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Abstract

Both OWL-DL and function-free Horn rules are decidable frag-
ments of first-order logic with interesting, yet orthogonal expressive
power. A combination of OWL-DL and rules is desirable for the Se-
mantic Web; however, it might easily lead to the undecidability of
interesting reasoning problems. Here, we present a decidable such com-
bination where rules are required to be DL-safe: each variable in the
rule is required to occur in a non-DL-atom in the rule body. We discuss
the expressive power of such a combination and present an algorithm
for query answering in the related logic SHIQ extended with DL-safe
rules, based on a reduction to disjunctive programs.
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1 Introduction

OWL-DL [25] is a W3C recommendation language for ontology represen-
tation in the Semantic Web. It is a syntactic variant of the SHOIN (D)
description logic (DL), offering a high level of expressivity while still being
decidable. For example, SHOIN (D) provides full negation, disjunction,
and a restricted form of universal and existential quantification of variables.
A related logic, SHIQ(D) [17, 16], distinguished from SHOIN (D) mainly
by not supporting nominals (concepts containing exactly the specified set of
individuals), has been successfully implemented in practical reasoning sys-
tems, such as Racer [13] and FaCT [14]. Description logics have been found
useful in numerous applications such as information integration [1, ch. 16],
software engineering [1, ch. 11], and conceptual modeling [1, ch. 10].

Although OWL-DL is very expressive, it is a decidable fragment of first-
order logic, and thus cannot express arbitrary axioms: the only axioms it can
express are of a certain tree structure [12]. In contrast, decidable rule-based
formalism such as function-free Horn rules1 do not share this restriction,
but lack some of the expressive power of OWL-DL: they are restricted to
universal quantification and lack negation in their basic form. To overcome
the limitations of both approaches, OWL-DL was extended with rules in
[15], but this extension is undecidable [15]. Intuitively, the undecidability is
due to the fact that adding rules to OWL-DL causes the loss of any form
of tree model property. In a logic with such a property, every satisfiable
knowledge base has a model of a certain tree-shaped form, so to decide
satisfiability (i.e. the existence of a model of a knowledge base), one can
restrict the search for a model only to such tree-shaped models. For most
DLs, it is possible to ensure termination of such a search. To see how rules
can destroy this property, consider e.g. the following rule, which obviously
has only non-tree models:

hasAunt(x, y)← hasParent(x, z), hasSibling(z, y), Female(y)

It is natural to ask what kind of (non-tree) rules can be added to
OWL-DL while preserving decidability. This follows a classic line of research
in knowledge representation, investigating the trade-off between expressiv-
ity and complexity, and providing formalisms with varying expressive power
and complexity. It not only provides insight into the causes for the undecid-
ability of the full combination, but also enables a more detailed complexity
analysis and, ultimately, the design of “specialized” decision procedures.
Applications that do not require the expressive power of the full combina-
tion can use such procedures, relying upon known upper time and space
bounds required to return a correct answer. Finally, in the last decade, it
turned out that many specialized decision procedures are amenable to op-

1Throughout this paper, we use “rules” and “clauses” synonymously, following [15].
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timizations, thus achieving surprisingly good performance in practice even
for logics with high worst-case complexity [1, ch. 9].

In this paper, we propose a decidable combination of OWL-DL with rules,
where decidability is obtained by restricting the rules to so-called DL-safe
ones. Importantly, we do not restrict the component languages, but only
reduce the interface between them. Generalizing the approaches of other
decidable combinations of rules and description logics [22, 6, 15], in DL-safe
rules, concepts and roles are allowed to occur in both rule bodies and heads
as unary, respectively binary predicates in atoms, but each variable of a rule
is required to occur in some body literal whose predicate is neither a concept
nor a role. We discuss the expressive power and limitations of our approach
by means of an example and show that query answering for such a combined
logic is decidable.

Moreover, we present an algorithm for query answering in the extension
of SHIQ with DL-safe rules which is based on a novel technique for reducing
SHIQ knowledge bases to disjunctive programs [20, 18]. This yields a query
answering algorithm which follows the principle of “graceful degradation”:
the user “pays” only for the features she actually uses. Although a full
evaluation is not yet finished, our initial results are very promising, and we
believe that this algorithm can be efficiently realized in practice.

Please note that we are primarily concerned with the semantic and decid-
ability aspects of hybrid reasoning, and not with the infrastructure aspects,
such as the syntax or the exchange of rules on the Web. For these issues,
we refer the reader to [15] since our approach is fully compatible with the
one proposed there. This paper is an extended version of [23]. Due to space
constraints, this paper does not contain all technical details and proofs. All
technical results have been summarized in [18].

The paper is structured as follows. In Section 2 we give the definitions
necessary to understand this paper. In Section 3 we informally discuss the
difficulties in combining OWL-DL and rules. In Section 4 we introduce the
notion of DL-safe rules and show that query answering for DL-safe rules is
decidable. In Section 5 we present a practical algorithm for reasoning in a
logic obtained by combining SHIQ and DL-safe rules. Before we conclude,
in Section 6 we give an overview of the related work.

2 Preliminaries

2.1 OWL-DL and its Variants

OWL-DL is a syntactic variant of the SHOIN (D) description logic [15].
Hence, although several syntactic forms for OWL-DL exist, in this paper
we use the traditional description logic notation since it is more compact.
For the correspondence between this notation and various existing OWL-DL
syntactic forms, see [15].
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SHOIN (D) supports reasoning with concrete datatypes, such as strings
or integers. Instead of axiomatizing datatypes in logic, SHOIN (D) em-
ploys a restricted version of the approach from [2], where the properties of
concrete datatypes are encapsulated in so-called concrete domains, which
we introduce below. In the rest, with x we denote a vector of variables
x1, . . . , xn and, for a function δ, with δ(x) we denote the application of δ to
each element xi of x.

Definition 1. A concrete domain D is a pair (△D, ΦD), where △D is a set,
called the domain of D, and ΦD is a set of predicate names. Each d ∈ ΦD is
associated with an arity n and an extension dD ⊆ △n

D. A concrete domain
D is admissible if ( i) ΦD is closed under negation, i.e. for each d ∈ ΦD,
there exists d ∈ ΦD with dD = △n

D \ d
D, ( ii) ΦD contains a unary predicate

⊤D interpreted as △D, ( iii) ΦD contains a binary predicate ≈D interpreted
as {(x, y) | x = y}, and ( iv) D-satisfiability of finite conjunctions of the
form

∧n
i=1 di(xi) is decidable. The latter is the case if an assignment δ of

variables to elements of △D exists, such that δ(xi) ∈ dD
i , for each 1 ≤ i ≤ n.

Notice that, since descriptions logics considered in this paper can enforce
equality between concrete terms, we extend the notion of the admissibility
from [2] with Condition (iii). To simplify extending first-order logic with a
concrete domain, we assume the existence of two sorts: c for the concrete
domain, and a for all other objects of the so-called abstract domain. To
distinguish the sorts syntactically, we denote the variables (function sym-
bols) of sort c as xc (f c). We assume that (i) the predicates from ΦD are
contained in a first-order signature Σ, (ii) they have only arguments of sort
c and (iii) for each function symbol f , no argument is of sort c. Under
these assumptions, a first-order interpretation I is called a D-interpretation
if all terms of sort c are interpreted as elements of △D and the extension
of each concrete predicate d is dD. The notions of a model, satisfiability
and entailment carry over to the first-order logic with a concrete domain
in the obvious way. When ambiguities do not arise, we do not stress D in
“D-model”, “D-satisfiability” etc.

We now define the description logic SHOIQ(D)— a generalization of
all different description logics which we consider in this paper.

Definition 2. For NRa
a set of abstract role names, the set of SHOIQ(D)

abstract roles is the set NRa
∪ {R− | R ∈ NRa

}. Let Inv(R) = R− and
Inv(R−) = R for R ∈ NRa

. Analogously, let NRc
be the set of concrete roles.2

A SHOIQ(D) RBox KBR over NRa
and NRc

is a finite set of transitivity
axioms Trans(R) and role inclusion axioms R ⊑ S and T ⊑ U , such that
R ⊑ S ∈ KBR implies Inv(R) ⊑ Inv(S) ∈ KBR, and Trans(R) ∈ KBR

2We do not distinguish between concrete role names and concrete roles, since inverse
concrete roles do not make sense semantically and are therefore not supported.
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implies Trans(Inv(R)) ∈ KBR, for abstract roles R and S, and concrete
roles T and U .

Let ⊑∗ denote the reflexive-transitive closure of ⊑. A role R is transitive
if Trans(S) ∈ KBR for some S with S ⊑∗ R and R ⊑∗ S; R is simple if
there is no role S such that S ⊑∗ R and S is transitive; and R is complex
if it is not simple.

Let NC be a set of atomic concept names, NIa
a set of abstract individu-

als, and NIc
a set of concrete individuals. The set of SHOIQ(D) concepts

is built by the following syntactic rules, where A is a concept name, C(i) a
SHOIQ(D) concept, R an abstract role, S a simple abstract role, T(i) a con-
crete role, n an integer, d a concrete predicate, a(i) an abstract individual,
cc

(i) a concrete individual, and ⊲⊳∈ {≤,≥}:

C → ⊤ | ⊥ | A | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.C | ⊲⊳ n S.C |
{a1, . . . , an} | ⊲⊳ n T | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {cc
1, . . . , c

c
n}

A SHOIQ(D) TBox KBT over NC and KBR is a finite set of concept
inclusion axioms C ⊑ D, where C and D are SHOIQ(D) concepts.

A SHOIQ(D) ABox KBA is a set of concept and role membership
axioms C(a), R(a, b), T (a, bc), and (in)equality axioms a(c) ◦ b(c), where
◦ ∈ {≈, 6≈}, C is a SHOIQ(D) concept, R an abstract role, T a concrete
role, a and b abstract individuals, and ac and bc concrete individuals.

A SHOIQ(D) knowledge base KB is a triple (KBR,KBT ,KBA), where
KBR is an RBox, KBT is a TBox, and KBA is an ABox.

SHOIN (D) is obtained from SHOIQ(D) by allowing only number re-
strictions of the form ⊲⊳ n R.⊤ (usually written as ⊲⊳ n R). SHIQ(D) is ob-
tained from SHOIQ(D) by not allowing nominal concepts {a1, . . . , an} and
datatypes {cc

1, . . . , c
c
n}. SHOIN and SHIQ are obtained from SHOIN (D)

and SHIQ(D) by disallowing concrete domains. Finally, ALCHIQ and
ALCHIQ(D) are obtained from SHIQ and SHIQ(D) by disallowing tran-
sitivity axioms.

Since the algorithms we present in Section 5 are based on resolution, in-
stead of using a direct model-theoretic semantics [17], we present an equiv-
alent semantics by translation into multi-sorted first-order logic.

Definition 3. The semantics of a SHOIQ(D) knowledge base KB is given
by the mapping π in Table 1 which transforms KB into a first-order formula.
Each atomic concept is mapped into a unary predicate, each abstract role
is mapped into a binary predicate with arguments of sort a × a and each
concrete role is mapped into a binary predicate with arguments of sort a× c.
The basic inference problem for SHOIQ(D) is checking KB satisfiability,
i.e. determining whether a first-order model of π(KB) exists.
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Other interesting inference problems, such as concept satisfiability, con-
cept subsumption and instance checking can be reduced to satisfiability by
standard transformations, cf. [1, ch. 2].

2.2 Rules

We use the standard definitions for rules. Let NP be a set of predicate
symbols. A term is either a constant (denoted by a, b, c) or a variable (de-
noted by x, y, z). An atom has the form P (s1, . . . , sn), where P ∈ NP is a
predicate symbol and si are terms. A disjunctive rule has the form

A1 ∨ . . . ∨Am ← B1, . . . , Bn

where Ai and Bj are atoms; the set of atoms Ai is called the rule head,
and the set of all Bj is called the rule body. A non-disjunctive rule is a
rule with m = 1. Unless explicitly stated otherwise, the term “rule” refers
to a non-disjunctive rule. A program P is a finite set of disjunctive rules.
For the semantics, we define the above rule to be equivalent to the clause
A1 ∨ . . . ∨ Am ∨ ¬B1 ∨ . . . ∨ ¬Bn. This yields a monotonic function-free
formalism compatible with the one from [15].

2.3 Basic Superposition

Our algorithms from Section 5 are based on basic superposition — a calculus
optimized for theorem proving with equality [4, 24], which we outline in the
rest of this section.

We assume the standard notions of first-order clauses with equality: all
existential quantifiers have been eliminated using Skolemization; all remain-
ing variables are universally quantified; we only consider the equality predi-
cate, i.e. all non-equational literals A are encoded as A ≈ ⊤ in a multi-sorted
setting; and we treat ≈ as having built-in symmetry. Moreover, we assume
the reader to be familiar with standard resolution [3].

Basic superposition is an optimized version of superposition which pro-
hibits superposition into terms introduced by unification in inference steps
applied so far. Its inferences rules are formalized by distinguishing two parts
of a clause: (i) the skeleton clause C and (ii) the substitution σ representing
the cumulative effects of all unifications. Such a representation of a clause
Cσ is called a closure, and is written as C ·σ. A closure can conveniently be
represented by marking each term in Cσ occurring at a variable position of
C with [ ] if this variable is in the domain of σ. Any position at or beneath
a marked position is called a substitution position.

The calculus requires two parameters. The first is an admissible ordering
on terms ≻, i.e. a reduction ordering total on ground terms. If ≻ is total
on non-ground terms (as it is the case in this paper), it can be extended to
literals by associating, with each literal L = s ◦ t, ◦ ∈ {≈, 6≈}, a complexity
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Table 1: Translation of SHOIQ(D) into FOL

Mapping Concepts to FOL
πy(⊤, X)=⊤ πy(⊥, X)=⊥
πy(A, X)=A(X) πy(¬C, X)=¬πy(C, X)

πy(C ⊓ D, X)=πy(C, X) ∧ πy(D, X) πy(C ⊔ D, X)=πy(C, X) ∨ πy(D, X)
πy(∀R.C, X)=∀y : R(X, y) → πx(C, y) πy(∃R.C, X)=∃y : R(X, y) ∧ πx(C, y)

πy({a1 . . . , an}, X)=X ≈ a1 ∨ . . . ∨ X ≈ an πy({cc
1, . . . , cc

n}, X)=X ≈D cc
1 ∨ . . . ∨ X ≈D cc

n

πy(d, X1, . . . , Xm)= d(X1, . . . , Xm)
πy(≤ n R.C, X)= ∀y1, . . . , yn+1 :

V
R(X, yi) ∧

V
πx(C, yi) →

W
yi ≈ yj

πy(≥ n R.C, X)= ∃y1, . . . , yn :
V

R(X, yi) ∧
V

πx(C, yi) ∧
V

yi 6≈ yj

πy(∀T1, . . . , Tm.D, X)= ∀yc
1, . . . , yc

m :
V

Ti(X, yc
i) → πx(D, yc

1, . . . , yc
m)

πy(∃T1, . . . , Tm.D, X)= ∃yc
1, . . . , yc

m :
V

Ti(X, yc
i) ∧ πx(D, yc

1, . . . , yc
m)

πy(≤ n T , X)= ∀yc
1, . . . , yc

n+1 :
V

T (X, yc
i) →

W
yc

i ≈D yc
j

πy(≥ n T , X)= ∃yc
1, . . . , yc

n :
V

T (X, yc
i) ∧

V
yc

i 6≈D yc
j

Mapping Axioms and KB to FOL
π(C ⊑ D)= ∀x : πy(C, x) → πy(D, x)
π(R ⊑ S)= ∀x, y : R(x, y) → S(x, y)

π(Trans(R))= ∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)
π(C(a))= πy(C, a)

π(R(a, b))= R(a, b)

π(a(c) ◦ b(c))=a(c) ◦(D) b(c) for ◦ ∈ {≈, 6≈}
π(KB)=

V
R∈NR

∀x, y : R(x, y) ↔ R−(y, x) ∧
V

α∈KBR∪KBT ∪KBA
π(α)

X is a meta variable and is substituted with the actual variable. πx is obtained from πy

by simultaneously substituting all y(i) with x(i) and πy with πx, and vice versa.

Table 2: Inference Rules of the BS Calculus

Positive superposition:

(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨ D ∨ w[t]p ≈ v) · θ

(i) σ = MGU(sρ, wρ|p) and θ = ρσ,
(ii) tθ � sθ and vθ � wθ,
(iii) (s ≈ t) · θ is strictly eligible for superposition,
(iv) (w ≈ v) · θ is strictly eligible for superposition,
(v) sθ ≈ tθ � wθ ≈ vθ,
(vi) w|p is not a variable.

Negative superposition:

(C ∨ s ≈ t) · ρ (D ∨ w 6≈ v) · ρ

(C ∨ D ∨ w[t]p 6≈ v) · θ

(i) σ = MGU(sρ, wρ|p) and θ = ρσ,
(ii) tθ � sθ and vθ � wθ,
(iii) (s ≈ t) · θ is strictly eligible for superposition,
(iv) (w 6≈ v) · θ is eligible for resolution,
(v) w|p is not a variable.

Reflexivity resolution:

(C ∨ s 6≈ t) · ρ

C · θ

(i) σ = MGU(sρ, tρ) and θ = ρσ,
(ii) (s 6≈ t) · θ is eligible for resolution.

Equality factoring:

(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t 6≈ t′ ∨ s′ ≈ t′) · θ

(i) σ = MGU(sρ, s′ρ) and θ = ρσ,
(ii) tθ � sθ and t′θ � s′θ,
(iii) (s ≈ t) · θ is eligible for superposition.

Ordered hyperresolution:

E1 . . . En E

(C1 ∨ . . . ∨ Cn ∨ D) · θ

(i) Ei are of the form (Ci ∨ Ai) · ρ, for 1 ≤ i ≤ n,
(ii) E is of the form (D ∨ ¬B1 ∨ . . . ∨ ¬Bn) · ρ,
(iii) σ is the most general substitution such that

Aiθ = Biθ for 1 ≤ i ≤ n, and θ = ρσ,
(iv) Ai · θ is strictly eligible for superposition,
(v) ¬Bi ·θ are selected, or nothing is selected, i = 1

and ¬B1 · θ is maximal w.r.t. D · θ.
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measure cL = (max(s, t), pL, min(s, t)), where pL is 1 if ◦ is ≈, and 0 other-
wise. Now L1 ≻ L2 iff cL1 ≻ cL2 , where cLi

are compared lexicographically,
with 1 ≻ 0. The second parameter of the calculus is a selection function
which selects an arbitrary set of negative literals.

The basic superposition calculus is a refutation procedure: if a set of
closures N is saturated up to redundancy, then it is unsatisfiable if and only
if it contains the empty closure. The set of closures N is saturated up to
redundancy if all inferences from premises in N are redundant in N . A literal
L ·σ is (strictly) maximal w.r.t. a closure C ·σ if no L′ ∈ C exists, such that
L′σ ≻ Lσ (L′σ � Lσ). A literal L ·σ is (strictly) eligible for superposition in
(C ∨L) ·σ if there are no selected literals in (C ∨L) ·σ and L ·σ is (strictly)
maximal w.r.t. C · σ; L · σ is eligible for resolution in (C ∨ L) · σ if it is
selected in (C ∨L) ·σ or there are no selected literals in (C ∨L) ·σ and L ·σ
is maximal w.r.t. C ·σ. We denote basic superposition with BS and present
its inference rules in Table 2. The ordered hyperresolution rule is a “macro”
inference, combining negative superposition and reflexivity resolution; E is
called the main premise, and Ei are called the side premises.

3 Reasons for the Undecidability of OWL-DL with

Rules

In [15], an extension of OWL-DL with rules was presented, by requiring
that NC ∪ NRa

∪ NRc
⊆ NP . In other words, integration of OWL-DL and

rules is achieved by simply allowing concepts and roles to be used in rules
as unary and binary atoms, respectively. Furthermore, it was shown that
such an extension leads to undecidability of the following problem: given
an OWL-DL knowledge base KB and a program P , is there a common
model of π(KB) and P , i.e. is KB consistent with P? As a consequence,
subsumption and query answering w.r.t. knowledge bases and programs are
also undecidable. Investigating this proof and the ones in [22] more closely,
we note that the undecidability is caused by the interaction between some
very basic features of description logics and rules. In this section, we try to
give an intuitive explanation of this result and its consequences.

Consider the simple knowledge base KB from Table 3. It is not too
difficult to see that this knowledge base implies the existence of an infinite
chain of fathers: since Peter must have a father, there is some x1 who is a
Person. In turn, x1 must have some father x2 , who must be a Person, and
so on. An infinite model with such a chain is shown in Figure 1, upper part
(a). Observe that Peter is a grandchild, since he has a father of a father,
who is a person.

Let us now check whether KB |= Grandchild(Jane); this is the case if
and only if KB∪{¬Grandchild(Jane)} is unsatisfiable, i.e. if it does not have
a model. We can check this by trying to build such a model; if we fail, then
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Table 3: Example Knowledge Base

Person(Peter) Peter is a person.
Person ⊑ ∃father .Person Each person has a father who is a person.
∃father .(∃father .Person) ⊑ Grandchild Things having a father of a father who

is a person are grandchildren.

we conclude that KB ∪ {¬Grandchild(Jane)} is unsatisfiable. However, we
have a problem: starting from Peter , a näıve approach to building a model
will expand the chain of Peter’s fathers indefinitely, and will therefore not
terminate.

This very simple example intuitively shows that we have to be careful
if we want to ensure termination of a satisfiability checking algorithm. For
many DLs, termination can be ensured without losing completeness because
we can restrict our attention to certain “nice” models. For numerous DLs, we
can restrict our attention to tree models, i.e. to models where the underlying
relational structure forms a tree [29]. This is so because every satisfiable
knowledge base has such a tree model (to be precise, for some DLs we
consider tree-like abstractions of non-tree models). Even if such a tree model
is infinite, we can wind this infinite tree model into a finite structure. In our
example, since KB does not require each father in the chain to be distinct
(i.e. there is no axiom requiring the role father to be acyclic), the model
in Figure 1, lower part (b) is the result of “winding” an infinite tree into a
“nice”, finite model. Due to their regular structure, these “windings” of tree
models can be easily constructed in an automated way. To understand why
every satisfiable SHIQ knowledge base has a tree model [17], consider the
mapping π in Table 1 more closely (we ignore some technicalities caused by
the transitive roles): in all formulae obtained by transforming the result of π

into prenex normal form, variables are connected by roles only in a tree-like
manner, as shown in the following example:

∃S.(∃R.C ⊓ ∃R.D) ⊑ Q ⇒
∀x : {[∃y : S(x, y) ∧ (∃x : R(y, x) ∧ C(x)) ∧ (∃x : R(y, x) ∧D(x))]→ Q(x)} ⇒
∀x, x1, x2, x3 : {S(x, x1) ∧R(x1, x2) ∧ C(x2) ∧R(x1, x3) ∧D(x3)→ Q(x)}

peter x1 x2

peter x’1

Person Ù Grandchild

Legend:

father

equivalent nodes

a)

b)

Figure 1: Two Similar Models
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Let us contrast these observations with the kind of reasoning required
for function-free Horn rules. In such rules, all variables are universally quan-
tified, i.e. there are no existentially quantified variables in rule consequents.
Hence, we never have to infer the existence of “new” objects. Thus, reason-
ing algorithms must consider only individuals which are explicitly introduced
and are given a name in the knowledge base. Reasoning can be performed
by grounding the rules, i.e. replacing the variables in the rules with all indi-
viduals from the knowledge base in all possible ways. Through grounding,
first-order reasoning becomes propositional, since a ground rule is essentially
equivalent to a propositional clause. For a finite program, the number of
ground rules is also finite, and satisfiability of a set of propositional clauses is
decidable. Hence, the rules, such as the one defining hasAunt(x, y) from the
introduction, are allowed to enforce arbitrary but finite, non-tree models,
and not only “nice” models.

Now let us see what happens if we extend a description logic such as
SHIQ with function-free Horn rules. Then, we combine a logic whose de-
cidability is due to the fact that we can restrict our attention to “nice”
models (but with individuals whose existence may be implied by a knowl-
edge base) with the one whose decidability is due to the fact that we can
restrict our attention to “known” individuals (but with arbitrary relations
between them). Unsurprisingly, this and similar combinations are undecid-
able [22, 15].

4 DL-safe Rules

As a reaction to the observations in Section 3, in this section we first formal-
ize the interface between description logics and rules, and then, to achieve
decidability, we define the notion of DL-safe rules and discuss its benefits
and drawbacks. Finally, we show that query answering in SHOIN with
DL-safe rules is decidable.

4.1 Combining Description Logics and Rules

Definition 4 (DL Rules). Let KB be a SHOIQ(D) knowledge base and let
NP be the set of predicate symbols such that {≈} ∪NC ∪NRa

∪NRc
⊆ NP .

For s and t constants or variables, a DL-atom is an atom of the form A(s),
where A ∈ NC , or of the form R(s, t), where R ∈ NRa

∪ NRc
. A non-DL-

atom is an atom with a predicate from NP \ (NC ∪ NRa
∪ NRc

∪ {≈}). A
(disjunctive) DL rule is a (disjunctive) rule over NP . A DL program is a
set of (disjunctive) DL rules.

The semantics of the combined knowledge base (KB , P ), where KB is a
SHOIQ(D) knowledge base and P is a DL program, is given by translation
into first-order logic as π(KB)∪P , where each rule A1∨...∨An ← B1, ..., Bm

is treated as a clause A1 ∨ ... ∨An ∨ ¬B1 ∨ ... ∨ ¬Bm. The main inferences
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in (KB , P ) are satisfiability checking, i.e. determining whether a first-order
model of π(KB) ∪ P exists, and query answering, i.e. determining whether
π(KB) ∪ P |= α for a ground atom α, written as (KB , P ) |= α.

A few remarks regarding Definition 4 are in order.

Relationship with Existing Formalisms. The above definition yields
a formalism compatible with the ones from [15, 22]. The main difference
from [15] is that we allow non-DL-atoms to occur in a rule, and that we
only allow atomic concepts to occur in a rule. The latter is a technical
assumption and is not really a restriction: for a complex concept C, one
can always introduce a new atomic concept AC , add the axioms AC ⊑ C

and C ⊑ AC to the TBox, and use AC in the rule. This transformation is
obviously linear in the size of P .

Decidability. Since the formalism is compatible with [15], we immediately
have that the reasoning with combined knowledge bases is undecidable. To
achieve decidability, we introduce the notion of DL-safety in Subsection 4.2.

Minimal vs. First-order Models. Rules are usually interpreted under
minimal model semantics, i.e. only models minimal w.r.t. set inclusion are
considered. We write P |=c α if a formula α is true in all minimal models of
P . However, in Definition 5 we assume the standard first-order semantics
for rules, where P |= α means that α is true in all models of P . We briefly
discuss the differences between these two approaches, and their practical
consequences.

Assume that α is a positive ground atom. It is easy to see that in such
a case, P |= α if and only if P |=c α. Namely, if α is true in each model of
P , it is true in each minimal model of P as well, and vice versa. Therefore,
for entailment of positive ground atoms, it is not important whether the
semantics of P is defined w.r.t. minimal or w.r.t. general first-order models.

Assume now that α is a negative ground atom. In this case, there is
a difference between minimal model semantics and first-order semantics, as
shown by the following example. For α = ¬A(b) and P = {A(a)}, it is clear
that P 6|= α. Namely, ¬A(b) is not explicitly derivable from the facts in P :
M1 = {A(a), A(b)} is a first-order model of P and α is false in M1. However,
P has exactly one minimal model M2 = {A(a)} and ¬A(b) is obviously true
in M2, so P |=c α.

The choice of semantics also affects concept subsumption: assume that
α = ∀x : C(x)→ D(x), and P = {C(a), D(a)}. Similarly as above, P 6|= α:
just consider a model M1 = {C(a), D(a), C(b)} of P in which α is false.
However, the only minimal model of P is M2 = {C(a), D(a)} and α is
true in M2, so P |=c α. The distinction between minimal models and gen-
eral first-order models fundamentally changes the computational properties
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of concept subsumption: equivalence of general programs under minimal
model semantics is undecidable [27] whereas, under first-order semantics,
it is decidable and can be reduced to satisfiability checking using standard
transformations.

To summarize, the difference between first-order and minimal model
semantics is not relevant for query answering if queries are positive atoms;
however, it is relevant for queries which involve negation or for concept
subsumption. Negative queries are usually considered in a more general
framework of negation-as-failure, where negation is interpreted as failure
to prove a query, thus yielding a non-monotonic formalism. Whereas non-
monotonic features are certainly very important for the Semantic Web, we
do not address them in this work. Instead, our results are an initial step
towards providing a practical hybrid knowledge representation formalism
integrating description logics and rules. We also believe that our work may
be used as a basis for future non-monotonic extensions.

4.2 DL-safety Restriction

We now introduce DL-safety restriction as one possible way to make reason-
ing with DL rules decidable.

Definition 5 (DL-safe Rules). A (disjunctive) DL rule r is DL-safe if each
variable occurring in r also occurs in a non-DL-atom in the body of r. A
(disjunctive) program P is DL-safe if all its rules are DL-safe.

DL-safety is similar to safety in datalog. In a safe rule, each variable
occurs in a positive atom in the body, and may therefore be bound only to
constants explicitly present in the database. Similarly, DL-safety ensures
that each variable is bound only to individuals explicitly introduced in the
ABox. For example, if Person, livesAt , and worksAt are concepts and roles
from KB , the following rule is not DL-safe:

Homeworker(x)← Person(x), livesAt(x, y),worksAt(x, y)

The reason for this is that both variables x and y occur in DL-atoms, but do
not occur in a body atom with a predicate outside of KB . This rule can be
made DL-safe by adding special non-DL-atoms O(x) and O(y) to the body
of the rule, and by adding a fact O(a) for each individual a occurring in KB
and P . Thus, the above rule becomes

Homeworker(x)← Person(x), livesAt(x, y),worksAt(x, y),O(x),O(y)

This rule is obviously DL-safe. In Subsection 4.3 we discuss the consequences
that this transformation has on the semantics.
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Table 4: Example with DL-safe Rules

Person ⊑ ∃father .Person Each person has a father who is a person.
∃father .(∃father .Person) ⊑ Grandchild Things having a father of a father who

is a person are grandchildren.
father ⊑ parent Fatherhood is a kind of parenthood.
BadChild(x)← Grandchild(x), A bad child is a grandchild who hates

parent(x, y), parent(z, y), hates(x, z) one of his siblings.
BadChild ′(x)← Grandchild(x), DL-safe version of a bad child.

parent(x, y), parent(z, y), hates(x, z),
O(x),O(y),O(z)

Person(Cain) Cain is a person.
father(Cain,Adam) Cain’s father is Adam.
father(Abel ,Adam) Abel’s father is Adam.
hates(Cain,Abel) Cain hates Abel.

Person(Romulus) Romulus is a person.
∃father .∃father−

.{Remus}(Romulus) Romulus’ father is a father of Remus.
hates(Romulus,Remus) Romulus hates Remus.

Child(x)← GoodChild(x),O(x) Good children are children.
Child(x)← BadChild ′(x),O(x) Bad children are children.
(GoodChild ⊔ BadChild ′)(Oedipus) Oedipus is a good or a bad child.

O(α) for each individual α in the ABox Enumeration of all ABox individuals.

4.3 Expressivity of DL-safe Rules

In our approach, to achieve decidability, we do not restrict the component
languages. Rather, we combine full SHOIN (D) with function-free Horn
rules, and thus extend both formalisms. DL-safety only restricts the inter-
change of consequences between the component languages to those conse-
quences involving individuals explicitly introduced in the ABox.

To illustrate the expressive power of DL-safe rules, consider the axioms
from Table 4. We use a rule to define the only non-DL-predicate BadChild
as a grandchild which hates some of its siblings (or itself). Notice that this
rule involves relations forming a triangle between two siblings and a parent
and thus cannot be expressed in a description logic such as SHOIN (D).
Moreover, it is not DL-safe because variables x, y and z do not occur in a
non-DL-atom in the rule body.

Now consider the first group of ABox facts. Since Cain is a Person, as
in Section 3 one may infer that Cain is a Grandchild . Now Cain and Abel
are children of Adam, and Cain hates Abel , so Cain is a BadChild .

Similarly, Romulus has a father who is a father of Remus, and Romulus
hates Remus, so Romulus is a BadChild as well. We are able to derive this
without knowing exactly who the father of Romulus is.

Consider now the DL-safe rule defining BadChild ′: since the father of
Cain and Abel is known by name (i.e. Adam is in the ABox), the literal
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O(y) from the rule for BadChild ′ can be matched to O(Adam), and we may
conclude that Cain is a BadChild ′. In contrast, the father of Romulus and
Remus is not known in the ABox. Hence, the literal O(y) from the DL-safe
rule cannot be matched to the father’s name, so the rule does not derive
that Romulus is a BadChild ′.

This may seem confusing. However, DL-safe rules do have a “natural”
reading: just append the phrase “where the identity of all objects is known”
to the intuitive meaning of the rule. For example, the rule defining BadChild ′

can be read as “A BadChild ′ is a known grandchild for which we know a
parent, and who hates one of his known siblings.”

Combining description logics with DL-safe rules increases the expressiv-
ity of both languages. Namely, a SHOIN (D) knowledge base cannot imply
that Cain is a BadChild ′ because the “triangle” rule cannot be expressed
using SHOIN (D) constructs. Similarly, a set of function-free Horn rules
cannot imply this either: we know that Cain has a grandfather because Cain
is a person, but we do not know who he is. Hence, we need the existential
quantifier to infer the existence of ancestors and thus to conclude that Cain
is a Grandchild .

Finally, we would like to point out that it is incorrect to compute all
consequences of the description logic component first, and then to apply the
rules to the consequences. Consider the last KB part about Oedipus: he
is a GoodChild or a BadChild ′, but we do not know exactly which is true.
Either way, one of the rules derives that Oedipus is a Child , so we have
(KB , P ) |= Child(Oedipus). This cannot be derived by applying the rules
defining Child to the consequences of KB since KB 6|= GoodChild(Oedipus)
and KB 6|= BadChild ′(Oedipus).

The impact of the DL-safety restriction in practice depends a lot on
the type of the application. For applications relying mainly on extensional
reasoning (such as e.g. metadata-based information retrieval), we believe
that DL-safety is not a serious restriction. In such applications, the universe
of discourse is usually limited to the known objects, so DL-safe rules can
draw all or most relevant conclusions. On the contrary, in applications
requiring intensional reasoning (such as e.g. natural language processing),
DL-safety is a much more severe restriction, as many conclusions drawn
involve unnamed objects.

4.4 Decidability of Query Answering

We now show that checking satisfiability of a SHOIN knowledge base ex-
tended with DL-safe rules is decidable. The proof is by a non-deterministic
reduction to checking satisfiability of a SHOIN knowledge base without
rules.

Theorem 1. For any SHOIN knowledge base KB and any DL-safe pro-
gram P , checking if (KB , P ) is satisfiable is decidable.

14



Proof. Let P g be the set of ground instances of P , i.e. P g contains all possible
ground instantiations of rules in P with individuals from KB and P .

We now show that π(KB) ∪ P is satisfiable if and only if π(KB) ∪ P g is
satisfiable. The (⇒) direction is trivial. For the (⇐) direction, let I be a
model of π(KB) ∪ P g. Since π(KB) ∪ P g does not contain non-DL-atoms
with variables, we may safely assume that the interpretation of each non-
DL-predicate contains only tuples of the form (α1, . . . , αn), such that, for
each i, there is a constant ai with aI

i = αi. Let r be a rule from P . Since
r is DL-safe, each variable in r occurs in a body non-DL-atom. Hence, for
each valuation replacing a variable in r with an individual α for which there
is no such constant a with aI = α, there is a body atom of r which is false
in I, making r true in I. Thus, I is a model of π(KB) ∪ P .

Satisfiability of π(KB) ∪ P g can be decided by case analysis as follows:
each model of P g satisfies at least one literal per rule. Hence, we don’t-
know non-deterministically choose one literal per clause in P g and, for Lc

the resulting set of literals, we test the satisfiability of π(KB) ∪ Lc. Now
π(KB) ∪ P g is satisfiable if and only if there exists a “choice” of Lc such
that π(KB) ∪ Lc is satisfiable.

Next, let Lc
DL ⊆ Lc be the subset of ground literals of Lc involving DL

predicates. Then π(KB)∪Lc is unsatisfiable if and only if either Lc contains
a complementary pair of ground literals or π(KB)∪Lc

DL is unsatisfiable. The
first case can be checked syntactically, and the second case can be reduced
to standard SHOIN reasoning as follows: Lc

DL can be viewed as an ABox,
apart from literals of the form ¬R(a, b), which can be transformed into
equivalent SHOIN ABox assertions (∀R.¬{b})(a). Thus we have reduced
query answering to deciding satisfiability of a SHOIN knowledge base.

The latter problem is decidable because (i) transitivity axioms can be
eliminated from SHOIN knowledge bases in the same way as this is done
for SHIQ in [18] and (ii) the resulting logic is a syntactic variant of the
two variable fragment of first-order logic with counting quantifiers, which is
known to be decidable [10].

Since the semantic of (KB , P ) is compatible with standard first-order
semantics, we have that (KB , P ) |= α if and only if (KB , P ∪ {← α}) is
unsatisfiable, for any ground atom α. Hence, Theorem 1 shows decidability
of query answering as well.

The same non-deterministic reduction of ground DL-safe rules to sets of
ground literals is applicable even if KB is a SHOIN (D) knowledge base.
Hence, we strongly believe that Theorem 1 also holds for SHOIN (D),
since the proof that SHOIN is decidable should be easily adaptable to
SHOIN (D).
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5 Query Answering with DL-safe Rules

The proof of Theorem 1 gives a procedure for query answering in the full
combination of OWL-DL and DL-safe rules. However, this procedure is
likely to be hopelessly inefficient in practice, due to the huge amount of
don’t-known non-determinism. At least to a certain extent, such rather
blind guessing seems unavoidable. Namely, in [28] it was shown that the
combination of nominals, inverse roles, and number restrictions yields an
increase in complexity from ExpTime to NExpTime. Therefore, in this
section we describe a practical reasoning algorithm for the following frag-
ment: (i) the description logic is SHIQ, and (ii) in rules, DL-atoms are
restricted to concepts and simple roles. Our algorithm is based on reducing
the description logic knowledge base to a disjunctive program which entails
the same set of ground facts as the original knowledge base. For unary
coding of numbers, this algorithm runs in deterministic exponential time,
which makes it optimal since SHIQ is ExpTime-complete [28]. Further-
more, DL-safe rules (with the above restriction to concepts and simple roles)
can simply be appended to the program obtained by the reduction.

The full presentation of the algorithm and a proof of its correctness are
technically involved and lengthy [18, 20]. Here, we just provide an overview
of the procedure, without going into details.

The algorithm in [18] is capable of handling SHIQ(D) knowledge bases.
The presence of datatypes does not significantly affect the algorithm pre-
sented in this paper: the only change is to the basic superposition calculus,
which is extended with a so-called concrete domain resolution rule from [19].
This rule combines concrete domain reasoning with logical reasoning to pro-
vide a D-refutation procedure. Since its presentation is rather technical and
not essential for the ideas described here, for details please refer to [18, 19].

5.1 Overview

For a SHIQ knowledge base KB , our goal is to obtain a disjunctive program
DD(KB), such that KB |= α if and only if DD(KB) |=c α, for α of the form
R(a, b) or A(a). Thus, DD(KB) can be used for answering queries in KB .

The intuition behind our reduction is the following: let us assume that
unsatisfiability of KB can be decided using some sound and complete cal-
culus C. Our goal is to simulate each inference step of C on KB by a sound
inference step on DD(KB). Hence, each proof by C in KB can be reduced to
a proof in DD(KB). Furthermore, the program DD(KB) should allow simu-
lating the inferences in the other direction as well, i.e. it should be possible
to reduce each proof in DD(KB) by a sound and complete calculus C′ to a
proof in KB . Then, KB is satisfiable if and only if DD(KB) is satisfiable.

To operationalize this idea, we use an instance of basic superposition for
C and, in Section 5.2, we show an algorithm for deciding satisfiability of KB
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by BS+
DL, a parametrization of BS. Next, in Section 5.3 we show how this

decision procedure can be used to obtain the desired reduction. In Section
5.4 we show that DL-safe rules can simply be appended to DD(KB). In
Section 5.5 we show how to compute non-ground query answers. Finally,
in Section 5.6 we present an example knowledge base along with the steps
performed by the reduction algorithm.

5.2 Deciding SHIQ by Basic Superposition

Satisfiability of a SHIQ knowledge base KB can be decided in the frame-
work of resolution as follows.

Eliminating Transitivity Axioms. A minor problem in deciding satis-
fiability of KB are the transitivity axioms, which, in their clausal form, do
not contain so-called covering literals (i.e. literals containing all variables of
a clause). Such clauses are known to be difficult to handle, so we preprocess
KB into an equisatisfiable ALCHIQ knowledge base Ω(KB). In short, this
transformation replaces each transitivity axiom Trans(S) with axioms of the
form ∀R.C ⊑ ∀S.(∀S.C), for each R with S ⊑∗ R and C a concept occurring
in KB . This transformation is polynomial. Whereas KB and Ω(KB) entail
the same sets of ground facts concerning simple roles, they do not entail the
same sets of ground facts concerning complex roles. This is the reason for
allowing only simple roles to occur in DL-safe rules.

Preprocessing. We translate Ω(KB) into a first-order formula π(KB)
according to Table 1. Assuming unary coding of numbers, π(KB) can be
computed in polynomial time. To transform π(KB) into a set of closures
Ξ(KB), we apply the well-known structural transformation [26]. Roughly
speaking, the structural transformation introduces a new name for each non-
atomic subconcept of KB . For example, in the axiom C ⊑ ∃R.(∀S.C), a
new concept Q is introduced for the subconcept ∀S.C, and the above axiom
is replaced with axioms C ⊑ ∃R.Q and Q ⊑ ∀S.C. It is well-known that
π(KB) and Ξ(KB) are equisatisfiable, and that Ξ(KB) can be computed in
polynomial time [26].

For any KB , the syntactic structure of closures in Ξ(KB) follows the
types given in Table 5; we call them ALCHIQ-closures. We use the follow-
ing notation: for a term t, we denote with P(t) a disjunction of the form
(¬)P1(t) ∨ . . . ∨ (¬)Pn(t), and we denote with P(f(x)) a disjunction of the
form P1(f1(x))∨ . . .∨Pm(fm(x)) (notice that this allows each Pi(fi(x)) to
contain positive and negative literals). We use 〈t〉 to denote that the term
t may, but need not be marked. In all closure types, some of the disjuncts
may be empty.
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Table 5: Types of ALCHIQ-closures

1 ¬R(x, y) ∨ Inv(R)(y, x)
2 ¬R(x, y) ∨ S(x, y)
3 Pf (x) ∨R(x, 〈f(x)〉)
4 Pf (x) ∨R([f(x)] , x)
5 P1(x) ∨P2(〈f(x)〉) ∨

∨

〈fi(x)〉≈/6≈ 〈fj(x)〉
6 P1(x) ∨P2([g(x)]) ∨P3(〈f([g(x)])〉) ∨

∨

〈ti〉≈/6≈ 〈tj〉
where ti and tj are either of the form f([g(x)]) or of the form x

7 P1(x) ∨
∨

¬R(x, yi) ∨P2(y) ∨
∨

yi ≈ yj

8 R(〈a〉 , 〈b〉) ∨P(〈t〉) ∨
∨

〈ti〉≈/6≈ 〈tj〉
where t, ti and tj are either some constant b or a functional term fi([a])

Conditions:

(i): In any term f(t), the inner term t occurs marked.
(ii): In all positive equality literals with at least one function symbol,

both sides are marked.

Decomposition. As discussed in [21, 18], if KB contains number restric-
tions on roles that have subroles, saturating Ξ(KB) by BS need not termi-
nate. To remedy that, we introduce decomposition — an additional infer-
ence rule which transforms some conclusions of BS in a way that guarantees
termination. More precisely, any conclusion derived by BS of the form as
specified below left is replaced with the two closures on its right, where t

is an arbitrary term, and the predicate QS,f is a predicate not occurring in
Ξ(KB) and is unique for a pair of role and function symbols S and f :

D · ρ ∨R([t] , [f(t)])  D · ρ ∨ QR,f ([t])
¬QR,f (x) ∨ R(x, [f(x)])

D · ρ ∨R([f(t)] , [t])  D · ρ ∨ QInv(R),f ([t])

¬QInv(R),f (x) ∨ R([f(x)] , x)

With BS+ we denote the BS calculus where decomposition is eagerly
applied to the conclusions of all BS inference. In [21, 18] we have shown
that BS+ is sound and complete, i.e. that a set of closures saturated under
BS+ up to redundancy is unsatisfiable if and only if it contains the empty
closure.

Parameters for BS+. In the rest, BS+
DL denotes the following para-

metrization of BS+. We use a standard lexicographic path ordering [24]
(LPO) for comparing terms. LPOs are based on a precedence >P over
function, constant, and predicate symbols. If the precedence is total, then
the induced LPO is total on ground terms, and is admissible for basic su-
perposition. To decide ALCHIQ, we can use any precedence such that
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f >P c >P p >P QS,f >P ⊤, for any function symbol f , constant c, pred-
icate symbol p and predicate QS,f . We use the selection function which
selects all negative binary literals in a closure.

Termination of BS+
DL on ALCHIQ Closures. The following lemma is

central to our work. It states that any BS+
DL inference, when applied to

ALCHIQ-closures, produces an ALCHIQ-closure. The proof is by consid-
ering all BS+

DL inferences on all types of ALCHIQ-closures.

Lemma 1. Let N0, . . . , Ni∪{C} be a BS+
DL-derivation, where N0 = Ξ(KB)

and C is the conclusion derived from premises in Ni. Then C is either an
ALCHIQ-closure or it is redundant in Ni.

Lemma 1 is crucial to show that saturation of Ξ(KB) by BS+
DL termi-

nates. Namely, for a finite knowledge base, the number ofALCHIQ-closures
is finite: (i) the number of variables in closures of types 1 and 2 is two,
(ii) the number of variables in a closure of type 7 is limited by the maximal
number occurring in a number restriction, (iii) the depth of a functional
term is at most two, so (iv) using a finite number of concept and function
symbols and a finite number of variables, the number of closures that can
be built without repeated literals is finite. In fact, assuming that |KB | rep-
resents the size of the knowledge base where numbers are coded in unary,
the number of ALCHIQ-closures is exponential in |KB |.

Therefore, saturation of Ξ(KB) by BS+
DL takes at most exponentially

many derivation steps in |KB |. Namely, by Lemma 1, each BS+
DL inference

produces an ALCHIQ-closure. Hence, after at most an exponential number
of steps, all possible ALCHIQ-closures will have been derived, after which
any BS+

DL inference will produce an already derived closure. Since BS+
DL is

a sound and complete calculus, the saturated set contains the empty closure
if and only if Ξ(KB) is unsatisfiable. Hence, we have the following result:

Theorem 2. For an ALCHIQ knowledge base KB, saturating Ξ(KB) by
BS+

DL with eager application of redundancy elimination rules decides satis-
fiability of KB and runs in time exponential in |KB | for unary coding of
numbers.

5.3 Reducing KB to a Disjunctive Program

We now show how BS+
DL can be used to reduce an ALCHIQ knowledge

base KB to a disjunctive program DD(KB). Using the transformation for
eliminating transitivity axioms, this algorithm is easily generalized to the
case where KB is a SHIQ knowledge base.

Saturation of TBox and RBox by BS+
DL. Let gen(KB) be the set

of all closures of the form ¬QR,f (x) ∨ R(x, [f(x)]), for each role R and a
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function symbol f occurring in Ξ(KB). Intuitively, gen(KB) is the set of
closures that can be introduced by the decomposition rule in the saturation
of Ξ(KB). Let ΓT Rg = Ξ(KBT ∪ KBR) ∪ gen(KB). Since the predicates
QR,f do not occur in Ξ(KB), ΓT Rg ∪ Ξ(KBA) is satisfiable if and only if
Ξ(KB) is satisfiable.

The first step in the reduction of KB to a disjunctive program is to
saturate ΓT Rg — the RBox and TBox closures of Ξ(KB) — by BS+

DL; let
Γ′ be the set of saturated closures. In this key step of the reduction, we
compute all non-ground consequences of KB . As discussed in Section 5.2,
Γ′ can be computed in time exponential in |KB |, contains closures of length
polynomial in |KB |, and contains at most exponentially many ALCHIQ-
closures.

Now Ξ(KB) is satisfiable if and only if Γ′∪Ξ(KBA) is satisfiable, and the
latter can be decided by saturating Γ′∪Ξ(KBA) by BS+

DL. We also observe
that, since Γ′ already contains all non-ground consequences of Ξ(KB) and
due to the syntactic form of ALCHIQ-closures, only ground closures of
type 8 are derived in the saturation of Γ′ ∪ Ξ(KBA). Furthermore, closures
of types 4 and 6 cannot participate in any BS+

DL inference with a ground
closure: ground closures do not contain terms of depth two which would
unify with the maximal literal from a closure of type 6, and role literals do
not contain functional terms which would unify with a term f(x) from a
closure of type 4. Hence, closures of types 4 and 6 can safely be removed
from Γ′; with Γ we denote the resulting set of closures.

Elimination of Function Symbols. We have seen that satisfiability of
KB can be decided by saturating Γ∪Ξ(KBA) under BS+

DL, where all derived
closures are of type 8. Closures in Γ and the closures of type 8 obtained
by the saturation can contain functional terms of depth one. To obtain a
disjunctive program from Γ, i.e., to remove all functional terms, we perform
the transformation described below which allows “simulating” each ground
functional term f(a) with a new constant af .

More precisely, we define an operator λ on the set of terms, producing a
term, as follows, where af is a new, globally unique constant (i.e. for a pair
of a and f , there is a unique constant af ), and xf is a new, globally unique
variable:

λ(t) =















a if t = a

af if t = f(a)
x if t = x

xf if t = f(x)

We extend λ to ALCHIQ-closures such that, for a closure C, λ(C) is the
following function-free closure:

1. Each term t in C is replaced with λ(t).
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2. For each variable xf introduced in the previous step, the disjunct
∨¬Sf (x, xf ) is appended to C.

3. If, after steps 1 and 2, some variable x occurs in a positive literal, but
not in a negative literal, the disjunct ∨¬HU (x) is appended to C.

Finally, let FF(KB) = FFλ(KB)∪FFSucc(KB)∪FFHU (KB)∪Ξ(KBA) denote
the function-free version of Ξ(KB), where FFλ, FFSucc and FFHU are defined
as follows:

FFλ(KB) = {λ(C) | C ∈ SatR(ΓT Rg)}
FFSucc(KB) = {Sf (a, af ) | for each a and f from Ξ(KB)}
FFHU (KB) = {HU (a) | for each a from Ξ(KB)} ∪

{HU (af ) | for each a and f from Ξ(KB)}

Intuitively, λ replaces each term of the form f(a) with a new constant
af and, for each constant a and each function symbol f , FF(KB) contains
an assertion Sf (a, af ) stating that af is an f -successor of a. Furthermore,
each term f(x) in a closure is replaced with xf , and the literal ¬Sf (x, xf )
is appended to the closure. Hence, the fact that f(x) is the f -successor of
x is encoded in Sf . These transformations are sufficient to simulate ground
functional terms with new constants. We explain this on a simple example.
Consider the following knowledge base KB :

¬C(x) ∨R(x, f(x))(1)

R(a, b)(2)

¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(3)

Furthermore, consider the following BS+
DL inference in KB (we disregard

markers in the conclusion):

¬C(a) ∨ f(a) ≈ b resolve (3)+(1)+(2)(4)

The set of function-free closures FF(KB), computed according to the
above definition, consists of the following closures:

Sf (a, af )(5)

¬C(x) ∨R(x, xf ) ∨ ¬Sf (x, xf ) = λ(1)(6)

R(a, b) = λ(2)(7)

¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2 = λ(3)(8)

Now the above inference of (4) can be simulated in FF(KB) as shown below,
where the inference deriving (9) performs a “lookup” for the successor in
the predicate Sf . Observe that (10) corresponds to the result of applying λ
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to (4), i.e. it contains af instead of f(a). Hence, we say that the functional
term f(a) is simulated with a new constant af .

¬C(a) ∨R(a, af ) resolve (5)+(6)(9)

¬C(a) ∨ af ≈ b resolve (8)+(7)+(9)(10)

By considering all inferences of BS+
DL, it is possible to see that, for each

closure C derived in the saturation of Γ∪Ξ(KBA), one may derive a closure
λ(C) from FF(KB). Hence, if the empty closure is derived by saturation of
Γ ∪ Ξ(KBA), it can also be derived by saturation of FF(KB).

In a similar way it is possible to show the converse as well, i.e. if a closure
C is derivable by saturating FF(KB), it is possible to derive the closure D

from Γ ∪ Ξ(KBA) such that C = λ(D).

Lemma 2. KB is unsatisfiable if and only if FF(KB) is unsatisfiable.

Conversion to a Disjunctive Program. Since FF(KB) does not contain
functional terms and all its closures are safe, we can rewrite each closure into
a disjunctive rule by moving positive literals into the head, and negative
literals into the body of the rule. We use DD(KB) for the result of this
rewriting. The following theorem summarizes the properties of DD(KB):

Theorem 3. For KB a SHIQ knowledge base, the following claims hold:

1. KB is unsatisfiable if and only if DD(KB) is unsatisfiable.

2. KB |= α if and only if DD(KB) |=c α, for α of the form A(a) or
S(a, b) with A an atomic concept and S a simple role.

3. KB |= C(a) if and only if DD(KB ∪ {C ⊑ Q}) |=c Q(a), for C a
non-atomic concept, and Q a new atomic concept.

4. Let |KB | be the length of KB with numbers in number restrictions
coded in unary. The number of rules in DD(KB) is at most exponential
in |KB |, the number of literals in each rule is at most polynomial in
|KB |, and DD(KB) can be computed in time exponential in |KB |.

5.4 Adding DL-safe Rules

Satisfiability of (KB , P ) can be decided by saturating Ξ(KB)∪P by BS+
DL,

where we extend the selection function of BS+
DL to select all non-DL-atoms.

We have the following lemma:

Lemma 3. For an ALCHIQ knowledge base KB, saturation of Ξ(KB)∪P

by BS+
DL decides satisfiability of (KB , P ).
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Since each rule r ∈ P is DL-safe, each variable in r occurs in a negative
non-DL-atom, which is selected. Hence, each non-ground rule r can be
resolved only on non-DL-atoms. Furthermore, a rule can participate as a side
premise in hyperresolution only if it does not contain negative atoms; since
rules are safe, side premises are ground. All non-DL-atoms contain initially
only constants (i.e. they do not contain functional terms), and all variables
from r occur in non-DL-atoms in the body. Hence, a hyperresolution with
r produces a ground closure containing only constants. Such a closure can
participate in inferences with non-ground closures from Ξ(KB) in exactly
the same way as in Lemma 1. Hence, adding DL-safe rules does not change
non-ground inferences of BS+

DL, and it simply produces new ground closures.
It is now easy to see that Lemma 2 holds even if DL-safe rules are

added since such rules do not participate in non-ground inferences used to
compute Γ. Furthermore, for each ground closure C derivable by saturating
Γ ∪ Ξ(KBA) ∪ P , the closure λ(C) can be produced from FF(KB) ∪ P , and
vice versa. This yields the following theorem:

Theorem 4. Let KB be a SHIQ knowledge base and P a DL-safe disjunc-
tive program. Then ( i) (KB , P ) is satisfiable if and only if DD(KB) ∪ P is
satisfiable; and ( ii) (KB , P ) |= α if and only if DD(KB) ∪ P |=c α, for α a
DL-atom A(a) or S(a, b) with S a simple role, or α a ground non-DL-atom.

5.5 Evaluating Queries in a Disjunctive Program

Answering queries in disjunctive programs is computationally more expen-
sive than in non-disjunctive programs [7]. Furthermore, if disjunction is
not used in a knowledge base, our algorithm should not introduce a perfor-
mance penalty. To address that, we have devised an algorithm for evaluating
queries in a disjunctive program P , which we outline next. This algorithm
allows to compute all answers to a query in one “pass”, and does not require
testing each possible ground answer separately.

With P≈ we denote the datalog program containing rules (11) – (14),
where (11) is instantiated for each individual in P , and (14) is instantiated
for each predicate symbol R occurring in P . (Notice that it is not neces-
sary to instantiate (14) for R = ≈, since such a rule logically follows from
symmetry and transitivity.)

a ≈ a(11)

x ≈ y ← y ≈ x(12)

x ≈ z ← x ≈ y, y ≈ z(13)

R(x1, . . . , x
′
i, . . . , xn)← R(x1, . . . , xi, . . . , xn), xi ≈ x′

i(14)

It is well-known [9] that P ∪ P≈, where ≈ is treated as an “ordinary”
predicate, entails the same set of consequences as P , where ≈ is taken to
have the usual semantics of equality.
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Now for a query predicate Q and a program P without equality, com-
puting all Q(a), such that P |=c Q(a), can be performed as follows.

Definition 6. For a predicate symbol Q, let RQ denote the standard or-
dered resolution calculus parameterized as follows: ( i) all negative literals
are selected, and ( ii) all ground atoms of the form Q(a) are smallest in the
ordering ≻.

Any lexicographic ordering where Q is the smallest predicate symbol is
compatible with Definition 6. As shown by the following lemma, saturating
P by RQ computes all ground consequences involving Q. Observe that the
restriction that Q does not occur in the body of some rule is not really
a limitation: one can always introduce a new predicate AQ, add the rule
AQ(x)← Q(x), and use AQ for query answering.

Lemma 4. Let P be a satisfiable disjunctive datalog program and Q a pred-
icate not occurring in the body of any rule in P . Then P |=c Q(a) if and
only if Q(a) ∈ N , where N is the set of clauses obtained by saturating P

under RQ up to redundancy.

Namely, P |=c Q(a) if and only if the empty clause can be derived by
saturating P ∪ {¬Q(a)} by RQ. Since P is satisfiable, the empty clause is
not derived by saturating P alone. Furthermore, since Q does not occur
in a body of any rule in P , Q occurs negated only in ¬Q(a). Hence, in
saturating P ∪ {¬Q(a)}, the only inference preformed in addition to the
case when P is saturated alone is a hyperresolution with ¬Q(a). However,
the literals Q(a) are minimal, so the empty clause can be derived only if
saturation of P derives Q(a). In [18], we show that, assuming unary coding
of numbers and a bound on the arity of the non-DL-predicates, saturation
of DD(KB)∪P can be performed in time exponential in |KB |, which makes
our query answering algorithm worst-case optimal.

Apart from the fact that this algorithm computes all non-ground con-
sequences related to Q in one pass, this algorithm has another interesting
property. Namely, instead of performing an inference with each literal of a
ground disjunction, it is sufficient to perform inferences only with the max-
imal literal. This dramatically reduces the number of inferences to be per-
formed. Furthermore, if the program is not disjunctive, then hyperresolution
becomes exactly the least fixpoint operator used to evaluate non-disjunctive
programs; its consequences can be computed for non-disjunctive programs
in polynomial time, so we get tractable behavior. In this way our algorithm
supports the principle of “graceful degradation:” a performance penalty is
paid only for features actually used.

Finally, we note that evaluating queries can be further optimized by
using the magic sets transformation. In its basic form for Horn programs
[5], magic sets transformation reduces the amount of irrelevant computation
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by simulating the binding propagation of top-down SLD-resolution. This
technique has recently been extended to disjunctive programs [11], and has
shown significant benefits in practice. Magic sets transformation is not tied
to the query evaluation method, and therefore can be used in conjunction
with query answering by the RQ calculus.

5.6 Example

To help in understanding the material presented, we now give a simple
example. Let KB be the following knowledge base:

≥ 2 hasChild ⊑ TaxCut People with ≥ 2 children get a tax cut.(15)

Man ⊓Woman ⊑ ⊥ Men and women are disjoint.(16)

∃motherOf .⊤ ⊑Woman Mothers are women.(17)

∃hasChild .(∃motherOf .⊤)(Peter) Peter has a child who is a mother.(18)

hasChild(Peter ,Paul) Peter has a child Paul .(19)

Man(Paul) Paul is a man.(20)

Now KB entails TaxCut(Peter), and here is why: the unnamed child of
Peter implied by (18) is a mother of someone, so this unnamed child of Peter
must be a woman by (17). Furthermore, this unnamed child must be some
other child than Paul , since Paul is a man. Hence, Peter has at least two
children, so he is eligible for a tax cut. Let us now show how this conclusion
can be drawn by reducing the knowledge base to disjunctive datalog. First,
(18) contains a non-atomic concept ∃hasChild .(∃motherOf .⊤), so we replace
it with a new atomic concept Q1. Furthermore, ∃hasChild .(∃motherOf .⊤)
contains a subconcept ∃motherOf .⊤, so we introduce a new concept Q2 for
it. Hence, (18) is replaced with these axioms:

Q1(Peter)(21)

Q1 ⊑ ∃hasChild .Q2(22)

Q2 ⊑ ∃motherOf .⊤(23)

We now compute Ξ(KB) by simply translating all axioms into first-order
logic. We define the precedence relation >P for the LPO as follows:

g >P f >P

Peter >P Paul >P

Woman >P Man >P TaxCut >P motherOf >P hasChild >P Q2 >P Q1

Below are the closures from Ξ(KBT ), where literals eligible for inferences
have been underlined (they are either selected or maximal):

TaxCut(x) ∨ ¬hasChild(x, y1) ∨ ¬hasChild(x, y2) ∨ y1 ≈ y2(24)

¬Man(x) ∨ ¬Woman(x)(25)
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¬motherOf (x, y) ∨Woman(x)(26)

¬Q1(x) ∨ hasChild(x, f(x))(27)

¬Q1(x) ∨Q2(f(x))(28)

¬Q2(x) ∨motherOf (x, g(x))(29)

Now we apply the inference rules of the basic superposition calculus to
saturate the TBox (we show only non-redundant consequences):

¬Q2(x) ∨Woman(x) resolve (26) and (29)(30)

¬Q2(x) ∨ ¬Man(x) resolve (30) and (25)(31)

We now eliminate function symbols from the saturated set by applying
the operator λ to obtain the following datalog program:

TaxCut(x) ∨ y1 ≈ y2 ← hasChild(x, y1), hasChild(x, y2) = λ(24)(32)

← Man(x),Woman(x) = λ(25)(33)

Woman(x)← motherOf (x, y) = λ(26)(34)

hasChild(x, xf )← Q1(x), Sf (x, xf ) = λ(27)(35)

Q2(xf )← Q1(x), Sf (x, xf ) = λ(28)(36)

motherOf (x, xg)← Q2(x), Sg(x, xg) = λ(29)(37)

Woman(x)← Q2(x) = λ(30)(38)

← Man(x), Q2(x) = λ(31)(39)

Since there are no unsafe rules, there is no need to append the Her-
brand universe declarations. We merely append the ABox clauses and the
definitions of Sf and Sg:

Q1(Peter)(40)

hasChild(Peter ,Paul)(41)

Man(Paul)(42)

Sf (Peter ,Peterf )(43)

Sf (Paul ,Paulf )(44)

Sg(Peter ,Peterg)(45)

Sg(Paul ,Paulg)(46)

To answer the query ?−TaxCut(x), we apply the algorithm from Section
5.5, where all literals involving the predicate TaxCut are smallest. As a
result, in (52) we indeed deduce that Peter gets a tax cut.

hasChild(Peter ,Peterf ) resolve (35)+(40)+(43)(47)

Peterf ≈ Paul ∨ TaxCut(Peter) resolve (32)+(41)+(47)(48)
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Sf (Peter ,Paul) ∨ TaxCut(Peter) superpose (48) into (43)(49)

Q2(Paul) ∨ TaxCut(Peter) resolve (36)+(40)+(49)(50)

Woman(Paul) ∨ TaxCut(Peter) resolve (38)+(50)(51)

TaxCut(Peter) resolve (33)+(42)+(51)(52)

6 Related Work

AL-log [6] combines a TBox and ABox expressed in the basic description
logic ALC with datalog rules, which may be constrained with unary atoms
having ALC concepts as predicates in the body. Query answering in AL-log
is decided by a variant of constrained resolution, combined with a tableaux
algorithm for ALC. The combined algorithm is shown to run in single non-
deterministic exponential time. The fact that atoms with concept predicates
can occur only as constraints in the body makes rules applicable only to ex-
plicitly named objects. Our restriction to DL-safe rules has the same effect.
However, our approach is more general in the following ways: (i) it supports
a more expressive description logic, (ii) it allows using both concepts and
roles in DL-atoms and (iii) DL-atoms can be used in rule heads as well.
Furthermore, we present a query answering algorithm as an extension of
deductive database techniques running in deterministic exponential time.

A comprehensive study of the effects of combining datalog rules with
description logics is presented in [22]. The logic considered is ALCNR,
which, although less expressive than SHIQ, contains constructors that are
characteristic of most DL languages. The results of the study can be summa-
rized as follows: (i) answering conjunctive queries over ALCNR knowledge
bases is decidable, (ii) query answering in the extension of ALCNR with
non-recursive datalog rules, where both concepts and roles can occur in rule
bodies (but not in rule heads), is also decidable, as it can be reduced to
computing a union of conjunctive query answers, (iii) if rules are recursive,
query answering becomes undecidable, (iv) decidability can be regained by
disallowing certain combinations of constructors in the logic, and (v) de-
cidability can be regained by requiring rules to be role-safe, where at least
one variable from each role literal must occur in some non-DL-atom. As
in AL-log, query answering is decided using constrained resolution and a
modified version of the tableaux calculus. Besides the fact that we treat a
more expressive logic, in our approach all variables in a rule must occur in at
least one non-DL-atom, but concepts and roles are allowed to occur in rule
heads. Hence, when compared to the variant (v), our approach is slightly
less general in some, and slightly more general in other aspects.

The Semantic Web Rule Language (SWRL) [15] combines OWL-DL with
rules in which concept and role predicates are allowed to occur in the head
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and in the body, without any restrictions. Hence, apart from technicalities
such as allowing concept expressions to occur in the rules, the formalism
is compatible with DL rules. As mentioned before, this combination is
undecidable but, as pointed out by the authors, (incomplete) reasoning in
such a logic can be performed using general first-order theorem provers. DL-
safe rules are a proper subset of SWRL, where some expressivity is traded
for decidability. Hence, our approach provides an optimal query answering
algorithm covering a significant portion of SWRL.

In [8] an approach for combining answer set programming with descrip-
tion logics is presented. The interaction between the subsystems is enabled
by exchanging only unit (i.e. non-disjunctive) ground consequences between
the two components. The set of derivable facts is obtained by fixpoint com-
putation. In this approach, the two systems are not tightly integrated since
interaction between the systems is performed only through the exchange of
consequences. As a consequence, the resulting semantics is incompatible
with the first-order semantics; for example, the fact that Oedipus is a child
cannot be derived from the fact that he is a GoodChild or a BadChild ′, c.f.
our example at the end of Section 4.3.

The approaches from [12] and [30] for reducing certain fragments of de-
scription logics to logic programming can easily be extended with rules, by
simply appending the rules to the result of the transformation. However,
the description logic considered there does not support existential quanti-
fiers, negation, or disjunction under positive polarity, so it is significantly
less expressive than SHIQ(D). Hence, our approach is a proper extension.

7 Summary and Outlook

We have presented an approach for extending OWL-DL with DL-safe rules
which yields a logic with decidable reasoning algorithms. Instead of reducing
the component formalisms, we reduce the interface between them. As a
consequence, rules apply only to individuals explicitly introduced in the
ABox. We have discussed the effects of such a definition on a non-trivial
example, which also shows that our approach increases the expressivity of
its two components.

Besides a decidability result for SHOIN with DL-safe rules, we have
presented a practical algorithm for answering queries over SHIQ extended
with DL-safe rules. This algorithm transforms a SHIQ knowledge base into
a disjunctive program. To attenuate the increased computational complexity
introduced by using disjunctive programs, we developed a query answering
algorithm which supports the principle of “graceful degradation:” the user
only pays a performance penalty for the features actually used in a knowl-
edge base. Due to space constraints, in this paper we have only presented an
algorithm for SHIQ knowledge bases; we present an extension to SHIQ(D)

28



in [18]. Since this algorithm handles OWL-DL apart from nominals, we be-
lieve it provides a good foundation for extending Semantic Web ontology
languages with rules.

In our future work, we shall investigate how to extend the reduction
algorithm to support all of OWL-DL. Furthermore, we are currently imple-
menting the algorithms presented here in KAON2, a new hybrid reasoner,3

for which we shall conduct a thorough performance evaluation.
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