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What is the meaning of life?

A joke for semanticists

Q: What is the meaning of life?

A: life ′ / I (life) / [[life]] / etc.

• What semantic value to give life ′?
• Logical atom?
• Logical predicate/relation?
• Just the token itself?

• What is the relation between life and death?

• How can we infer the meaning of life?
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Symbolic success

We like the symbolic/discrete approach because. . .

• Discrete models can be cheap and fast

• Many success stories. E.g.:
• n-gram language models
• POS tagging/parsing

• Logical analysis:
• Long history
• Powerful inference
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Your logic is no good here. . .

But. . .

• Doesn’t capture
“messiness”

• No similarity

• Sparsity

• Rules are hard to learn

• Limited variety of
inference
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Vector representations for words

• Go from discrete to distributed representations

• Word meanings are vectors of properties

• Well studied mathematical structure

• Well motivated, theoretically and practically

Background

Philosophy Hume, Wittgenstein
Linguistics Firth, Harris
Engineering + Statistics Feature vectors
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Vector representations for words

Many successful applications in lexical semantics:

• Word-sense disambiguation

• Thesaurus extraction

Also many use cases in NLP pipelines, e.g.:

• Automated essay marking

• Plagiarism detection
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More than mere words

What’s missing?

Word representations alone are not enough to do:

• Machine Translation

• Information Extraction

• Question Answering

• etc.

We need sentence/document representations.
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Vector representations for phrases

What could we do with sentence/document vectors?

• Generation
• English translation from French sentence
• Next sentence in a conversation
• Metadata for documents

• Classification
• Topic/sentiment
• Stock market predictions ($$$!!)
• Recommendations (movies, books, restaurants)
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Vector representations for phrases

Why can we classify and generate with vectors?

• Learn spatial boundaries to separate subspaces

• Similarity metrics give predictors for next word

• Geometric transforms model contextual influence
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Tasks for vector models of meaning

Today’s tutorial is about two kinds of basic tasks for the
construction of vector models of meaning:

• Learning vector representations for words

• Learning how to compose them to get vector
representations for phrases/sentences/documents
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Today’s menu

1 Distributional Semantics

2 Neural Distributed Representations

3 Semantic Composition

4 Last Words
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Goals of this tutorial

By the end of this tutorial, you should have:

• A good understanding of distributed word representations
and their usage.

• Some background knowledge about neural language
models and (conditional) generation.

• A decent overview of options for integrating
compositionality into vector-based models.

• Sufficient knowledge about the terms and mathematics of
neural methods to read deep learning papers in NLP.

• Hopefully, some new ideas of your own!
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Outline

1 Distributional Semantics

2 Neural Distributed Representations

3 Semantic Composition

4 Last Words
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The distributional hypothesis

We found a cute little

wampimuk c©MarcoBaroni

sleeping in a tree.
?
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Distributional Semantics in a nutshell

he curtains open and the stars shining in on the barely

ars and the cold , close stars " . And neither of the w

rough the night with the stars shining so brightly , it

made in the light of the stars . It all boils down , wr

surely under the bright stars , thrilled by ice-white

sun , the seasons of the stars ? Home , alone , Jay pla

m is dazzling snow , the stars have risen full and cold

un and the temple of the stars , driving out of the hug

in the dark and now the stars rise , full and amber a

bird on the shape of the stars over the trees in front

But I could n’t see the stars or the moon , only the

they love the sun , the stars and the stars . None of

r the light of the shiny stars . The plash of flowing w

man ’s first look at the stars ; various exhibits , aer

rief information on both stars and constellations, inc
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Distributional Semantics in a nutshell

Construct vector representations

shining bright trees dark look
stars 38 45 2 27 12

Similarity in meaning as vector similarity

• stars
• sun

• cucumber
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In more detail

Core components of distributional models of semantics:

• Co-occurrence counts extraction

• Weighting schemes

• Dimensionality reduction

• Similarity measures
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Extracting co-occurrence counts

A matrix of co-occurrence counts is built, representing the
target linguistic units over context features.

Variations in the type of context features

Doc1 Doc2 Doc3

stars 38 45 2

dobj←−−see
mod−−→bright

mod−−→shiny
stars 38 45 44

The nearest • to Earth stories of • and their
stars 12 10
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Extracting co-occurrence counts

Variations in the definition of co-occurrence

Co-occurrence with words, window of size 2, scaling by
distance to target:
... two [intensely bright stars in the] night sky ...

intensely bright in the
stars 0.5 1 1 0.5

For more details, see:

• Pado and Lapata (2007),

• Turney and Pantel (2010).

• Comparisons: Agirre et al (2009), Baroni and Lenci
(2010), Bullinaria and Levy (2012), Kiela and Clark
(2014)
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Weighting

Re-weight the counts using corpus-level statistics to reflect
co-occurrence significance.

Point-wise Mutual Information (PMI)

PMI(target, ctxt) = log
P(target, ctxt)

P(target)P(ctxt)
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Weighting

Adjusting raw collocational counts:

bright in
stars 385 10788 ... ← Counts

stars 43.6 5.3 ... ← Pmi

Other weighting schemes:

• TF-IDF

• Local Mutual Information

• Dice

See Ch4 of J.R. Curran’s thesis (2004) for a great survey.
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Dimensionality reduction

Problem

Vectors spaces often range from tens of thousands to millions
of dimensions.
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Dimensionality reduction

Some of the methods to reduce dimensionality:

• Select context features based on various relevance criteria

• Random indexing

• Having also a smoothing effect
• Singular Value Decomposition
• Non-negative matrix factorization
• Probabilistic Latent Semantic Analysis
• Latent Dirichlet Allocation
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Distance and similarity

Vector similarity measures (or inverted distance measures) are
used to approximate similarity in meaning.

stars

sun

Cosine similarity

cos(x, y) =
x · y

‖x‖ × ‖y‖
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Distance and similarity

Other similarity measures:

• Euclidean

• Lin

• Jaccard

• Dice

• Kullback-Leibler (for distributions)
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Summary

Distributional tradition: Vector representations over intuitive,
linguistically-motivated, context features

• Pros: Easy to obtain, vectors are interpretable

• Cons: Involves a large number of design choices (what
weighting scheme? what similarity measure?)

• Problems: Going from word to sentence representations is
non-trivial, and no clear intuitions exist.

An Open Question

Are there other ways to learn composeable vector
representations of meaning, based on the distributional
hypothesis, without this parametric burden?
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Outline

1 Distributional Semantics

2 Neural Distributed Representations

3 Semantic Composition

4 Last Words
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Features and NLP

Twenty years ago log-linear models freed us from the shackles
of simple multinomial parametrisations, but imposed the
tyranny of feature engineering.
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Features and NLP

Distributed/neural models allow us to learn shallow features
for our classifiers, capturing simple correlations between inputs.
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Features and NLP

K-Max pooling
(k=3)

 Fully connected
layer

Folding

Wide
convolution

(m=2)

Dynamic
k-max pooling
 (k= f(s) =5)

 Projected
sentence 

matrix
(s=7)

Wide
convolution

(m=3)

game's the same, just got more fierce

Deep learning allows us to learn hierarchical generalisations.
Something that is proving rather useful for vision, speech, and
now NLP...
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Neural language models
BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

A Neural Probabilistic Language Model. Bengio et al. JMLR 2003.
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Log-linear models for classification

Features: φ(x) ∈ RD and weights: λk ∈ RD for k ∈ {1, ...,K}
classes:

p(Ck |x) =
exp(λT

kφ(x))∑K
j exp(λT

j φ(x))

Gradient required for training:

∂

∂λj

[
− log p(Ck |x)

]
=

∂

∂λj
logZ(x)− ∂

∂λj
λT
kφ(x)

=
1

Z(x)

∂

∂λj
exp

(
λT
j φ(x)

)
− ∂

∂λj
λT
kφ(x)

=
exp

(
λT
j φ(x)

)
Z(x)

φ(x)− ∂

∂λj
λT
kφ(x)

= p(Cj |x)φ(x)︸ ︷︷ ︸
expected features

− δ(j , k)φ(x)︸ ︷︷ ︸
observed features

δ(j , k) is the Kronecker delta function which is 1 if j = k and 0 otherwise, and

Z(x) =
∑K

j exp(λT
j φ(x)) is referred to as the partition function.
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A simple log-linear (tri-gram) language model

Classify the next word wn given wn−1,wn−2: Features:
φ(wn−1,wn−2) ∈ RD and weights: λi ∈ RD :1

p(wn|wn−1,wn−2) ∝ exp
(
λT
wn
φ(wn−1,wn−2) + bwn

)
Traditionally the feature maps φ(·) are rule based, but can we learn
them from the data?

1
we now explicitly include a per-word bias parameter bwn that is initialised to the empirical log p(wn).
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A simple log-linear (tri-gram) language model

Traditionally the feature maps φ(·) are rule based, but can we learn
them from the data?
Assume the features factorise across the context words:

p(wn|wn−1,wn−2) ∝ exp
(
λT
wn

(
φ−1(wn−1) + φ−2(wn−2)

)
+ bwn

)
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Learning the features: the log-bilinear language model

Represent the context words by the columns of a D × |vocab|
matrix Q, and output words by the columns of a matrix R ;
assume φi is a linear function of these representations
parametrised by a matrix Ci :
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Learning the features: the log-bilinear language model

φ(wn−1,wn−2) = C−2Q(wn−2) + C−1Q(wn−1)

p(wn|wn−1,wn−2) ∝ exp
(
R(wn)Tφ(wn−1,wn−2) + bwn

)
This is referred to as a log-bilinear model.2

2
Three new graphical models for statistical language modelling. Mnih and Hinton, ICML’07.
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Learning the features: the log-bilinear language model

p(wn|wn−1,wn−2) ∝ exp
(
R(wn)Tφ(wn−1,wn−2) + bwn

)
Error objective: E = − log p(wn|wn−1,wn−2)

∂

∂R(j)
E =

∂

∂R(j)
logZ(wn−1,wn−2)− ∂

∂R(j)
R(wn)Tφ

=
(
p(j |wn−1,wn−2)− δ(j ,wn)

)
φ
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Learning the features: the log-bilinear language model

Error objective: E = − log p(wn|wn−1,wn−2)

∂

∂φ
E =

∂

∂φ
logZ(wn−1,wn−2)− ∂

∂φ
R(wn)Tφ

=
[∑

j

p(j |wn−1,wn−2)R(wj)︸ ︷︷ ︸
model expected next word vector

]
− R(wn)︸ ︷︷ ︸

data vector
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Learning the features: the log-bilinear language model

Error objective: E = − log p(wn|wn−1,wn−2)

∂

∂Q(j)
E =

∂φ

∂Q(j)
× ∂E

∂φ

∂φ

∂Q(j)
=

∂

∂Q(j)

[
C−2Q(wn−2) + C−1Q(wn−1)

]
= δ(j ,wn−2)C T

−2 + δ(j ,wn−1)C T
−1
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Learning the features: the log-bilinear language model

Error objective: E = − log p(wn|wn−1,wn−2)

∂

∂C−2
E =

∂E

∂φ
× ∂φ

∂C−2

∂φ

∂C−1
=

∂

∂A

[
C−1Q(wn−2) + C−2Q(wn−1)

]
= Q(wn−2)T
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Adding non-linearities: the neural language model

Replacing the simple bi-linear relationship between context and
output words with a more powerful non-linear function f(·)
(logistic sigmoid, tanh, etc.):

p(wn|wn−1,wn−2)

∝ exp
[
R(wn)Tf

(
C 1Q(wn−1) + C 2Q(wn−2)

)
+ bwn

]
This is a neural language model!
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Adding non-linearities: the neural language model

Replacing the simple bi-linear relationship between context and
output words with a more powerful non-linear function f(·)
(logistic sigmoid, tanh, etc.):

if f = the element wise logistic sigmoid σ(·):

∂

∂φ
E =

∂σ(φ)

∂φ
◦ ∂E

∂σ(φ)

= σ(φ)(1− σ(φ)) ◦
[∑

j

p(j |wn−1,wn−2)R(wj)− R(wn)
]

where ◦ is the element wise product.
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Infinite context: a recurrent neural language model

A recurrent LM drops the ngram assumption and directly
approximate p(wn|wn−1, . . . ,w0) using a recurrent hidden
layer:

φn = f
(
Cf(φn−1) + WQ(wn−1)

)
p(wn|wn−1, . . . ,w0) ∝ exp

[
R(wn)Tf(φn) + bwn

]
Simple RNNs like this are not actually terribly effective
models. More compelling results are obtained with complex
hidden units (e.g. Long Short Term Memory (LSTM),
Clockwork RNNs, etc.), or by making the recurrent
transformation C conditional on the last output.
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Efficiency

For large D, calculating the context vector-matrix products is
costly. Diagonal context transformation matrices (Cx) solve
this and result in little performance loss.
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Efficiency

Most of the computational cost of a neural LM is a function of the
size of the vocabulary and is dominated by calculating RTφ.
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Efficiency

Most of the computational cost of a neural LM is a function of the
size of the vocabulary and is dominated by calculating RTφ.

Solutions

Short-lists: use the neural LM for the most frequent words, and a
vanilla ngram LM for the rest. While this is easy to implement, it
nullifies the neural LM’s main advantage, i.e. generalisation to rare
events.
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Efficiency

Most of the computational cost of a neural LM is a function of the
size of the vocabulary and is dominated by calculating RTφ.

Solutions

Approximate the gradient/change the objective: if we did not
have to sum over the vocabulary to normalise during training it
would be much faster. It is tempting to consider maximising
likelihood by making the log partition function a separate
parameter c, but this leads to an ill defined objective.

pmodel(wn|wn−1,wn−2, θ) ≡ punnormalised
model (wn|wn−1,wn−2, θ)× exp(c)
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Efficiency

Most of the computational cost of a neural LM is a function of the
size of the vocabulary and is dominated by calculating RTφ.

Solutions

Approximate the gradient/change the objective: Mnih and
Teh use noise contrastive estimation. This amounts to learning a
binary classifier to distinguish data samples from (k) samples from
a noise distribution (a unigram is a good choice):

p(Data = 1|wn,wn−1, θ) =
pmodel(wn|wn−1, θ)

pmodel(wn|wn−1, θ) + kpnoise(wn)

Now parametrising the log partition function as c does not
degenerate. This is very effective for speeding up training, but has
no impact on testing time.a

a
In practice fixing c = 0 is effective. It is tempting to believe that this noise contrastive objective justifies

using unnormalised scores at test time. This is not the case and leads to high variance results.
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Efficiency

Most of the computational cost of a neural LM is a function of the
size of the vocabulary and is dominated by calculating RTφ.

Solutions

Factorise the output vocabulary: One level factorisation works
well (Brown clustering is a good choice, frequency binning is not):

p(wn|φ) = p(class(wn)|φ)× p(wn|class(wn), φ),

where the function class(·) maps each word to one class. Assuming
balanced classes, this gives a

√
|vocab| speedup.

This renders properly normalised neural LMs fast enough to be
directly integrated into an MT decoder.a

aCompositional Morphology for Word Representations and Language Modelling.
Botha and Blunsom, ICML’14
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Efficiency

Most of the computational cost of a neural LM is a function of the
size of the vocabulary and is dominated by calculating RTφ.

Solutions

Factorise the output vocabulary: By extending the factorisation
to a binary tree (or code) we can get a log |vocab| speedup,a but
choosing a tree is hard (frequency based Huffman coding is a poor
choice):

p(wn|φ) =
∏
i

p(di |ri , φ),

where di is i th digit in the code for word wn, and ri is the feature
vector for the i th node in the path corresponding to that code.

aA scalable hierarchical distributed language model. Mnih and Hinton, NIPS’09.
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Comparison with vanilla n-gram LMs

Good

• Better generalisation on unseen ngrams, poorer on seen
ngrams. Solution: direct (linear) ngram features mimicking
original log-linear language model features.

• Simple NLMs are often an order magnitude smaller in
memory footprint than their vanilla ngram cousins (though
not if you use the linear features suggested above!).

Bad

• NLMs are not as effective for extrinsic tasks such as Machine
Translation compared to Kneser-Ney models, even when their
intrinsic perplexity is much lower.

• NLMs easily beat Kneser-Ney models on perplexity for small
training sets (<100M), but the representation size must grow
with the data to be competitive at a larger scale.
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Learning better representations for rich morphology

Illustration of how a 3-gram morphologically factored neural
LM model treats the Czech phrase “pro novou školu” (for
[the] new school).2

2Compositional Morphology for Word Representations and Language Modelling.
Botha and Blunsom, ICML’14
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Learning better representations for rich morphology
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Learning representations directly

Collobert and Weston, Mikolov et al. word2vec, etc.

If we do not care about language modelling, i.e. p(w), and
just want the word representations, we can condition on future
context and/or use more efficient margin based objectives.
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Conditional Generation

� � 我 一 杯

i 'd like a glass of white wine , please .

Generation

白 葡萄酒 。

Generalisation
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Conditional Generation

S(s1) S(s2) S(s3) S(s4) S(s5) S(s6) S(s7) S(s8)

cn

CSM

+

+ =

Q(wn-2)
T Q(wn-1)

T øn

xC2 xC1

φn = C−2Q(wn−2) + C−1Q(wn−1) + CSM(n, s)

p(wn|wn−1,wn−2, s) ∝ exp
(
R(wn)Tσ(φn) + bwn

)
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Conditional Generation: A naive additive model

S(s1) S(s2) S(s3) S(s4) S(s5) S(s6) S(s7) S(s8)

cn

+ + + + + + +

=

+

+ =

Q(wn-2)
T Q(wn-1)

T øn

xC2 xC1

pn = C−2Q(wn−2) + C−1Q(wn−1) +

|s|∑
j=1

S(sj)

p(wn|wn−1,wn−2, s) ∝ exp
(
R(wn)Tσ(φn) + bwn

)
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Conditional Generation: A naive additive model

明天 早上 七点 叫醒 我 好 � ?
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Conditional Generation: A naive additive model

明天 早上 七点 叫醒 我 好 � ?

+ + + + + + +
=
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Conditional Generation: A naive additive model

明天 早上 七点 叫醒 我 好 � ?

may i have a wake-up call at seven tomorrow morning ?

+ + + + + + +

=

CLM
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Conditional Generation: A naive additive model

�� ��� 在 哪里 ?

where 's the currency exchange office ?

+ + + +

=

CLM
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Conditional Generation: A naive additive model

� � 我 一 杯

i 'd like a glass of white wine , please .

+ + + +

=

CLM

白

+

葡萄酒

+

。

+
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Conditional Generation: A naive additive model

今天 下午 准� 去 洛杉�

i 'm going to los angeles this afternoon .

+ + + +

=

CLM

。

+
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Conditional Generation: A naive additive model

我 想 要 一 晚 三十 美元

i 'd like to have a room under thirty dollars a night .

+ + + + + + +

=

CLM

以下

+

的 房� 。

+ +
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Conditional Generation: A naive additive model

我 想 要 一 晚 三十 美元

i 'd like to have a room under thirty dollars a night .

+ + + + + + +

=

CLM

以下

+

的 房� 。

+ +

Rough Gloss

I would like a night thirty dollars under room.
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Conditional Generation: A naive additive model

我 想 要 一 晚 三十 美元

i 'd like to have a room under thirty dollars a night .

+ + + + + + +

=

CLM

以下

+

的 房� 。

+ +

Google Translate

I want a late thirties under $’s room.
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Conditional Generation: A naive additive model

想想 �� 的 � 我 会 ��

+ + + + + + +

=

CLM

you have to do something about it .

+

不

+

。的
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Conditional Generation: A naive additive model

想想 �� 的 � 我 会 ��

+ + + + + + +

=

CLM

i can n't urinate .

+

不

+

。的
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Conditional neural LMs and MT and beyond

Such conditional neural language models are now being exploited
in MT and other multi-modal generation problems:

Recurrent Continuous Translation Models.

Kalchbrenner and Blunsom, EMNLP’13.

Joint Language and Translation Modeling with

Recurrent Neural Networks.

Auli et al., EMNLP’13.

Fast and Robust Neural Network Joint Models for

Statistical Machine Translation.

Devlin et al., ACL’14.

Multimodal Neural Language Models.

Kiros et al., ICML’14.
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Outline

1 Distributional Semantics

2 Neural Distributed Representations

3 Semantic Composition
Motivation
Models
Training
Application Nuggets

4 Last Words
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A simple task

Q: Do two words (roughly) mean the same?
“Cat” ≡ “Dog” ?

A: Use a distributional representation to find out.

Given a vector representation, we can calculate the similarity
between two things using some distance metric (as discussed
earlier).
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A different task: paraphrase detection

Q: Do two sentences (roughly) mean the same?
“He enjoys Jazz music” ≡ “He likes listening to Jazz” ?

A: Use a distributional representation to find out?

No

We cannot learn distributional features at the sentence level.
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Why can’t we extract distributional features?

Linguistic Creativity

We formulate and understand language by composing units
(words/phrases), not memorising sentences.

Crucially: this is what allows us to understand sentences we’ve
never observed/heard before.
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Why can’t we extract distributional features?

The curse of dimensionality

As the dimensionality of a representation increases, learning
becomes less and less viable due to sparsity.

Dimensionality for collocation

• One entry per word: Size of dictionary (small)

• One entry per sentence: Number of possible sentences
(infinite)

⇒ We need a different method for representing sentences
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Why care about compositionality

Paraphrasing

“He enjoys Jazz music” ≡ “He likes listening to Jazz” ?

Sentiment

“This film was perfectly horrible” (good;bad)

Translation

“Je ne veux pas travailler” ≡ “I do not want to work” ?
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Compositional Semantics

Semantic Composition

Learning a hierarchy of features, where higher levels of
abstraction are derived from lower levels.
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A door, a roof, a window: It’s a house

⇔

0.2
0.3
0.4

0.5
0.3
0.8

0.4
0.7
0.3

0.1
0.5
0.1
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Compositional Semantics

A “generic” composition function

p = f (u, v ,R ,K )

Where u, v are the child representations, R the relational
information and K the background knowledge. Most
composition models can be expressed as some such function f .

⇒ We may also want to consider the action of sentence-,
paragraph-, or document-level context on composition.
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Composition

Algebraic
Composition

Lexical
Function
Models

Collocational
Features

Abstract
Features

Requirements

Not commutative Mary likes John 6= John likes Mary
Encode its parts? Magic carpet ≡ Magic + Carpet
More than parts? Memory lane 6= Memory + Lane
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Algebraic vector composition

We take the full composition function ...

p = f (u, v ,R ,K )
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Algebraic vector composition

... and simplify it as follows.

p = f (u, v)

• Simple mechanisms for composing vectors

• Works well on some tasks

• Large choice in composition functionsa

• Addition
• Multiplication
• Dilation
• ...

aComposition in Distributional Models of Semantics. Mitchell and Lapata,
Cognitive Science 2010
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Algebraic vector composition

... and simplify it as follows.

p = f (u, v)

But it’s broken

This simplification fails to capture important aspects such as

• Grammatical Relations

• Word order

• Ambiguity

• Context

• Quantifier Scope
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Lexical function models

One solution: lexicalise composition.

• Different syntactic patterns indicate difference in
composition function.

• Some words modify others to form compounds
(e.g. adjectives).

• Let’s encode this at the lexical level!

Example: adjectives as lexical functions

p = f (red , house) = Fred(house)
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Lexical function model example

Baroni and Zamparelli (2010)3

• Adjectives are parameter matrices (θred , θfurry , etc.).

• Nouns are vectors (house, dog, etc.).

• Composition is simply red house = θred × house.

Learning adjective matrices

1 Obtain vector nj for each noun nj in lexicon.

2 Collect adjective noun pairs (ai , nj) from corpus.

3 Obtain vector hij of each bigram ainj .

4 The set of tuples {(nj ,hij)}j is a dataset Di for adj. ai .

5 Learn matrix θi from Di using linear regression.

3Nouns are vectors, adjectives are matrices: Representing adjective-noun
constructions in semantic space. Baroni and Zamparelli, EMNLP’10
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Uses and evaluations for lexical function models

Lexical function models are generally applied to short phrases
or particular types of compostion (e.g. noun compounds).

Related Tasks and Evaluations

Semantic plausibility Judge short phrasesab

fire beam fire glow
table show results table express results

Morphology Learn composition for morphemesc

f(f(shame, less), ness) shamelessness

Decomposition Extract words from a composed unitd

fdecomp (reasoning) deductive thinking

fdecomp (f(black, tie)) cravatta nera

a Vector-based Models of Semantic Composition. Mitchell and Lapata, ACL’08
b Experimental support [...]. Grefenstette and Sadrzadeh, EMNLP’11
c Lazaridou et al, ACL’13; Botha and Blunsom ICML’14
d Andreas and Ghahramani, CVSC’13; Dinu and Baroni, ACL’14
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Higher valency functions with tensors

How do we go from predicates (adjectives) to higher-valency
relations (verbs, adverbs)?

• Matrices encode linear maps. Good for adjectives.

• What encodes multilinear maps? Tensors.

• An order-n tensor TR represents a function R of n−1
arguments.

• Tensor contraction models function application.

For n-ary functions to order n + 1 tensors

R(a, b, c)⇒ ((TR × a)× b)× c



65/113

I’m getting tensor every day

We like tensors. . .

• Encode multilinear maps.

• Nice algebraic properties.

• Learnable through regressiona

• Decomposable/Factorisable.

• Capture k-way correlations between argument features
and outputs.

a Grefenstette et al., IWCS’13

But. . .

• Big data structures (dn elements).

• Hard to learn (curse of dimensionality).
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From tensors to non-linearities

Q: Can we learn k-way correlations without tensors?

A: Non-linearities + hidden layers!

For example:

p q bias

p XOR q ¬(p XOR Q) • XOR not linearly
separable in 2D space.

• Order-3 tensors can
model any binary logical
operation (Grefenstette
2013).

• Non-linearities and
hidden layers offer
compact alternative.
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Neural Models

A lower-dimensional alternative

Having established nonlinear layers as a low-dimensinonal
alternative to tensors, we can redefine semantic composition
through some function such as

p = f (u, v ,R ,K ) = g (W u
RKu + W v

RKv + bRK ) ,

where g is a nonlinearity, W are composition matrices and b a
bias term.

Recursion

If W u
RK and W v

RK are square, this class of composition
functions can be applied recursively.
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Recursive Neural Networks

Composition function:
f (u, v) = g (W (u‖v) + b)

g is a non-linearity
W ∈ Rn×2n is a weight matrix
b ∈ Rn is a bias
u, v ∈ Rn are inputs

This is (almost) all you need

This is the definition of a simple recursive neural network.a

But key decisions are still open: how to parametrise,
composition tree, training algorithm, which non-linearity etc.

a Pollack, ’90; Goller and Küchler, ’96; Socher et al., EMNLP’11; Scheible and
Schütze, ICLR’13
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Choices to make

Decisions, decisions

Tree structure left/right-branching, greedy based on errora,
based on parseb, ...

Non-linearity c tanh, logistic sigmoid, rectified linear ...

Initialisation d zeros, Gaussian noise, identity matrices, ...

a Socher et al., EMNLP’11
b Hermann and Blunsom, ACL’13
c LeCun et al., Springer 1998
d Saxe et al., ICLR’14
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Matrix-Vector Neural Networks

Alternative: Represent everything as both a vector and a
matrix (Socher et al. (2012)).

(     ,   ) (     ,   )

(     ,   )

fierce

fierce game

game

This adds an element similar to the lexical function models
discussed earlier.
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Matrix-Vector Neural Networks

Alternative: Represent everything by both a vector and a
matrix (Socher et al. (2012)).

(     ,   ) (     ,   )

×
×

×
g(                    )×(                ,                        )

fierce game
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Matrix-Vector Neural Networks

Alternative: Represent everything by both a vector and a
matrix (Socher et al. (2012)).

Formalizing MVRNNs

(C , c) = f (((A, a), (B , b)))

c = g(W ×
[

Ba
Ab

]
)

C = WM ×
[

A
B

]
a, b, c ∈ Rd ; A,B ,C ∈ Rd×d ; W ,WM ∈ Rd×2d

This adds an element similar to the lexical function models
discussed earlier.
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Convolution Neural Networks

A step back: How do we learn to recognise pictures?
Will a fully connected neural network do the trick?8
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ConvNets for pictures

Problem: lots of variance that shouldn’t matter (position,
rotation, skew, difference in font/handwriting).8 88
8 8 8
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ConvNets for pictures

Solution: Accept that features are local. Search for local
features with a window.8
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ConvNets for pictures

Convolutional window acts as a classifer for local features.8 ⇒
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ConvNets for pictures

Different convolutional maps can be trained to recognise
different features (e.g. edges, curves, serifs).

...
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ConvNets for pictures

Stacked convolutional layers learn higher-level features.

Fully Connected Layer
Convolutional Layer

8 8
Raw Image First Order Local Features Higher Order Features Prediction

One or more fully-connected layers learn classification function
over highest level of representation.
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ConvNets for language

Convolutional neural networks fit natural language well.

Deep ConvNets capture:

• Positional invariances

• Local features

• Hierarchical structure

Language has:

• Some positional
invariance

• Local features (e.g. POS)

• Hierarchical structure
(phrases, dependencies)



80/113

ConvNets for language

How do we go from images to sentences? Sentence matrices!

w1 w2 w3 w4 w5
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ConvNets for language

Does a convolutional window make sense for language?

w1 w2 w3 w4 w5
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ConvNets for language

A better solution: feature-specific windows.

w1 w2 w3 w4 w5
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ConvNets for language

To compute the layerwise convolution, let:

• m be the width of the convolution window

• d be the input dimensionality

• M ∈ Rd×m be a matrix with filters as rows

• F ∈ Rd×dm = [diag(M:,1), . . . , diag(M:,m)] be the filter
application matrix

• wi ∈ Rd be the embedding of the ith word in the input
sentence

• H ∈ Rd×l be the “sentence” matrix obtained by applying
the convolution to the input layer of l word embeddings

• b ∈ Rd a bias vector
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ConvNets for language

Applying the convolution

∀i ∈ [1, l ] H:,i = g(F

 wi
...

wi+m−1

+ b)

+

+

+

+

+

+

H:,iF

d

dm

dm
d

1

1

[wi
⊤: ... : wi+m-1

⊤]⊤
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ConvNets for language

A full convolutional sentence model

Come and see the poster for Kalchbrenner et al. (2014),
A Convolutional Neural Network for Modelling Sentences.

Monday, 18:50-21:30pm, Grand Ballroom, LP17
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Training Compositional Vector Space Models

Several things to consider

Training Signals autoencoders, classifiers, unsupervised signals

Gradient Calculation backpropagation

Gradient Updates SGD, L-BFGS, AdaGrad, ...

Black Magic drop-out, layer-wise training, initialisation, ...
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Autoencoders

Autoencoders can be used to minimise information loss during
composition:

We minimise an objective function over inputs xi , i ∈ N and
their reconstructions x ′i :

J =
1

2

N∑
i

‖x ′i − xi‖2
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Recursive Autoencoders

We still want to learn how to
represent a full sentence (or
house). To do this, we chain
autoencoders to create a
recursive structure.

Question: Composition = Compression?
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Recursive Autoencoders

Objective Function
Minimizing the reconstruction
error will learn a compression
function over the inputs:

Erec(i , θ) =
1

2

∥∥∥xi − x ′i

∥∥∥2

Question: Composition = Compression?
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Classification signals

Classification error

E (N , l , θ) =
∑
n∈N

1

2
‖l − vn‖2

where vn is the output of a
softmax layer on top of the neural
network.

Question: Sentiment = Semantics?
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Semantic transfer functions

Simple Energy Function

Strongly align representations of semantically
equivalent sentences (a, b)

Edist(a, b) = ‖f (a)− g(b)‖2

• Works if CVM and representations in one model are fixed
(semantic transfer).

• Will degenerate if representations are being learned jointly
(i.e. in a multilingual setup).
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A noise-contrastive large-margin function

Representations in both models can be learned in parallel with
a modified energy function as follows.

A large-margin objective function

Enforce a margin between unaligned sentences (a, n)

Enoise(a, b, n) = [m + Edist(a, b)− Edist(a, n)]+

Objective function for a parallel corpus CA,B

J(θbi) =
∑

(a,b)∈CA,B

(
k∑

i=1

Enoise(a, b, ni)

)
+
λ

2
‖θbi‖2
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Multilingual Models with Large-Margin Training

Monolingual Composition Model

• Needs objective function

• Supervised or Autoencoder?

• Compression or Sentiment?
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Multilingual Models with Large-Margin Training

Monolingual Composition Model

• Needs objective function

• Supervised or Autoencoder?

• Compression or Sentiment?

Multilingual Model

• Task-independent learning

• Multilingual representations

• Joint-space representations

• Composition function
provides large context
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Learning

Backpropagation

Calculating gradients is simple and fast with backprop:

• Fast

• Uses network structure for efficient gradient calculation

• Simple to adapt for dynamic structures

• Fast

Gradient-descent based strategies

• Stochastic Gradient Descent

• L-BFGS

• Adaptive Gradient Descent (AdaGrad)
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Backpropagation (autoencoder walk-through)

Autoencoder

This is a simple autoencoder:

• intermediary layers z , k

• input i

• output/reconstruction o

• hidden layer h

• weight matrices We , Wr

• E = 1
2
(‖o − i‖)2

We omit bias terms for
simplicity.
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Backpropagation (autoencoder walk-through)

Forwardpagate

z = W e i
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Backpropagation (autoencoder walk-through)

Forwardpagate

h = σ(z)
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Backpropagation (autoencoder walk-through)

Error function

E =
1

2
(‖o − i‖)2
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Backpropagation (autoencoder walk-through)

Error function

E =
1

2
(‖o − i‖)2

Backpropagation

We begin by calculating the
error with respect to the
output node o.
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Backpropagation (autoencoder walk-through)

Error function

E =
1

2
(‖o − i‖)2

Backpropagation

We begin by calculating the
error with respect to the
output node o.

∂E

∂o
= (o − i)
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Backpropagation (autoencoder walk-through)

Forwardpagate

o = σ(k)

Backpropagation

∂E

∂k
=
∂o

∂k

∂E

∂o
∂E

∂o
= �

∂o

∂k
= σ′(k) = σ(k)(1− σ(k))
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Backpropagation (autoencoder walk-through)

Forwardpagate

k = W rh

Backpropagation

∂E

∂Wr
=
∂E

∂k

∂k

∂Wr

∂E

∂k
= �

∂k

∂Wr
= h
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Backpropagation (autoencoder walk-through)

Forwardpagate

k = W rh

Backpropagation

∂E

∂h
=
∂k

∂h

∂E

∂k
∂E

∂k
= �

∂k

∂h
= Wr
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Backpropagation (autoencoder walk-through)

Forwardpagate

h = σ(z)

Backpropagation

∂E

∂z
=
∂h

∂z

∂E

∂h
∂E

∂h
= �

∂h

∂z
= σ′(z) = σ(z)(1− σ(z))
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Backpropagation (autoencoder walk-through)

Forwardpagate

z = W e i

Backpropagation

∂E

∂We
=
∂E

∂z

∂k

∂We

∂E

∂k
= �

∂k

∂We
= i
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Backpropagation (autoencoder walk-through)

Forwardpagate

z = W e i

Backpropagation

∂E

∂i
=
∂z

∂i

∂E

∂z
∂E

∂z
= �

∂z

∂i
= We
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Backpropagation (autoencoder walk-through)

Forwardpagate + Error

z = W e i

E =
1

2
(‖o − i‖)2

Backpropagation

∂E

∂i
=
∂z

∂i

∂E

∂z
+
∂E

∂i
∂z

∂i
= We

∂E

∂i
= −(o − i)
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Backpropagation for recursive neural nets

Backpropagation can be modified for tree structures and to
adjust for a distributed error function.

We know that

∂E

∂x
=
∑
y∈Y

∂y

∂x

∂E

∂y

Y = Successors of x

This allows us to efficiently
calculate all gradients with
respect to E .
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Gradient Update Strategies

Once we have gradients, we needs some function

θt+1 = f (Gt , θt)

that sets models parameters given previous model parameters
and gradients.

Gradient Update Strategies

• Stochastic Gradient Descent

• L-BFGS

• Adaptive Gradient Descent
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Gradient Update Strategies

AdaGrad

Fine-tune the learning rate for each parameter based on the
historical gradient for that parameter.

First, initialise Hi = 0 for each parameter Wi and set step-size
hyperparameter λ. During training, at each iteration:

1 Calculate gradient Gi = δE
δWi

. Update Hi = Hi + G 2
i .

2 Calculate parameter-specific learning rate λi = λ√
Hi

.

3 Update parameters as in SGD: Wi = Wi − λiGi .

Explanation

Parameter-specific learning rate λi decays over time, and more
quickly when weights are updated more heavily.
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Learning Tricks

Various things will improve your odds

• Pre-train any deep model with layer-wise autoencoders

• Regularise all embeddings (with L1/L2 regulariser)

• Train in randomised mini-batches rather than full batch

• Use patience/early stopping instead of training to
convergence
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Application: Sentiment labelling with RecNNs

We can use a recursive neural network to learn sentiment:

• sentiment signal attached to root (sentence) vector

• trained using softmax function and backpropagation

Sentiment Analysis

Assume the simplest composition
function to begin:

p = g (W (u‖v) + b)

This will work ...

... sort of.



99/113

Application: Sentiment labelling with RecNNs

We can use a recursive neural network to learn sentiment:

• sentiment signal attached to root (sentence) vector

• trained using softmax function and backpropagation

Sentiment Analysis

Assume the simplest composition
function to begin:

p = g (W (u‖v) + b)

This will work ...

... sort of.



100/113

Making sentiment analysis work better

The basic system will work. However, to produce
state-of-the-art results, a number of improvements and tricks
are necessary.

Composition Function

• Parametrise the composition
function

• More complex word
representations

• Structure the composition
on parse trees

• Convolution instead of
binary composition

Other Changes

• Instead of the root node,
evaluate on all nodes

• Add autoencoders as a
second learning signal

• Initialise with pre-trained
representations

• Drop-out training and
similar techniques
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Corpora for sentiment analysis

Corpora

• Movie Reviews (Pang and Lee)
• Relatively small, but has been used extensively
• SOTA ∼87% accuracy (Kalchbrenner et al., 2014)
• http://www.cs.cornell.edu/people/pabo/

movie-review-data/

• Sentiment Treebank
• Sentiment annotation for sentences and sub-trees
• SOTA ∼49% accuracy (Kalchbrenner et al., 2014)
• http://nlp.stanford.edu/sentiment/

treebank.html

• Twitter Sentiment140 Corpora
• Fairly large amount of data
• Twitter language is strange!
• SOTA ∼87% (Kalchbrenner et al., 2014)
• http://help.sentiment140.com/for-students/

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://nlp.stanford.edu/sentiment/
treebank.html
http://help.sentiment140.com/for-students/
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Application: Cross-lingual Document Classification

One application for multilingual representations is cross-lingual
annotation transfer. This can be evaluated with cross-lingual
document classification (Klementiev et al., 2012):
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Cross-lingual Document Classification

Two Stage Strategy

1 Representation Learning
Using the large-margin objective introduced earlier, it is
easy to train a model on large amounts of parallel data
(here: Europarl) using any composition function together
with AdaGrad and an L2 regularizer.

2 Classifier training
Subsequently, sentence or document representations can
be used as input to train a supervised classifier (here:
Averaged Perceptron). Assuming the vectors are
semantically similar across languages this classifier should
be useful independent of its training language.
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CLDC Results

Two composition models in the multilingual setting

fADD(a) =
∑|a|

i=0 ai fBI (a) =
∑|a|

i=1 tanh (xi−1 + xi)

en→de de→en
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80
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CLDC Results

Two composition models in the multilingual setting

fADD(a) =
∑|a|

i=0 ai fBI (a) =
∑|a|

i=1 tanh (xi−1 + xi)

More details on these results

Come and see the talk for Hermann and Blunsom (2014),
Multilingual Models for Compositional Distributed Semantics

Monday, 10:10am, Grand Ballroom VI, Session 1B



105/113

Outline

1 Distributional Semantics

2 Neural Distributed Representations

3 Semantic Composition

4 Last Words
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Recap

Distributional models:

• Well motivated

• Empirically successful at the word level

• Useable at the phrase level

But. . .

• No easy way from word to sentence

• Primarily oriented towards measuring word similarity

• Large number of discrete hyperparameters which must be
set manually
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Recap

Distributed neural models:

• Free us from the curse of distributional hyperparameters

• Fast

• Compact

• Generative

• Easy to jointly condition representations
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Recap

Distributed compositional models:

• Allow classification over and generation from phrase,
sentence, or document representations

• Recursive neural networks integrate syntactic structure

• ConvNets go from local to global context hiearchically

• Multimodal embeddings
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Conclusions

• Neural methods provide us with a powerful set of tools for
embedding language.

• They are easier to use than people think.

• They are true to a generalization of the distributional
hypothesis: meaning is inferred from use.

• They provide better ways of tying language learning to
extra-linguistic contexts (images, knowledge-bases,
cross-lingual data).

• You should use them.

Thanks for listening!
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