 takes into account that each literal can be either positive or negative),
which is polynomial in |KB |. Each ALC-clause is a subset of Cm, so there are
2ℓ such clauses; that is, the number of clauses is exponential in |KB |. 2

We now state the main result of this subsection:

Theorem 4.8 For an ALC knowledge base KB, saturating Ξ(KB) by RDL

decides satisfiability of KB and runs in time exponential in |KB |.

Proof. By Lemma 4.7, the number of clauses derivable byRDL from Ξ(KB) is
exponential in |KB |. Each inference step can be performed in time polynomial
in the size of clauses. Hence, the saturation terminates after performing at
most an exponential number of steps. Since RDL is sound and complete, it
decides satisfiability of Ξ(KB), and by Lemma 4.4 of KB as well, in time
exponential in |KB |. 2

5 Translating ALC to Disjunctive Datalog

Given a decision procedure for checking satisfiability of an ALC knowledge
base KB , it is now easy to obtain the desired reduction to disjunctive datalog.
From Table 3 we see that (i) a ground clause cannot participate in an inference
with a nonground clause containing function symbols, and (ii) as soon as one
premise in an inference by RDL is ground, the conclusion is ground as well.
Hence, we may perform all inferences among nonground clauses first, after
which we may delete all nonground clauses containing function symbols and
rewrite clauses as rules. A minor problem arises if thus obtained rules contain
unsafe variables; we deal with them by adding a special literal with a predicate
HU , which explicitly enumerates the Herbrand universe.

Definition 5.1 Let KB be an ALC knowledge base. Then, Γ(KBT ) is the
set of clauses obtained by saturating Ξ(KBT ) by RDL, and then deleting
all clauses containing function symbols. Furthermore, the operator λ maps
clauses to clauses as follows:

λ(C) = C ∪ {¬HU (x) | for each unsafe variable x in C }

For a set of clauses N , λ(N) is the set of clauses obtained by applying λ

to each element of N . The function-free version of KB is defined as follows:

FF(KB) = λ(Γ(KBT )) ∪ Ξ(KBA) ∪ {HU (a) | for each individual a }



Finally, a disjunctive datalog program DD(KB) is the set of rules obtained
by moving in each clause from FF(KB) all positive literals into the rule head,
and all negative literals into the rule body.

We now state the properties of DD(KB):

Theorem 5.2 For an ALC knowledge base KB, the following claims hold:

(i) KB is unsatisfiable if and only if DD(KB) is unsatisfiable.

(ii) KB |= α if and only if DD(KB) |=c α, where α is of the form A(a) or
R(a, b), and A is an atomic concept.

(iii) KB |= C(a) for a nonliteral concept C if and only if, for Q a new atomic
concept, DD(KB ∪ {C ⊑ Q}) |=c Q(a).

(iv) The number of literals in each rule in DD(KB) is at most polynomial, the
number of rules in DD(KB) is at most exponential, and DD(KB) can be
computed in time exponential in |KB |.

Proof. (Claim i) Table 3 shows that each inference with at least one ground
premise always produces a ground conclusion. Hence, in saturating Ξ(KB)
by RDL, all inferences among nonground clauses can be performed first. Fur-
thermore, Table 3 also shows that ground clauses can participate in inferences
only with clauses not containing function symbols. Hence, after performing
all inferences among nonground clauses of Ξ(KB), one may delete all clauses
containing terms of the form f(x).

By Definition 4.3, Ξ(KBT ) is exactly the set of nonground clauses of
Ξ(KB), so Γ(KBT ) is exactly the set of clauses obtained by saturating the non-
ground part of Ξ(KB), and deleting the clauses containing function symbols.
Furthermore, it is easy to see that Γ = Γ(KBT )∪Ξ(KBA) is satisfiable if and
only if FF(KB) is satisfiable. Namely, both Γ and FF(KB) are function-free
sets of clauses, whose sets of ground instances differ only on clauses containing
unsafe variables. However, for a clause C ∈ Γ containing an unsafe variable x

and a ground substitution τ = {x 7→ a}, FF(KB) contains clauses C∨¬HU (x)
and HU (a), which together imply Cτ . Hence, the ground instances of FF(KB)
imply all ground instances of Γ, so, if FF(KB) is satisfiable, Γ is satisfiable
as well. Furthermore, since HU is a new predicate not occurring in Γ, each
model of Γ can easily be extended to a model of FF(KB). Hence, we conclude
that Γ and FF(KB) are equisatisfiable.

Finally, DD(KB) is a positive datalog program whose rules are syntactic
variants of the clauses from FF(KB). Hence, DD(KB) is satisfiable if and only
if FF(KB) is satisfiable.

(Claim ii) Observe that KB |= α if and only if KB ∪ {¬α} is unsatisfiable.
The latter is the case if and only if DD(KB ∪ {← α}) = DD(KB) ∪ {← α} is
unsatisfiable, which is the case if and only if DD(KB) |=c α.

(Claim iii) Follows in the same manner as Claim ii.

(Claim iv) Follows immediately from Lemma 4.7. 2



6 Examples

We now present several rather simple examples, which point out important
properties of the reduction algorithm.

Readers familiar with more common DL reasoning algorithms might won-
der how are role successors represented in a datalog program. Consider the
knowledge base KB1 = {C ⊑ ∃R.D}; the corresponding set of clauses is
Ξ(KB1) = {¬C(x) ∨ R(x, f(x)), ¬C(x) ∨D(f(x))}. Now Ξ(KB1) is already
saturated by RDL, so after removing all clauses containing function symbols,
we get DD(KB1) = ∅. This may seem quite confusing: KB1 implies the ex-
istence of at least one R-successor for each member of C, whereas DD(KB1)
does not reflect that. However, Theorem 5.2 is not invalidated. Namely, the
individuals introduced by the existential quantifier in KB1 are unnamed, so
they cannot be used in queries. Hence, for an arbitrary extensionally reduced
ABox KBA, KB1 ∪ KBA does not imply any new facts of the form A(a) or
R(a, b). Also, note that the models of DD(KB1) are completely unrelated to
the models of KB1. Intuitively, this is so because the reduction algorithm is
based on a proof-theoretic correspondence between refutations in Ξ(KB) and
DD(KB). The models of KB and DD(KB) coincide only on positive ground
facts, whereas for unnamed individuals they are completely unrelated.

In order to be able to draw additional consequences from KB1, we must
extend it with additional axioms. For example, KB2 = KB1∪{D ⊑ ⊥} yields
Ξ(KB2) = Ξ(KB1)∪{¬D(x)}. Saturation of Ξ(KB2) produces one additional
clause ¬C(x), so we get DD(KB2) = {← C(x),← D(x)}. This shows that
the reduction is not modular: for arbitrary knowledge bases KB1 and KB2,
DD(KB1) ∪ DD(KB2) is not necessarily equal to DD(KB1 ∪KB2).

The key step in the reduction is the saturation of Ξ(KBT ) by RDL. It
computes all relevant nonground consequences of Ξ(KBT ), ensuring that sub-
sequent removal of clauses containing function symbols does not change the set
of ground consequences. One may think ofRDL as producing shortcut clauses,
which derive facts about objects without explicitly expanding the successors
of each object. Consider KB3 = {A ⊑ ∃R.B, B ⊑ C, ∃R.C ⊑ D}, producing
the following clauses in Ξ(KB3):

¬A(x) ∨R(x, f(x))(5)

¬A(x) ∨B(f(x))(6)

¬B(x) ∨ C(x)(7)

D(x) ∨ ¬R(x, y) ∨ ¬C(y)(8)

Assuming a literal ordering such that D(x) ≻ C(x) ≻ B(x) ≻ A(x), by
saturating Ξ(KB3) we obtain the following new clauses (the notation R(xx; yy)
means that a clause is derived by resolving clauses xx and yy):



¬A(x) ∨D(x) ∨ ¬C(f(x)) R(5;8)(9)

¬A(x) ∨D(x) ∨ ¬B(f(x)) R(9;7)(10)

¬A(x) ∨D(x) R(10;6)(11)

Eliminating clauses with function symbols yields DD(KB3) as follows:

C(x)← B(x)(12)

D(x)← R(x, y), C(y)(13)

D(x)← A(x)(14)

It is instructive to consider the role of each rule in DD(KB3). Whereas the
axiom B ⊑ C in KB3 is applicable to all individuals in a model, the rule (12)
is applicable only to named individuals. The relationship between ∃R.C ⊑ D

and (13) is analogous. However, (12) and (13) derive consequences only about
named individuals, so DD(KB3) contains the rule (14), which is produced in
the saturation of Ξ(KBT ) by RDL. This rule can be thought of as a shortcut:
instead of introducing for each x in A an R-successor y in B, propagating y

to C, and then concluding that x is in D, (14) derives that all members of A

are members of D in one step, thus ensuring that DD(KB3) and KB3 entail
the same set of ground facts.

Finally, we take KB4 to be the knowledge base introduced in Section 3.
The concept ∃R.∃R.A contains a nonatomic subconcept ∃R.A, so we apply
structural transformation, and replace ∃R.A with a new atomic concept Q.
This yields the following set of clauses Ξ(KB4):

¬A(x) ∨R(x, f(x))(15)

¬A(x) ∨ A(f(x))(16)

Q(x) ∨ ¬R(x, y) ∨ ¬A(y)(17)

B(x) ∨ ¬R(x, y) ∨ ¬Q(y)(18)

Assuming a literal ordering where Q(x) ≻ B(x) ≻ A(x), a saturation of
Ξ(KB4) by RDL produces the following new clauses:

¬A(x) ∨Q(x) ∨ ¬A(f(x)) R(15;17)(19)

¬A(x) ∨Q(x) R(19;16)(20)

¬A(x) ∨B(x) ∨ ¬Q(f(x)) R(15;18)(21)

¬A(x) ∨B(x) ∨ ¬A(f(x)) R(21;20)(22)

¬A(x) ∨B(x) R(22;16)(23)



Eliminating clauses with function symbols yields DD(KB) as follows:

Q(x)← R(x, y), A(y)(24)

B(x)← R(x, y), Q(y)(25)

Q(x)← A(x)(26)

B(x)← A(x)(27)

The intuitive meaning behind these rules is somewhat obscured because
of the predicate Q. However, we are not interested in ground consequences
related to Q, and, since Q is a new predicate, it cannot occur in any ABox
one might consider in conjunction with KB4. Hence, it is possible to apply
rule unfolding to Q, yielding the following datalog program:

B(x)← A(x)(28)

B(x)← R(x, y), A(y)(29)

B(x)← R(x, y), R(y, z), A(z)(30)

Now the intuition behind these rules can be explained as follows. The rule
(28) takes into account that each named individual, which is in A, has a chain
of at least two unnamed R-successors. The rule (29) takes into account that
a named individual may be explicitly linked through R to another individual
in A, which then has at least one unnamed R-successor. Finally, the rule (30)
takes into account that a named individual may be explicitly linked through
an R-chain of length two to an individual which is in A. Only R-chains of
length two are considered, because KB4 contains the concept ∃R.∃R.A, which
effectively checks for an R-chain of length two.

7 Discussion

In this subsection we discuss some aspects of our algorithms that may seem
surprising at the first glance.

7.1 Independence of the Reduction from the Query

Theorem 5.2 shows that the program DD(KB) is independent of the query, as
long as the query is a positive atomic concept or a role. Hence, DD(KB) can
be computed once, and can be used to answer any number of atomic queries.

On the contrary, if the query involves a nonatomic concept C (even if
C is a negated atomic concept), then query answering must be reduced to
entailment of positive ground facts, by introducing a new name Q, and by
adding the axiom C ⊑ Q to the TBox. Obviously, DD(KB ∪ {C ⊑ Q})
depends on the query concept C. Intuitively, a complex concept C used in
the query introduces a kind of terminological knowledge, so the reduction is
not independent from complex queries.



7.2 Complexity

The complexity of cautious query answering in a nonground disjunctive dat-
alog program P is in co-NExpTime

NP[7]. Since the number of rules in |P |
can be exponential in |KB |, one might think that reducing DLs to disjunc-
tive datalog significantly increases the complexity of reasoning. However, we
show that this is not the case. Let P

g
DL be a program obtained by replacing

in DD(KB) all variables with individuals in all possible ways. The number
of variables in a rule from DD(KB) is at most two, so |P g

DL| is exponential
in |KB |. Furthermore, the arity of predicates in DD(KB) is at most two, so
the number of ground atoms in P

g
DL is polynomial in |KB |. Hence, an inter-

pretation IDL for P
g
DL can be guessed in time which is polynomial in |KB |

by choosing a subset of the ground atoms; furthermore, all such interpreta-
tions can be examined in time which is exponential in |KB |. Checking if IDL

is a model of P
g
DL can be performed in time which is exponential in |KB |.

These two steps combined give us the ExpTime complexity for satisfiability
checking, and also for unsatisfiability checking and query answering. To sum-
marize, even though |DD(KB)| is exponential in |KB |, query answering can
be performed in exponential time because (i) the length of rules in DD(KB) is
polynomial in |KB |, (ii) the arity of predicates is bounded, and (iii) checking
minimality of an interpretation is not necessary for positive queries.

7.3 Minimal vs. Arbitrary Models

Disjunctive datalog programs are usually interpreted under minimal model
semantics: P |=c α means that α is true in all minimal models of a program
P , where minimality is defined w.r.t. set inclusion. However, description logics
assume the standard first-order semantics: KB |= α means that α is true in
all models of KB . By minimal models, disjunctive datalog implements a kind
of closed-world semantics; on the contrary, description logics implement open-
world semantics. Because these two semantics are quite different, our result
may seem surprising.

For P a positive datalog program and α a positive ground atom, P |= α

if and only if P |=c α. Namely, if α is true in each model of P , it is true in
each minimal model of P as well, and vice versa. Therefore, for entailment
of positive ground atoms, it is not important whether the semantics of P is
defined w.r.t. minimal or w.r.t. general first-order models.

For α a negative ground atom, the difference between minimal model se-
mantics and first-order semantics is relevant. For example, for α = ¬A(b) and
P = {A(a)}, it is clear that P 6|= α. Namely, ¬A(b) is not explicitly derivable
from the facts in P : M1 = {A(a), A(b)} is a first-order model of P , and α is
false in M1. However, P has exactly one minimal model M2 = {A(a)}, and
¬A(b) is obviously true in M2, so P |=c α.

Subsumption also depends on the type of chosen semantics. For example,
let α = ∀x : [C(x) → D(x)] and P = {C(a), D(a)}. Then, P 6|= α: just



consider a first-order model M1 = {C(a), D(a), C(b)} of P , in which α is false.
However, the only minimal model of P is M2 = {C(a), D(a)}, and α is true
in M2, so P |=c α. The distinction between minimal models and general first-
order models fundamentally changes the computational properties of concept
subsumption: equivalence of general programs under minimal model semantics
is undecidable [20], whereas, under first-order semantics, it is decidable and
can be reduced to satisfiability checking using standard transformations.

To summarize, the difference between first-order and minimal model se-
mantics is not relevant for answering positive queries in positive datalog pro-
grams; however, it is relevant for queries which involve negation or for concept
subsumption. Theorem 5.2 reflects this: it says that all positive ground facts
entailed by KB are contained in each minimal model of DD(KB) and vice
versa, but does not make any other stronger statements.

It would therefore be incorrect to check whether KB |= ¬A(a) by checking
if DD(KB) |=c ¬A(a). To apply our algorithm, we must reduce the problem
to entailment of positive ground facts: for a new concept NotA, KB |= ¬A(a)
if and only if DD(KB ∪ {¬A ⊑ NotA}) |=c NotA(a).

Similarly, it would be incorrect to check whether KB |= C ⊑ D by checking
whether DD(KB) |=c ∀x : [C(x)→ D(x)]. We must again reduce the problem
to entailment of positive ground facts. If C and D are atomic concepts, by
well-known transformations we may show that KB |= C ⊑ D if and only if
DD(KB) ∪ {C(ι)} |=c D(ι), where ι is a new individual not occurring in KB .

7.4 Descriptive vs. Minimal-Model Semantics

Our reduction preserves the so-called descriptive semantics. Namely, Nebel
showed that knowledge bases containing terminological cycles are not definito-
rial [17]: for a fixed partial interpretation of atomic concepts, several interpre-
tations of nonatomic concepts may exist. In such a case, it might be reasonable
to designate a particular interpretation as the intended one, with least and
greatest fixpoint models being the obvious candidates. However, Nebel argues
that it is not clear which interpretation best matches the intuition, because
choosing either of the fixpoint models has its drawbacks. Consequently, most
description logic systems implement the descriptive semantics, which coincides
with the one we presented in Section 2.

By Theorem 5.2, our decision procedure implements exactly the descriptive
semantics. Namely, DD(KB) entails exactly those ground facts which are
derivable using the resolution decision procedure, and the latter implements
the descriptive semantics.

7.5 Unique Name Assumption

The semantics of ALC and SHIQ does not require unique name assumption
(UNA)—that is, that different symbols are interpreted as different objects;
however, the semantics of disjunctive datalog does require it. Therefore, it



may seem surprising that a logic without UNA can be embedded into a logic
which strictly requires it.

To understand why our algorithms are correct, note that UNA can be used
to derive new consequences only if the theory employs equality. ALC provides
neither number restrictions, nor explicit individual equality statements, so it
actually does not require equality reasoning. Given a knowledge base KB , to
enforce UNA we may append an axiom ai 6≈ aj for each pair of different indi-
viduals ai and aj. However, since KB does not contain the equality predicate,
these inequality axioms do not participate in any inference with ALC-clauses,
so they are not needed in the first place. A model-theoretic explanation is
given by the following claim, which holds for any logic without equality: for
each model I, in which distinct constants are interpreted by the same objects,
there is a model I ′ in which all constants are interpreted by distinct objects.
To summarize, in the case of ALC, we simply do not care whether either KB
or DD(KB) employs UNA, as this does not change the entailed set of facts.

The situation changes slightly for logics such as SHIQ, which do require
equality reasoning. Consider KB = {⊤ ⊑ ≤ 1 R, R(a, b), R(a, c)}. Without
UNA, KB is satisfiable, and KB |= b ≈ c. Namely, the first axiom requires R

to be functional, so b and c must be interpreted as the same object. On the
contrary, KB is unsatisfiable with UNA.

A disjunctive datalog program DD(KB), which corresponds to KB , con-
tains the rules (31)–(33). Note that DD(KB) is now a disjunctive datalog
program with equality, which is quite different from the type of equality usu-
ally considered in disjunctive datalog.

y1 ≈ y2 ← R(x, y1), R(x, y2)(31)

R(a, b)(32)

R(a, c)(33)

In [7] the authors consider disjunctive datalog in which negated equality
atoms can occur in rule bodies. Such programs are interpreted under UNA,
so an inequality atom ¬(x ≈ y) actually checks whether x and y are bound to
syntactically different individuals.

In our case, however, we allow equality in the rule heads as well. Thus, we
can actually derive two individuals to be equal. Such inferences are not di-
rectly supported in disjunctive datalog; however, they can be simulated using
the well-known encoding from [8], in which the ≈ is treated as an ordinary
predicate, with required properties axiomatized explicitly. A disjunctive dat-
alog program P with equality is thus transformed into a disjunctive datalog
program P≈ without equality, by stating that ≈ is reflexive, symmetric, and
transitive, and by appending the following replacement rule, instantiated for
each distinct predicate R and position i in it:

R(x1, . . . , yi, . . . , xn)← R(x1, . . . , xi, . . . , xn), xi ≈ yi



Since P≈ is now a disjunctive datalog program without equality, we may
interpret it either with or without UNA, just as we discussed previously. In
each Herbrand model I≈ of P≈, the rules in P≈\P ensure that ≈ is interpreted
as a congruence relation, so we can always transform I≈ to an interpretation
I by replacing each individual a with the equivalence class of ≈ to which a

belongs. It is well known that thus obtained I is a model of P .

7.6 The Size of DD(KB)

By Theorem 5.2, the size of the rules of |DD(KB)| can be exponential in |KB |,
which may seem discouraging in practice. We address this issue in two ways.

On the theoretical side, in [15] we showed that this blowup is only in
the size of the TBox of KB . Hence, a sufficiently large ABox can actually
dominate the size of the rules, which leads to novel data complexity results: in
general, checking satisfiability of KB is NP-complete in |KBA|; furthermore,
we identified a new fragment of SHIQ for which satisfiability checking is even
polynomial in |KBA|.

On the practical side, in [13] we presented an important optimization which
allows removing many rules from |DD(KB)| without jeopardizing complete-
ness. Intuitively, the saturation of Ξ(KB) introduces clauses which are entailed
by other clauses. Such clauses are needed to derive all relevant clauses with-
out function symbols; however, once the saturation has finished, they may be
deleted. We have seen that this drastically reduces the number of rules in
DD(KB) in practice.

8 Conclusion

In this paper, we present a version of our algorithm for reducing a SHIQ(D)
knowledge base to a disjunctive datalog program [13,12,14], scaled down to the
basic description logic ALC. This simplified algorithm concisely conveys our
basic idea, and may help to understand the general algorithms more easily.
The reduction technique allows to perform DL reasoning using techniques
developed for deductive databses, such as join order optimization or the magic
sets transformation. The latter has been shown to dramatically improve the
evaluation of disjunctive datalog programs, as it reduces the number of models
of the disjunctive program.

We have implemented our algorithm in a new DL reasoner KAON2 1 , and
the results of a performance evaluation are available on the project Web site.
For knowledge bases with a relatively small TBox, but a large ABox, we have
observed performance improvements over state-of-the-art tableau reasoners of
one or more orders of magnitude. For TBox reasoning, our system is not
able to solve all problems that tableau provers can; however, it is still able to
classify certain nontrivial ontologies.

1 http://kaon2.semanticweb.org/



For our future work, we see two main challenges. On the practical side,
the performance of the system might be further improved by applying heuris-
tics based on data statistics. On the theoretical side, we shall investigate
possibilities of extending DLs with some kind of nonmonotonic reasoning.
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