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Abstract. Combined approaches have become a successful technique for CQ an-
swering over ontologies. Existing algorithms, however, are restricted to the logics
underpinning the OWL 2 profiles. Our goal is to make combined approaches ap-
plicable to a wider range of ontologies. We focus on RSA: a class of Horn ontolo-
gies that extends the profiles while ensuring tractability of standard reasoning.
We show that CQ answering over RSA ontologies without role composition is
feasible in NP. Our reasoning procedure generalises the combined approach for
ELHO and DL-LiteR using an encoding of CQ answering into fact entailment
w.r.t. a logic program with function symbols and stratified negation. Our results
are significant in practice since many out-of-profile Horn ontologies are RSA.

1 Introduction

Answering conjunctive queries (CQs) over ontology-enriched datasets is a core reason-
ing task in many applications. CQ answering is computationally expensive: for expres-
sive description logics it is at least doubly exponential in combined complexity [10],
and it remains single exponential even when restricted to Horn ontologies [15].

Recently, there has been a growing interest in ontology languages with favourable
computational properties, such as EL [1], DL-Lite [2] or the rule language datalog,
which underpin the EL, QL and RL profiles of OWL 2 [13], respectively. Standard
reasoning tasks (e.g., satisfiability checking) are tractable for all three profiles. CQ an-
swering is NP-complete (in combined complexity) for the QL and RL profiles, and
PSPACE-complete for OWL 2 EL [18]; PSPACE-hardness of CQ answering in EL is
due to role composition axioms and the complexity further drops to NP if these are
restricted to express role transitivity and reflexivity [16]. Furthermore, in all these cases
CQ answering is tractable in data complexity. Such complexity bounds are rather be-
nign, and this has spurred the development of a wide range of practical algorithms.

A technique that is receiving increasing attention is the combined approach [12, 7,
8, 11, 17]. Data is augmented in a query-independent way to build (in polynomial time)
a canonical interpretation that might not be a model, but that can be exploited for CQ an-
swering in two alternative ways: either the query is rewritten and then evaluated against
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the interpretation [7] or the query is first evaluated over the interpretation and unsound
answers are discarded by means of a filtration process [17, 11]. With the exception of
[5] and [19] who focus on decidable classes of existential rules, algorithms based on
the combined approach are restricted to (fragments of) the OWL 2 profiles.

Our goal is to push the boundaries of the logics underpinning the OWL 2 profiles
while retaining their nice complexity for CQ answering. Furthermore, we aim to devise
algorithms that seamlessly extend the combined approach and which can be applied to
a wide range of ontologies.

Recently, a class of Horn ontologies, called role safety acyclic (RSA), has been pro-
posed [3, 4]. RSA extends the profiles while ensuring tractability of standard reasoning
tasks: it allows the use of all language constructs in the profiles, while establishing poly-
nomially checkable conditions that preclude their harmful interaction. Roles in an RSA
ontology are partitioned into safe and unsafe depending on the way they are used, where
the latter ones are involved in potentially harmful interactions which could increase
complexity; an acyclicity condition is imposed on unsafe roles to ensure tractability. A
recent evaluation revealed that over 60% of out-of-profile Horn ontologies are RSA [4].

In this paper, we investigate CQ answering over RSA ontologies and show its fea-
sibility in NP. This result has significant implications in practice as it shows that CQ
answering over a wide range of out-of-profile ontologies is no harder (in combined
complexity) than over a database. Our procedure generalises the combined approach for
ELHO [17] and DL-LiteR [11] in a seamless way by means of a declarative encoding
of CQ answering into fact entailment w.r.t. a logic program (LP) with function symbols
and stratified negation. The least Herbrand model of this program can be computed
in time polynomial in the ontology size and exponential in query size. We have imple-
mented our encoding using the LP engine DLV [9] and tested its feasibility with encour-
aging results. Proofs can be found online at http://tinyurl.com/pqmxa5u.

2 Preliminaries

Logic Programs We use the standard notions of constants, terms, and atoms in first-
order logic (FO). A literal is an atom a or its negation not a. A rule r is an expression
of the form ϕ(~x, ~z)→ ψ(~x) with ϕ(~x, ~z) a conjunction of literals with variables ~x ∪ ~z,
and ψ(~x) a non-empty conjunction of atoms over ~x.3 We denote with vars(r) the set
~x ∪ ~z. With head(r) we denote the set of atoms in ψ, body+(r) is the set of atoms in
ϕ, and body−(r) is the set of atoms which occur negated in r. Rule r is safe if each
variable in vars(r) occurs in body+(r); in this paper we consider only safe rules. Rule
r is definite if body−(r) is empty and it is datalog if it is definite and function-free. A
fact is a rule with empty body and head consisting of a single function-free atom.

A program P is a finite set of rules. Let preds(X) denote the predicates in X , with
X a (set of) atoms or a program. A stratification of P is a function str : preds(P) →
{1, . . . , k}, where k ≤ |preds(P)|, s.t. for every r ∈ P and P ∈ preds(head(r)) it
holds that: (i) for every Q ∈ preds(body+(r)): str(Q) ≤ str(P ), and (ii) for every
Q ∈ preds(body−(r)): str(Q) < str(P ). The stratification partition of P induced

3 We assume rule heads non-empty, and allow multiple atoms.



by str is the sequence (P1, . . . ,Pk), with Pi consisting of all rules r ∈ P such that
maxa∈head(r)(str(pred(a))) = i. The programs Pi are the strata of P . A program is
stratified if it admits a stratification. All definite programs are stratified.

Stratified programs have a least Herbrand model (LHM), which is constructed using
the immediate consequence operator TP . Let U and B be the Herbrand universe and
base of P , resp., and let S ⊆ B. Then, TP(S) consists of all facts in head(r)σ with r ∈
P and σ a substitution from vars(r) to U satisfying body+(r)σ ⊆ S and body−(r)σ∩
S = ∅. The powers of TP are as follows: T 0

P(S) = S, T i+1
P (S) = TP(T

n
P (S)), and

TωP (S) =
⋃∞
i=0 T

n
P (S). Let str be a stratification of P , and let (P1, . . . ,Pk) be its

stratification partition. Also, let U1 = TωP1
(∅) and for each 1 ≤ i ≤ k let Ui+1 =

TωPi+1
(Ui). Then, the LHM of P is Uk and is denoted M [P]. A program P entails a

positive existential sentence α (P |= α) if M [P] seen as a FO structure satisfies α.
We use LPs to encode FO theories. For this, we introduce rules axiomatising the

built-in semantics of the equality (≈) and truth (>) predicates. For a finite signature Σ,
we denote with F>Σ the smallest set with a rule p(x1, x2, . . . , xn)→ >(x1) ∧>(x2) ∧
. . . ∧ >(xn) for each n-ary predicate p in Σ, and with F≈Σ the usual axiomatisation of
≈ as a congruence over Σ. For an LP P , we denote with P≈,> the extension of P to
P ∪ F>Σ ∪ F≈Σ with Σ the signature of P .

Ontologies and Queries We define Horn-ALCHOIQ and specify its semantics via
translation to definite programs. W.l.o.g. we consider a normal form close to that in [14].
Let NC, NR and NI be countable pairwise disjoint sets of concept names, role names
and individuals. We assume {>,⊥} ⊆ NC. A role is an element ofNR∪{R−|R ∈ NR},
where the roles in the latter set are called inverse roles. The function Inv(·) is defined as
follows, where R ∈ NR: Inv(R) = R− and Inv(R−) = R. An RBoxR is a finite set of
axioms (R2) in Table 1, whereR and S are roles;v∗R is the minimal reflexive-transitive
relation over roles s.t. Inv(R) v∗R Inv(S) and R v∗R S hold if R v S ∈ R. A TBox T
is a finite set of axioms (T1)-(T5) where A,B ∈ NC and R is a role.4 An ABox A is a
finite set of axioms of the form (A1) and (A2), with A ∈ NC and R ∈ NR. An ontology
is a finite set of axioms O = R∪ T ∪ A.

OWL 2 specifies the EL, QL, and RL profiles, which are all fragments of Horn-
ALCHOIQ with the exception of property chain axioms and transitivity, which we do
not consider here. An ontology is: (i) EL if it does not contain inverse roles or axioms
(T4); (ii) RL if it does not contain axioms (T5); and (iii) QL if it does not contain axioms
(T2) or (T4), each axiom (T1) satisfies n = 1, and each axiom (T3) satisfies A = >.

A conjunctive query (CQ) Q is a formula ∃~y.ψ(~x, ~y) with ψ(~x, ~y) a non-empty
conjunction of function-free atoms over ~x ∪ ~y, where ~x are the answer variables. We
denote with terms(Q) the set of terms in Q. Queries with no answer variables are
Boolean (BCQs) and for convenience are written as a set of atoms.

We define the semantics by a mapping π into definite rules as in Table 1 and let
π(O) = {π(α) | α ∈ O} 5. An ontology O is satisfiable if π(O)≈,> 6|= ∃y.⊥(y). A
tuple of constants ~c is an answer to Q if O is unsatisfiable, or π(O)≈,> |= ∃~y.ψ(~c, ~y).
The set of answers is written cert(Q,O). This semantics is equivalent to the usual one.

4 Axioms A v ≥nR.B can be simulated by (T1) and (T5).
5 By abuse of notation we say that R− ∈ O whenever R− occurs in O.



Axioms α Definite LP rules π(α)
(R1) R− R(x, y)→ R−(y, x);R−(y, x)→ R(x, y)

(R2) R v S R(x, y)→ S(x, y)

(T1)
dn

i=1Ai v B
∧n

i=1Ai(x)→ B(x)

(T2) A v {a} A(x)→ x ≈ a
(T3) ∃R.A v B R(x, y) ∧A(y)→ B(x)

(T4) A v≤ 1R.B A(x) ∧R(x, y) ∧B(y) ∧R(x, z) ∧B(z)→ y ≈ z
(T5) A v ∃R.B A(x)→ R(x, fA

R,B(x)) ∧B(fA
R,B(x))

(A1) A(a) → A(a)

(A2) R(a, b) → R(a, b)

Table 1: Translation from Horn ontologies into rules.

3 Reasoning over RSA Ontologies

CQ answering is EXPTIME-complete for Horn-ALCHOIQ ontologies [14], and the
EXPTIME lower bound holds already for satisfiability checking. Intractability is due to
and-branching: owing to the interaction between axioms in Table 1 of type (T5) with
either axioms (T3) and (R1), or axioms (T4) an ontology may only be satisfied by large
(possibly infinite) models which cannot be succinctly represented.

RSA is a class of ontologies where all axioms in Table 1 are allowed, but their
interaction is restricted s.t. model size can be polynomially bounded [4]. We recapitulate
RSA ontologies and their properties; letO be an arbitrary Horn-ALCHOIQ ontology.

Roles in O are divided into safe and unsafe. The intuition is that unsafe roles may
participate in harmful interactions.

Definition 1. A role R is unsafe if it occurs in an axiom of the form A v ∃R.B, and
there is a role S s. t. either: 1. R v∗R Inv(S) and S occurs in an axiom of the form
∃S.A v B with A 6= >, or 2. R v∗R S or R v∗R Inv(S) and S occurs in an axiom of
the form A v≤ 1S.B. A role R in O is safe, if it is not unsafe.

It follows from Definition 1 that RL, QL, and EL ontologies contain only safe roles.

Example 1. Let OEx be the (out-of-profile) ontology with the following axioms:

A(a) (1)
A v D (2)

A v ∃S−.C (3)
∃S.A v D (4)

D v ∃R.B (5)
B v ∃S.D (6)

R v T− (7)
S v T (8)

Roles R, S, T , and T− are safe; however, S− is unsafe as it occurs in an axiom
(T5) while S occurs in an axiom (T3). We will OEx use as a running example.

The distinction between safe and unsafe roles makes it possible to strengthen the
translation π in Table 1 while preserving satisfiability and entailment of unary facts.
The translation of axioms (T5) with R safe can be realised by replacing the functional
term fAR,B(x) with a Skolem constant vAR,B unique to A, R and B. The modified trans-
formation generally leads to a smaller LHM: if all roles are safe then O is mapped into
a datalog program whose LHM is polynomial in the size of O.



Definition 2. Let vAR,B be a fresh constant for each concept A,B, and each safe roleR
in O. Then πsafe maps each α ∈ O to (i) A(x)→ R(x, vAR,B) ∧B(vAR,B) if α is of type
(T5) with R safe; (ii) π(α), otherwise. Let P = {πsafe(α) | α ∈ O} and PO = P≈,>.

Example 2. Mapping πsafe differs from π on axiom (5) and (6). For instance, (5) yields
D(x)→ R(x, vDR,B) ∧B(vDR,B).

Theorem 1. [4, Theorem 2] Ontology O is satisfiable iff PO 6|= ∃y.⊥(y). If O is satis-
fiable, then O |= A(c) iff A(c) ∈M [PO] for all A ∈ NC and c ∈ NI from O.

If O has unsafe roles the model M [PO] might be infinite. We next define a datalog
program PRSA by introducing Skolem constants for all axioms (T5) in O. PRSA intro-
duces also a predicate PE which ‘tracks’ all binary facts generated by the application
of Skolemised rules over unsafe roles. A unary predicate U is initialised with the con-
stants associated to unsafe roles and a rule U(x) ∧ PE(x, y) ∧ U(y) → E(x, y) stores
the PE-facts originating from unsafe roles using a predicate E. Then,M [PO] is of poly-
nomial size when the graph induced by the extension of E is an oriented forest (i.e., a
DAG whose underlying undirected graph is a forest). When this condition is fulfilled
together with some additional conditions which preclude harmful interactions between
equality-generating axioms and inverse roles, we say that O is RSA.

Definition 3. Let PE and E be fresh binary predicates, U be a fresh unary predicate,
and uAR,B be a fresh constant for each concept A,B and each role R in O. Function
πRSA maps each (i) α ∈ O to A(x)→ R(x, uAR,B)∧B(uAR,B)∧PE(x, uAR,B), if α is of
type (T5), and to (ii) π(α), otherwise. Let PRSA be the smallest program that contains
πRSA(α) for each α ∈ O, and a rule U(x) ∧ PE(x, y) ∧ U(y) → E(x, y) and a fact
U(uAR,B) for each uAR,B with R unsafe.

Let MRSA be the LHM of PRSA
≈,>. Then, GO is the digraph with an edge (c, d)

for each E(c, d) in MRSA. Ontology O is equality-safe if: 1. for each pair of atoms
w ≈ t (with w and t distinct) and R(t, uAR,B) in MRSA and each role S s.t. R v
Inv(S), it holds that S does not occur in an axiom (T4); and 2. for each pair of atoms
R(a, uAR,B), S(u

A
R,B , a) in MRSA, with a ∈ NI, there does not exist a role T such that

both R v∗R T and S v∗R Inv(T ) hold.
We say that O is RSA if it is equality-safe and GO is an oriented forest.

The fact that GO is a DAG ensures that the LHM M [PO] is finite, whereas the lack
of ‘diamond-shaped’ subgraphs in GO guarantees polynomiality of M [PO]. The safety
condition on ≈ will ensure that RSA ontologies enjoy a special form of forest-model
property that we exploit for CQ answering. Every ontology in QL (which is equality-
free), RL (where PRSA has no Skolem constants) and EL (no inverse roles) is RSA.

Theorem 2. [4, Theorem 3] If O is RSA, then |M [PO]| is polynomial in |O|.

Tractability of standard reasoning for RSA ontologies follows from Theorems 1 and
2. While the ontologyOEx from Example 1 cannot be captured by any of the profiles of
OWL 2, it can be checked that OEx is RSA.
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Fig. 1: Original (a) and annotated (b) model for OEx

4 Answering Queries over RSA Ontologies

We next present our combined approach with filtration to CQ answering over RSA
ontologies, which generalises existing techniques for DL-LiteR and ELHO.

In Section 4.1 we take the LHM for RSA ontologies given in Section 3 as a starting
point and extend it to a more convenient canonical model over an extended signature. In
order to deal with the presence of inverse roles in RSA ontologies, the extended model
captures the “directionality” of binary atoms; this will allow us to subsequently extend
the filtration approach from [17] in a seamless way. The canonical model is captured
declaratively as the LHM of a logic program over the extended signature.

As usual in combined approaches, this model is not universal and the evaluation of
CQs may lead to spurious, i.e. unsound answers. In Section 4.2, we specify our filtration
approach for RSA ontologies as the LHM of a stratified program. In the following, we
fix an arbitrary RSA ontology O = R ∪ T ∪ A and an input CQ Q, which we use to
parameterise all our technical results.

4.1 Constructing the Canonical Model

The LHM M [PO] in Section 3 is a model ofO that preserves entailment of unary facts.
It generalises the canonical model in [17], which is specified as the LHM of a datalog
program obtained by Skolemising all axioms (T5) into constants and hence coincides
withM [PO] whenO is EL. However, RSA ontologies allow for unsafe roles and hence
M [PO] may contain also functional terms.

A main source for spurious matches when evaluating Q over the canonical model
of an EL ontology is the presence of ‘forks’—confluent chains of binary atoms—in the
query which map to ‘forks’ in the model over Skolem constants. This is also problem-
atical in our setting since RSA ontologies have the forest-model property.

Example 3. Fig. 1.a) depicts the LHM M [POEx ] of OEx (the function symbol fS,C is
abbreviated with f ). We see models as digraphs where the direction of edges reflects
the satisfaction of axioms (T5). Consider Q1 = {A(y1), R(y1, y2), R(y3, y2)}. Substi-
tution (y1 7→ a, y2 7→ vDR,B , y3 7→ vBS,D) is a spurious match of Q1 as it relies on edges
(a, vDR,B) and (vBS,D, v

D
R,B)) in M [POEx ], which form a fork over vDR,B .

In EL, only queries which contain forks can be mapped to forks in the model. This
is no longer the case for RSA ontologies, where forks in the model can lead to spurious
answers even for linearly-shaped queries due to the presence of inverse roles.
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Fig. 2: Forks in the presence of inverse roles

Example 4. Let Q2 = {A(y1), R(y1, y2), T (y2, y3)}. Then (y1 7→ a, y2 7→ vDR,B ,

y3 7→ f(a)) is a spurious match for Q2 as it relies on the fork (a, vDR,B), (f(a), v
D
R,B).

Axiom R v T− causes a linear match over R and T to become a fork over R and T−.

To identify such situations, we compute a canonical model over an extended signa-
ture that contains fresh roles Rf and Rb for each role R. Annotations f (forward) and
b (backwards) are intended to reflect the directionality of binary atoms in the model,
where binary atoms created to satisfy an axiom (T5) are annotated with f . To realise
this intuition declaratively, we modify the rules in PO for axioms (T5) as follows. If R
is safe, then we introduce the rule A(x)→ Rf (x, vAR,B) ∧ B(vAR,B); if it is unsafe, we
introduce rule A(x)→ Rf (x, fAR,B(x)) ∧B(fAR,B) instead.

Superroles inherit the direction of the subrole, while roles and their inverses have
opposite directions. To reflect this we include the following rules where ∗ ∈ {f, b}:
(i) R∗(x, y) → S∗(x, y) for each axiom R v S in O; (ii) Rf (x, y) → Inv(R)b(y, x)
and Rb(x, y) → Inv(R)f (y, x) for each role R; and (iii) R∗(x, y) → R(x, y) for
each role R. Rules (ii) are included only if O has inverse roles, and rules (iii) ‘copy’
annotated atoms to atoms over the original predicate. Fig. 1.b) shows the annotated
model for POEx : solid (resp. dotted) lines represent ‘forward’ (resp. ‘backward’) atoms.

Fig. 2 depicts the ways in which query matches may spuriously rely on a fork in
an annotated model. Nodes represent the images in the model of the query terms; solid
lines indicate the annotated atoms responsible for the match; and dashed lines depict
the underpinning fork. The images of s and t must not be equal; additionally, y cannot
be mapped to (a term identified to) a constant in O. For instance, the match in Ex. 4 is
spurious as it corresponds to pattern (b) in Fig. 2. Unfortunately, the annotated model
can present ambiguity: it is possible for both atoms Rf (s, t) and Rb(s, t) to hold.

Example 5. Consider Q2 from Ex. 4. (y1 7→ a, y2 7→ vDR,B , y3 7→ vBS,D) is also a
match, where both T f (vDR,B , v

B
S,D) and T b(vDR,B , v

B
S,D) hold in the annotated model.

Such ambiguity is problematic for the subsequent filtration step. To disambiguate,
we use a technique similar to the one in [11] for DL-LiteR, where the idea is to unfold
certain cycles of length one and two in the canonical model. We unfold self-loops to
cycles of length three while cycles of length two are unfolded to cycles of length four.

Example 6. Fig. 3 a) shows the model expansion for OEx. As one can see, the ambigu-
ities are resolved. Fig. 3 b) shows the unfolding of a generic self-loop over a safe role
R for which T exists s.t. both R v∗R T and R v∗R Inv(T ) hold.

We now specify a program that yields the required model.
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Definition 4. Let confl(R) be the set of roles S s.t. R v∗R T and S v∗R Inv(T ) for
some T . Let ≺ be a strict total order on triples (A,R,B), with R safe and A and B
concept names B in O. For each (A,R,B), let:

(i) vA,0R,B , vA,1R,B , and vA,2R,B be fresh constants;

(ii) self(A,R,B) be the smallest set containing vA,0R,B and vA,1R,B if R ∈ confl(R);

(iii) cycle(A,R,B) be the smallest set containing, for each S ∈ confl(R), vD,0S,C if
(A,R,B) ≺ (D,S,C); vD,1S,C if (D,S,C) ≺ (A,R,B); fDS,C(v

A,0
R,B) and every

fFT,E(v
A,0
R,B) s. t. uDS,C ≈ uFT,E is in MRSA, if S is unsafe.

(iv) unfold(A,R,B) = self(A,R,B)∪ cycle(A,R,B).

Let Rf and Rb be fresh binary predicates for each role R in O, NI be a fresh unary
predicate, and notIn be a built-in predicate which holds when the first argument is an
element of second argument. Let P be the smallest program with a rule → NI(a) for
each constant a and all rules in Fig. 4 and EO = P≈,>.

Symbols/Axioms in O Logic Programming Rules
ax. α not of type (T5) π(α)

R v S, ∗ ∈ {f, b} R∗(x, y)→ S∗(x, y)

R role, ∗ ∈ {f, b}
R∗(x, y)→ R(x, y)

Rf (x, y)→ Inv(R)b(y, x)
Rb(x, y)→ Inv(R)f (y, x)

ax. (T5), R unsafe A(x)→ Rf (x, fA
R,B(x)) ∧B(fA

R,B(x))

ax. (T5), R safe

A(x) ∧ notIn(x, unfold(A,R,B))→ Rf (x, vA,0
R,B) ∧B(vA,0

R,B)

if R ∈ confl(R), for every i = 0, 1:
A(vA,i

R,B)→ Rf (vA,i
R,B , v

A,i+1
R,B ) ∧B(vA,i+1

R,B )

for every x ∈ cycle(A,R,B):
A(x)→ Rf (x, vA,1

R,B) ∧B(vA,1
R,B)

Fig. 4: Rules in the program EO

The set confl(R) contains roles that may cause ambiguity in conjunction with R.
The ordering ≺ determines how cycles are unfolded using auxiliary constants. Each
axiom A v ∃R.B with R safe is Skolemised by default using vA,0R,B , except when the
axiom applies to a term in unfold(A,R,B) where we use vA,1R,B or vA,2R,B instead.



(1) ψ(~x, ~y)→ QM(~x, ~y)

(2) → named(a) for each constant a in O
(3a) QM(~x, ~y),not NI(yi)→ id(~x, ~y, i, i), for each 1 ≤ i ≤ |~y|
(3b) id(~x, ~y, u, v)→ id(~x, ~y, v, u)
(3c) id(~x, ~y, u, v) ∧ id(~x, ~y, v, w)→ id(~x, ~y, u, w)

for all R(s, yi), S(t, yj) in Q with yi, yj ∈ ~y
(4a) Rf (s, yi) ∧ Sf (t, yj) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)
for all R(s, yi), S(yj , t) in Q with yi, yj ∈ ~y:
(4b) Rf (s, yi) ∧ Sb(yj , t) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)
for all R(yi, s), S(yj , t) in Q with yi, yj ∈ ~y:
(4c) Rb(yi, s) ∧ Sb(yj , t) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)

for all R(yi, yj), S(yk, yl) in Q with yi, yj , yk, yl ∈ ~y:
(5a) Rf (yi, yj) ∧ Sf (yk, yl) ∧ id(~x, ~y, j, l) ∧ yi ≈ yk ∧ not NI(yi)→ id(~x, ~y, i, k)
(5b) Rf (yi, yj) ∧ Sb(yk, yl) ∧ id(~x, ~y, j, k) ∧ yi ≈ yl ∧ not NI(yi)→ id(~x, ~y, i, l)
(5c) Rb(yi, yj) ∧ Sb(yl, yk) ∧ id(~x, ~y, i, l) ∧ yj ≈ yk ∧ not NI(yj)→ id(~x, ~y, j, k)

for each R(yi, yj) in Q with yi, yj ∈ ~y, and ∗ ∈ {f, b}:
(6) R∗(yi, yj) ∧ id(~x, ~y, i, v) ∧ id(~x, ~y, j, w)→ AQ∗(~x, ~y, v, w)

(7a) AQ∗(~x, ~y, u, v)→ TQ∗(~x, ~y, u, v), for each ∗ ∈ {f, b}
(7b) AQ∗(~x, ~y, u, v) ∧ TQ∗(~x, ~y, v, w)→ TQ∗(~x, ~y, u, w), for each ∗ ∈ {f, b}
(8a) QM(~x, ~y) ∧ not named(x)→ sp(~x, ~y), for each x ∈ ~x
(8b) fk(~x, ~y)→ sp(~x, ~y)
(8c) TQ∗(~x, ~y, v, v)→ sp(~x, ~y), for each ∗ ∈ {f, b}
(9) QM(~x, ~y) ∧ not sp(~x, ~y)→ Ans(~x)

Table 2: Rules in PQ. Variables u, v, w from U are distinct.

Theorem 3. The following holds: (i) M [EO] is polynomial in |O| (ii) O is satisfiable
iff EO 6|= ∃y.⊥(y) (iii) if O is satisfiable, O |= A(c) iff A(c) ∈ M [EO] and (iv) there
are no terms s, t and role R s.t. EO |= Rf (s, t) ∧Rb(s, t).

4.2 Filtering Unsound Answers

We now define a program PQ that can be used to eliminate all spurious matches of Q
over the annotated model ofO. The rules of the program are summarised in Table 2. We
will refer to all terms in the model that are not equal to a constant in O as anonymous.

Matches where an answer variable is not mapped to a constant in O are spurious.
We introduce a predicate named and populate it with such constants (rules (2)); then,
we flag answers as spurious using a rule with negation (rules (8a)).

To detect forks we introduce a predicate fk , whose definition in datalog encodes the
patterns in Fig. 2 (rules (4)). If terms s and t in Fig. 2 are existential variables mapping
to the same anonymous term, further forks might be recursively induced.

Example 7. Let Q3 = {A(y1), R(y1, y2), T (y2, y3), C(y4), R(y4, y5), S(y5, y3)} be
a BCQ over OEx, with (y1 7→ a, y2 7→ vD,0R,B , y3 7→ vB,0S,D, y4 7→ f(a), y5 7→ vD,0R,B)
being its only match over the model in Fig. 3a). The identity of y2, y5 induces a fork on
the match of R(y1, y2) and R(y4, y5).

We track identities in the model relative to a match using a fresh predicate id. It is ini-
tialised as the minimal congruence relation over the positions of the existential variables



in the query which are mapped to anonymous terms (rules (3)). Identity is recursively
propagated (rules (5)). Matches involving forks are marked as spurious by rule (8b).

Spurious matches can also be caused by cycles in the model and query satisfy-
ing certain requirements. First, the positions of existential variables of the query must
be cyclic when considering also the id relation. Second, the match must involve only
anonymous terms. Finally, all binary atoms must have the same directionality.
Example 8. Consider the following BCQs overOEx:Q4 = {S(y1, y2), R(y2, y3), S(y3,
y4), R(y4, y1)}, Q5 = {T (y1, y2), S(y2, y3), R(y3, y1)}, and Q6 = {S(y1, y2), R(y2,
y3), S(y3, y4), R(y4, y5)}. Then, (y1 7→ vD,0R,B , y2 7→ vB,0S,D, y3 7→ vD,1R,B , y4 7→ vB,1S,D) is
a match of Q4 inducing a cycle: all binary atoms are mapped ‘forward’ and the cycle
involves only anonymous terms. In contrast, match (y1 7→ vD,0R,B , y2 7→ f(a), y3 7→ a)
overQ5 does not satisfy the requirements as it involves constant a. Note thatQ4 andQ5

are cyclic. Q6 is not cyclic; thus, although the match (y1 7→ vD,0R,B , y2 7→ vB,0S,D, y3 7→
vD,1R,B , y4 7→ vB,1S,D, y5 7→ vD,0R,B) involves a cycle in the model, it is not spurious.

Such cycles are recognised by rules (6) and (7). Rule (6) defines potential individual
arcs in the cycle with their directionality using fresh predicates AQ∗ with ∗ ∈ {f, b}.
Rules (7) detect the cycles recursively using predicates TQ∗. Matches involving cycles
are marked as spurious by rules (8c). All correct answers are collected by rule (9) using
predicate Ans. We next define program PQ and its extension PO,Q with EO in Def. 4,
which can be exploited to answer Q w.r.t. O.

Definition 5. Let Q = ∃~y.ψ(~x, ~y) be a CQ, let QM, sp, and fk be fresh predicates
of arity |~x| + |~y|, let id, AQ∗, and TQ∗, with ∗ ∈ {f, b}, be fresh predicates of arity
|~x| + |~y| + 2, let Ans be a fresh predicate of arity |~x|, let named be a fresh unary
predicate, and let U be a set of fresh variables s.t. |U | ≥ |~y|. Then, PQ is the smallest
program with all rules in Table 2, and PO,Q is defined as EO ∪ PQ.

Note that, to distinguish between constants in O (recorded by named in PQ) and their
closure under equality (recorded by NI in EO), we do not axiomatise equality w.r.t. PQ.

Theorem 4. (i) PO,Q is stratified; (ii) M [PO,Q] is polynomial in |O| and exponential
in |Q|; and (iii) if O is satisfiable, ~x ∈ cert(Q,O) iff PO,Q |= Ans(~x).

Theorem 4 suggests a worst-case exponential algorithm that, givenO andQ, materi-
alises PO,Q and returns the extension of predicate Ans. This procedure can be modified
to obtain a ‘guess and check’ algorithm applicable to BCQs. This algorithm first mate-
rialisesEO in polynomial time; then, it guesses a match σ toQ over the materialisation;
finally, it materialises (PO,Q)σ, where variables ~x and ~y are grounded by σ. The latter
step can also be shown to be tractable.

Theorem 5. Checking whether O |= Q is NP-complete in combined complexity.

5 Proof of Concept

We implemented our approach using the DLVsystem,6 which supports function sym-
bols and stratified negation. For testing, we used the LUBM ontology [6] (which con-
tains only safe roles) and the Horn fragments of the Reactome and Uniprot (which are

6 http://www.dlvsystem.com/dlv/



Ontology Facts (M1) Model M2/M3 q1(M4/M5/M6) q2(M4/M5/M6) q3(M4/M5/M6) q4(M4/M5/M6)
Reactome 54·103 8s / 242·103 6s / 10 / 0% 5s / 11 / 0% 6s / 50 / 48%

107·103 16s / 485·103 14s / 11 / 0% 14s / 17 / 0% 12s / 122 / 38%
159·103 21s / 728·103 42s / 17 / 0% 44s / 23 / 0% 36s/ 216 / 35%
212·103 19s / 970·103 19s / 21 / 0% 15s/ 24 / 0% 14s/ 299 / 34%

LUBM 37·103 4s / 213·103 11s / 2350 / 86% 4s / 650/ 96% 4s / 1580/ 0% 5s / 1743/ 0%
75·103 6s / 395·103 45s / 9340/ 85% 8s / 1640/ 97% 9s / 7925/ 0% 8s / 5969/ 0%
113·103 8s / 550·103 108s / 24901/ 83% 13s / 2352/ 98% 13s / 18661/ 0% 13s / 10870/ 0%
150·103 11s / 682·103 188s / 52196/ 83% 17s / 2550/ 98% 18s / 32370/ 0% 24s / 15076/ 0%
188·103 12s / 795·103 305s / 91366/ 82% 31s / 2550/ 98% 40s / 49555/ 0% 38s / 18517/ 0%
226·103 14s / 894·103 390s / 148340/ 80% 39s / 2550/ 98% 46s / 72438/ 0% 40s / 20404/ 0%

Uniprot 10·103 1s / 51·103 1s / 2 / 0% 1s / 0 / 0% 1s / 18 / 28%
49·103 4s / 246·103 3s / 7 / 0% 3s / 0 / 0% 3s / 89 / 26%
98·103 9s / 487·103 7s / 9 / 0% 6s / 1 / 0% 6s / 193 / 23%
146·103 11s / 726·103 13s / 14 / 0% 12s / 1 / 0% 10s / 273 / 22%

Table 3: Evaluation Results

RSA, but contain also unsafe roles).7 LUBM comes with a data generator; Reactome
and Uniprot come with large datasets, which we sampled. Test queries are given in the
appendix. We measured (M1) number of facts of the given data; (M2) materialisation
times for the canonical model; (M3) model size; (M4) materialisation times for PQ;
(M5) number of candidate query answers; and (M6) percentage of spurious answers.
Experiments were performed on a MacBook Pro laptop with 8GB RAM and an Intel
Core 2.4 GHz processor.

Table 3 summarises our results. Computation times for the models scale linearly in
data size. Model size is at most 6 times larger than the original data, which is a reason-
able growth factor in practice. As usual in combined approaches (e.g. see [17]), query
processing times depend on the number of candidate answers; thus, the applicability
of the approach largely depends on the ratio between spurious and correct answers.
Queries q1-q2 in Reactome and Uniprot are realistic queries given as examples in the
EBI website. Neither of these queries lead to spurious answers, and processing times
scale linearly with data size. No query in the LUBM benchmark leads to spurious an-
swers (e.g., LUBM queries q3 and q4 in Table 3). We manually crafted one additional
query for Reactome and Uniprot (q3 in both cases) and two for LUBM (queries q1 and
q2), which lead to a high percentage of spurious answers. Although these queries are
challenging, we can observe that the proportion of spurious answers remains constant
with increasing data size. Finally, note that query q1 in LUBM retrieves the highest
number of candidate answers and is thus the most challenging query. Our prototype and
all test data, ontologies and queries are available at http://tinyurl.com/qcolx3w.

6 Conclusions and Future Work

We presented an extension to the combined approaches to CQ answering that can be
applied to a wide range of out-of-profile Horn ontologies. Our theoretical results unify
and extend existing techniques for ELHO and DL-LiteR in a seamless and elegant way.
Our preliminary experiments indicate the feasibility of our approach in practice.

We anticipate several directions for future work. First, we have not considered logics
with transitive roles. Recently, it was shown that CQ answering over EL ontologies with

7 http://www.ebi.ac.uk/rdf/platform



transitive roles is feasible in NP [16]. We believe that our techniques can be extended
in a similar way. Finally, we would like to optimise our encoding into LP and conduct
a more extensive evaluation.
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Appendix

Queries Used for Proof of Concept

Reactome queries:
q1 : {Pathway(y1), pathwayComponent(y1, y2),BiochemicalReaction(y2),

participant(y2, y3),Protein(y3)}
q2 : {Pathway(y1), pathwayComponent(y1, y2),BiochemicalReaction(y2),

participant(y2, y3),Complex(y3)}
q3 : {participantStoichiometry(y1, y2), physicalEntity(y2, y3),

participantStoichiometry(y3, y4), physicalEntity(y4, y3)}
LUBM queries:
q1 : {Student(y1), takesCourse(y1, y2),Student(y3), takesCourse(y3, y2),Course(y2),

advisor(y1, y3), advisor(y3, y4)}
q2 : {headOf(y1, y2), headOf(y3, y2),Department(y2)}
q3 : {Student(y1), takesCourse(y1, y2),Course(y2), teacherOf(y2, y3)}
q4 : {Professor(y1), publicationAuthor(y2, y1),Publication(y2),memberOf(y1, y3),

Department(y3)}
Uniprot queries:
q1 : {Protein(y1), annotation(y1, y2),TransmembraneAnnotation(y2), range(y2, y3)}
q2 : {Protein(y1), organism(y1, y2), annotation(y1, y2)}
q3 : {locatedIn(y1, y2), cellularComponent(y2, y3), cellularComponent(y4, y3),

CellularComponent(y3)}

Fig. 5: Queries used for proof of concept: all variables are existentially quantified

Proofs for the Main Technical Results

In the following, we will consider an RSA ontology O and a CQ Q = ∃~y.ψ(~x, ~y). For
PO,Q,EO, and π(O)≈,>, we will refer to their LHMs asM,Mc (canonical), andMu

(universal), respectively. Note that, as PO,Q is stratified, it is the case that:Mc ⊆M.
We start with some notations concerning terms and atoms. For terms s and t, we

write s ≤ t (s < t) iff s is (strictly) contained in t. The root of a term t is its
non-functional part: root(f1(f2(. . . (fn(a)) . . .))) = a. We say that a term t has type
(A,S,C) if t is either of the form vA,iS,C or of the form fAS,C(v).

The derivation level of a ground atom a = p(~t) ∈ M [P ], where P is a stratified
program, is denoted as level(a,M [P ]) and is a pair of natural numbers (k, l) where
k denotes the strata of p and l is the smallest number such that a ∈ T lPk

(U), where
U = ∅, if k = 1, and U = TωPk−1

(Ui), otherwise. The derivation level of a ground
term t ∈ terms(M [P ]), where P is a stratified program, is denoted as level(t,M [P ])
and is a pair of natural numbers (k, l) such that t occurs in an atom a ∈ M [P ] s.t.
level(a,M [P ]) = (k, l), but t does not occur in any atom a ∈ M [P ] such that
level(a,M [P ]) = (k′, l′), and k′ < k, or k′ = k and l′ < l. When the program P



has only one stratum, the stratum is dropped from the derivation level of corresponding
atoms/terms.

We next relate terms inMc andMu to terms in MRSA.

Lemma 1. Let ηc : terms(Mc) → terms(MRSA) be the following function: ηc(t) ={
{a}, if t = a ∈ NI

uAR,B , if t is of type (A,R,B)
. Then, for every t1, t2 ∈ terms(Mc) it holds that:

– A(t1) ∈Mc implies A(ηc(t1)) ∈MRSA,
– R(t1, t2) ∈Mc implies R(ηc(t1), ηc(t2)) ∈MRSA,
– t1 ≈ t2 ∈Mc implies ηc(t1) ≈ ηc(t2) ∈MRSA.

Proof. By induction on the derivation level of atoms inMc. 2

Lemma 2. Let ηu : terms(Mu)→ terms(MRSA) be the following function: ηu(t) ={
{a}, if t = a ∈ NI

uAR,B , if t is of type (A,R,B)
. Then, for every t1, t2 ∈ terms(Mu) it holds that:

– A(t1) ∈Mu implies A(ηu(t1)) ∈MRSA,
– R(t1, t2) ∈Mu implies R(ηu(t1), ηu(t2)) ∈MRSA,
– t1 ≈ t2 ∈Mu implies ηu(t1) ≈ ηu(t2) ∈MRSA.

Proof. By induction on the derivation level of atoms inMu. 2

The previous lemmas will prove useful to characterize terms inMc (resp.Mu):

Lemma 3. Let t1, t2 ∈ terms(Mc). Then, t1 ≈ t2 ∈Mc implies one of the following:

1. t1 ≈ a, for some a ∈ NI,
2. t1 is of the form vA,iR,B and t1 and t2 are identical (the same term), or
3. t1 is of the form f(u), and t2 is of the form g(v), with u ≈ v ∈Mc.

Proof.
We show the claim of the lemma together with the following additional claims by

induction on the derivation level of atoms inMc:

i) R(t1, t2) ∈ Mc, there exists a role S such that R v∗R S and S occurs in an axiom
(T4), and a term t3 ∈ terms(Mc) s.t. t1 ≈ t3 ∈ Mc with η(c1) 6= η(c3), implies
that t2 ≈ f(t1) ∈ Mc for some function symbol f occurring in Mc and either
t2 ≈ a, for some a ∈ NI or t2 is of the form g(u) with u ≈ t1 ∈Mc.

ii) R(t1, t2) ∈ Mc, there exists a role S such that R v∗R Inv(S) and S occurs in an
axiom (T4), and a term t3 ∈ terms(Mc) s.t. t1 ≈ t3 ∈ Mc with η(c1) 6= η(c3),
implies that t1 ≈ f(t2) ∈ Mc for some function symbol f occurring inMc and
either t1 ≈ a, for some a ∈ NI or t1 is of the form g(u) with u ≈ t2 ∈Mc.

In the following let a be an atom inMc. We distinguish between:

i) a = R(t1, t2), there exists a role S such that R v∗R S and S occurs in an axiom
(T4), and a term t3 ∈ terms(Mc) s.t. t1 ≈ t3 ∈ Mc with η(c1) 6= η(c3). Then,
there must be some rule in EO:



1. C(x) → R(x, fCR,D(x)) ∧ D(fCR,D(x)) such that: C(t1) ∈ Mc and t2 =

fCR,D(t1) - claim i) is fulfilled.
2. C(x)→ R(x, vCR,D) ∧D(vCR,D) - contradiction with the fact that R is unsafe.
3. T (x, y) → R(x, y) such that T (t1, t2) ∈ Mc and level(T (t1, t2),Mc) <
level(R(t1, t2),Mc). Then T has all the properties ofR: claim i) follows from
the IH.

4. Inv(R)(x, y)→ R(x, y) such that Inv(R)(t2, t1) ∈Mc and level(Inv(R)( t1,
t2),Mc) < level(R(t1, t2),Mc). Then Inv(R) fulfils all the conditions for
claim ii): from the IH, it follows that t2 ≈ f(t1) and either t2 ≈ a, for some
a ∈ NI or t2 is of the form g(u) with u ≈ t1 ∈Mc.

5. R(x, y) ∧ y ≈ z → R(x, z) and a term t3 such that R(t1, t3), t3 ≈ t2 ∈ Mc.
From the IH: t3 ≈ f(t1) and either t3 ≈ a, for some a ∈ NI or t3 is of the
form g(u) with u ≈ t1 ∈ Mc. Then, t2 ≈ f(t1) and either t2 ≈ a, for some
a ∈ NI, or t3 is of the form g(u), with u ≈ t1 ∈ Mc and t2 is of the form
h(w) with u ≈ w ∈Mc. But then, w ≈ t1 ∈Mc.

6. R(x, y) ∧ x ≈ z → R(z, y) and a term t3 such that R(t3, t2), t3 ≈ t1 ∈ Mc.
From the IH: t2 ≈ f(t3) and either t2 ≈ a, for some a ∈ NI or t2 is of the
form g(u) with u ≈ t3 ∈ Mc. Then, t2 ≈ f(t1) and either t2 ≈ a, for some
a ∈ NI or t2 is of the form g(u) with u ≈ t1 ∈Mc.

ii) a = R(t1, t2), there exists a role S such that R v∗R Inv(S) and S occurs in an
axiom (T4), and a term t3 ∈ terms(Mc) s.t. t1 ≈ t3 ∈ Mc with η(c1) 6= η(c3).
Then, there must be some rule in EO:

1. C(x) → R(x, fCR,D(x)) ∧ D(fCR,D(x)) such that: C(t1) ∈ Mc and t2 =

fCR,D(t1). Then, from Lemma 1 it follows that: R(ηc(t1), uCD,R) ∈ MRSA. But
then, O is not equality-safe – contradiction.

2. C(x)→ R(x, vCR,D) ∧D(vCR,D) - contradiction with the fact that R is unsafe.
3. T (x, y)→ R(x, y) such that T (t1, t2) ∈Mc: similar to case i) 3. above.
4. Inv(R)(x, y) → R(x, y) such that Inv(R)(t2, t1) ∈ Mc: similar to case i) 4.

above.
5. R(x, y) ∧ y ≈ z → R(x, z) and a term t3 such that R(t1, t3), t3 ≈ t2 ∈ Mc:

similar to case i) 5. above.
6. R(x, y) ∧ x ≈ z → R(z, y) and a term t3 such that R(t3, t2), t3 ≈ t1 ∈ Mc:

similar to case i) 6. above.

iii) a = t1 ≈ t2. Then, there must be some rule in EO:
1. A(x) → x ≈ a such that A(t1) ∈ Mc and t2 = a: condition 1. of the lemma

is fulfilled;
2. >(x)→ x ≈ x such that t1 = t2 = x: condition 2. or 3. of the lemma holds;
3. x ≈ y → y ≈ x such that: t2 ≈ t1: some condition of the lemma is fulfilled

(as all conditions are symmetric as concerns t1 and t2)
4. x ≈ y ∧ y ≈ z → x ≈ z and a term t3 such that t1 ≈ t3, t3 ≈ t2 ∈Mc. From

the IH, one of the following holds:
– t1 ≈ a ∈Mc, for some a ∈ NI. Then, t3 ≈ a ∈Mc, as well.
– t1 and t2 are identical. Then, whatever condition of the lemma holds w.r.t
t3 and t2 will hold also w.r.t. t1 and t2.



– t1 is of the form f(u), t3 is of the form g(v), and t2 is of the form h(w)
with u ≈ v ∈ Mc and v ≈ w ∈ Mc. Then, u ≈ w ∈ Mc and claim 3. of
the lemma holds for t1 and t2.

5. A(x) ∧ S(x, y) ∧ B(y) ∧ S(x, z) ∧ B(z) → y ≈ z and a term t3 such that
A(t3), S(t3, t2), B(t2), S(t3, t1), B(t1) ∈Mc. We distinguish between:

– η(t1) = η(t2): then, either t1 = t2–in which case, the claim of the lemma
trivially holds, or t1 6= t2, but t1 and t2 have the same type (C,R,D)–in
which case O is not RSA – contradiction.

– η(t1) 6= η(t2): then, from claim i) above it follows that t2 ≈ f(t3) ∈ Mc

and t1 ≈ g(t3) ∈Mc and either:
• t1 ≈ a ∈ Mc, for some a ∈ NI (in which case t2 ≈ a ∈ Mc, as

well): then claim 1. of the lemma holds, or
• t1 = h(u), with u ≈ t3 ∈ Mc, and t2 = i(w), with w ≈ t3 ∈ Mc.

Then, u ≈ w ∈Mc and claim 3. of the lemma holds.

Lemma 4. Let t1, t2 ∈ terms(Mu). Then t1 ≈ t2 ∈Mu implies that either:

1. t1 ≈ a ∈Mu, for some a ∈ NI, or
2. t1 is of the form f(u) and t2 is of the form g(v) with u ≈ v ∈Mu.

Proof. Similar to the proof for Lemma 3 using Lemma 2. 2

We next establish some relationships between the canonical model Mc and the
universal modelMu.

Definition 6. A role R in O is said to be forward-sound if for each axiom of type A v
∃S.B in O with S being a safe role: S 6v∗R R. If for every axiom of the same type,
S 6v∗R Inv(R), S is said to be backward-sound.

Definition 7. Let µ : terms(Mc)→ 2terms(Mu) be the following function:

µ(t) =


{t}, if t ∈ NI

{fAR,B(v) | v ∈ µ(u)}, if t = fAR,B(u)

{fAR,B(x) | fAR,B(x) ∈ terms(Mu)} if t = vA,iR,B

Lemma 5. Let µ be as in Definition 7. Then:

i) for every t ∈ terms(Mc), µ(t) 6= ∅,
ii) A(t) ∈Mc implies A(u) ∈Mu, for every u ∈ µ(t),
iii) Rf (t1, t2) ∈Mc∧t2 /∈ NI impliesR(u, fAS,C(u)) ∈Mu and fAS,C(u) ≈ v ∈Mu,

with v ∈ µ(t2), for every u ∈ µ(t1), where t2 is of type (A,S,C),
iv) Rf (t1, t2) ∈Mc ∧t2 ∈ NI implies R(u, t2) ∈Mu, for every u ∈ µ(t1),
v) Rb(t1, t2) ∈Mc ∧ t1 /∈ NI implies R(fAS,C(u), u) ∈Mu and fAS,C(u) ≈ v ∈Mu,

with v ∈ µ(t1), for every u ∈ µ(t2), where t1 is of type (A,S,C),
vi) Rb(t1, t2) ∈Mc ∧t1 ∈ NI implies R(t1, u) ∈Mu , for every u ∈ µ(t2),
vii) R(t1, t2) ∈Mc ∧NI(t1) ∈Mc ∧NI(t2) ∈Mc implies R(σ(t1), σ(t2)) ∈Mu



viii) t1 ≈ t2 ∈ Mc implies for every u1 ∈ µ(t1), there exists u2 ∈ µ(t2) s.t. u1 ≈
u2 ∈Mu, and for every u2 ∈ µ(t2), there exists u1 ∈ µ(t1) s.t. u1 ≈ u2 ∈Mu,

ix) R(t1, t2) ∈ Mc, with R being forward-sound, implies for every v ∈ µ(t2) there
exists u ∈ µ(t1) such that R(u, v) ∈Mu,

x) R(t1, t2) ∈ Mc, with R being backward-sound, implies for every u ∈ µ(t1) there
exists v ∈ µ(t2) such that R(u, v) ∈Mu.

Proof. By induction on the derivation level of atoms/terms inMc.
IB: the hypothesis holds for every ABox assertion and named individual.
IH: the hypothesis holds for every atom/term a with level(a,Mc) < k, for some

k > 1. We show that it also holds for every atom/term with level(a,Mc) = k.

i) t ∈ terms(Mc), t /∈ NI. Then t has one of the forms:
1. vA,iR,B : then, it has been introduced in Mc via a rule A(x) → R(x, vA,iR,B) ∧
B(vA,iR,B), where x = t′, for some t′ ∈ terms(Mc), and π(O)≈,> contains a
counterpart ruleA(x)→ R(x, fAR,B(x))∧B(fAR,B(x)). From the IH, µ(t′) 6= ∅
and A(u) ∈ Mu, for every u ∈ µ(t′). Thus, R(u, fAR,B(u)) ∈ Mu. But
fAR,B(u) ∈ µ(v

A,i
R,B), and thus µ(a) 6= ∅.

2. fAR,B(t
′). From the IH: µ(t′) 6= ∅, thus µ(fAR,B(t)) 6= ∅.

ii) a = A(t). Then, there must be a rule in EO:
1. A1(x) ∧ . . . ∧ An(x) → A(x) such that Ai(t) ∈ Mc. From the IH: µ(t) 6= ∅

and Ai(u) ∈Mu for every u ∈ µ(t). Thus, A(u) ∈Mu for every u ∈ µ(t).
2. B(x) → R(x, fBR,A(x)), A(f

B
R,A(x)) and some term t′ ∈ Mc s.t. B(t′) ∈

Mc and t = fBR,A(t
′). Then, B(u′) ∈ Mu, for every u′ ∈ µ(t′), and thus

A(fBR,A(u
′)) ∈Mu for every u′ ∈ µ(t′), or for every u ∈ µ(fBR,A(t′)): A(u ∈

Mu).
3. B(x) → R(x, vBR,A), A(v

B
R,A) and some term t′ ∈ Mc s.t. B(t′) ∈ Mc and

t = vBR,A: similar as above.
4. R(x, y) ∧ B(y) → A(x), and some term t′ such that R(t, t′), B(t′) ∈ Mc.

We note that as R occurs on the l.h.s. of an axiom it must be a backward-sound
role. Thus, for every u ∈ µ(t), there exists v ∈ µ(t′) such that R(u, v) ∈Mu.
Then, B(t′) implies B(v) and for every u ∈ µ(t), A(u) ∈Mu.

5. A(x) ∧ x ≈ y → A(y), and some terms t, t′ such that A(t′), t′ ≈ t ∈ Mc.
Then, for every u ∈ µ(t), there exists v ∈ µ(t′) such that v ≈ u ∈ Mu. But,
then A(v) ∈Mu and thus for every u ∈ µ(t), A(u) ∈Mu.

iii) a = Rf (t1, t2) and NI(t2) /∈Mc. Then there must be a rule in EO:
1. A(x) → Rf (x, vA,iR,B), B(vA,iR,B) such that A(t1) ∈ Mc and t2 = vA,iR,B .

Then, t2 is of type (A,R,B) and for every u ∈ µ(t1), A(u) ∈ Mu, and
there exists a rule A(x) → R(x, fAR,B(x)), B(fAR,B(x)) in π(O)≈,>. Thus,
R(u, fAR,B(u)) ∈Mu, for every u ∈ µ(t1), and obviously, fAR,B(u) ≈ fAR,B(u) ∈
Mu and fAR,B(u) ∈ µ(t2).

2. A(x)→ Rf (x, fAR,B(x)), B(fAR,B(x)) such thatA(t1) ∈Mc and t2 = fAR,B(x).
Similar to the previous case.



3. Sf (x, y)→ Rf (x, y) such that Sf (t1, t2) ∈Mc. From the IH: S(u, fAS,C(u)) ∈
Mu and fAS,C(u) ≈ v ∈ Mu and v ∈ µ(t2), for every u ∈ µ(t1), where t2
is of type (A,S,C), thus R(u, fAS,C(u)) ∈ Mu and fAS,C(u) ≈ v ∈ Mu and
v ∈ µ(t2), for every u ∈ µ(t1).

4. Inv(R)b(x, y) → Rf (y, x) such that Inv(R)b(t2, t1) ∈ Mc. From the IH:
Inv(R)(fAS,C(u), u) ∈ Mu and fAS,C(u) ≈ v ∈ Mu and v ∈ µ(t2), for every
u ∈ µ(t1), where t2 is of type (A,S,C), thus R(u, fAS,C(u)) ∈ Mu and
fAS,C(u) ≈ v ∈Mu and v ∈ µ(t2), for every u ∈ µ(t1).

5. Rf (x, y), y ≈ z → Rf (x, z) and some term t3 such that Rf (t1, t3), t3 ≈ t2 ∈
Mc. If t2 = vA,iS,C , then t3 = vA,iS,C , as well (Lemma 3), and thus Rf (t1, t3) =
Rf (t1, t2). In this case, the IH cannot be applied as level(Rf ( t1, t3),Mc) =
level(Rf (t1, t2),Mc). Otherwise, t2 = fAS,C(s). Assume then, that t3 has type
(B, T,D), and thus t3 = fBT,D(w).
From the IH we have that for every u ∈ µ(t1), R(u, fBT,D(u)) ∈ Mu (1) and
fBT,D(u) ∈ µ(t3). Furthermore, for fBT,D(u) ∈ µ(t3) there must be some t ∈
µ(t2) such that fBT,D(u) ≈ t ∈Mu. As t ∈ µ(t2), it follows that t = fAS,C(v

′),
where v′ ∈ µ(v), and thus fBT,D(u) ≈ fAS,C(v

′) ∈ Mu. From Lemma 3 it
follows that u ≈ v′ ∈ Mu, and thus fBT,D(u) ≈ fAS,C(u) ∈ Mu (2). Finally,
from (1) and (2), it follows thatR(u, fAS,C(u)) ∈Mu. Furthermore, fAS,C(u) ≈
fAS,C(v

′) ∈Mu and fAS,C(v
′) ∈ µ(t2).

6. Rf (x, y), x ≈ z → Rf (z, y), with Rf (t3, t2) ∈ Mc and t3 ≈ t1 ∈ Mc.
Then, from the IH, for every u ∈ µ(t1), there must be some v ∈ µ(t3) such
that u ≈ v ∈ Mu, and for every v ∈ µ(t3): R(v, fAS,C(v)) ∈ Mu, fAS,C(v) ≈
w ∈ Mu, and w ∈ µ(t2). Then, for every u ∈ µ(t1), R(u, fAS,C(u)) ∈ Mu,
fAS,C(u) ≈ w ∈Mu, and w ∈ µ(t2).

iv) a = Rf (t1, t2) ∈Mc and NI(t2) ∈Mc.
Then, there must be a rule in EO:
1. Sf (x, y) → Rf (x, y) such that Sf (t1, t2) ∈ Mc and NI(t2) ∈ Mc. From

the IH: S(u, σ(t2)) ∈ Mu, for every u ∈ µ(t1), thus R(u, σ(t2)) ∈ Mu, for
every u ∈ µ(t1).

2. Inv(R)b(x, y) → Rf (y, x) such that Inv(R)b(t2, t1) ∈ Mc and NI(t2) ∈
Mc. From the IH: Inv(R)(σ(t2), u) ∈Mu, for every u ∈ µ(t1), thusR(u, σ(t2)) ∈
Mu, for every u ∈ µ(t1).

3. Rf (x, y), y ≈ z → Rf (x, z) and some term t3 such that Rf (t1, t3), t3 ≈
t2, NI(t2) ∈ Mc. Then NI(t3) ∈ Mc and from the IH: for every u ∈ µ(t1),
R(u, σ(t3)) = R(u, σ(t2)) ∈Mu.

4. Rf (x, y), x ≈ z → Rf (z, y), with Rf (t3, t2) ∈ Mc, σ(t2) ∈ Mc and t3 ≈
t1 ∈ Mc. Then, from the IH, for every u ∈ µ(t1), there must be some v ∈
µ(t3) such that u ≈ v ∈ Mu, and for every v ∈ µ(t3): R(v, σ(t2)) ∈ Mu.
Then, for every u ∈ µ(t1), R(u, σ(t2)) ∈Mu.

v) Rb(t1, t2) ∈Mc and NI(t1) /∈Mc. Similar to case iii) above.
vi) Rb(t1, t2) ∈Mc and NI(t1) ∈Mc. Similar to case iv) above.
vii) R(t1, t2) ∈Mc and NI(t1) ∈Mc ∧NI(t2) ∈Mc. Similar to case iii) above.



viii) t1 ≈ t2 ∈Mc. Then, there must be a rule in EO:
1. A(x)∧S(x, y)∧B(y)∧S(x, z)∧B(z)→ y ≈ z and a term t3 ∈ terms(Mc)

such that A(t3), S(t3, t1), B(t1), S(t3, t2), B(t2),∈ Mc. Then, S is both a
forward-sound and a backward-sound role.
From the IH, for every u1 ∈ µ(t1), B(t1) ∈ Mu, and there must be some
u3 ∈ µ(t3) such that S(u3, u1) ∈Mu. Then, A(u3) ∈Mu, and there must be
some u2 ∈ µ(t2) s.t. S(u3, u2) ∈ Mu and B(u2) ∈ Mu. Then, by applying
the counterpart equality rule in π(O)≈,> we obtain: u1 ≈ u2 ∈Mu.
It can be shown similarly to above, that for every u2 ∈ µ(t2), there exists
u1 ∈ µ(t1) such that u1 ≈ u2 ∈Mu.

2. A(x) → x ≈ a, with A(t1) ∈ Mc and t2 = a. From the IH, for every
u ∈ µ(t1), A(u) ∈ Mu, and thus u ≈ a ∈ Mu. Conversely, µ(a) = {a},
and µ(t1) 6= ∅, thus for every t2 ∈ µ(a), there exists u ∈ µ(t1) s.t. u ≈ t2 ∈
umodel.

3. x ≈ y → y ≈ x: follows from the symmetry of the IH.
4. x ≈ y ∧ y ≈ z → x ≈ z: follows from the IH, similar to case 1. above.

ix) R(t1, t2) ∈Mc, with R being forward-sound. Then, there must be a rule in EO:
1. A(x)→ Rf (x, fAR,B(x)), B(fAR,B(x)) such thatA(t1) ∈Mc and t2 = fAR,B(t1).

Then, for every u ∈ µ(t1), A(u) ∈ Mu, and there exists a rule A(x) →
R(x, fAR,B(x)), B(fAR,B(x)) in π(O)≈,>. Thus, R(u, fAR,B(u)) ∈Mu, for ev-
ery fAR,B(u) ∈ µ(t2).

2. A(x) → Rf (x, vA,iR,B), B(vA,iR,B) such that A(t1) ∈ Mc and t2 = vAR,B . Then,
R must be safe – contradiction with R being forward-sound.

3. S(x, y)→ R(x, y) and S(t1, t2) ∈Mc: then S must be forward-sound as well
and the claim follows from the IH.

4. Inv(R)(x, y) → R(y, x) and Inv(R)(t2, t1) ∈ Mc: then Inv(R) is backward-
sound and the claim follows from the IH.

5. R(x, y), y ≈ z → R(x, z) and some term t3 such that R(t1, t3), t3 ≈ t2 ∈
Mc. From the IH we have that for every u2 ∈ µ(t2), there exists u3 ∈ µ(t3)
such that u2 ≈ u3 ∈ Mc. Further on, as R is forward-sound, for every u3 ∈
µ(t3), there must be some u1 ∈ µ(t1) such that R(u1, u3) ∈ Mc. Then, by
applying the counterpart rule in π(O)≈,> we obtain that R(u1, u2) ∈Mu, for
every u2 ∈ µ(t2).

6. R(x, y), x ≈ z → R(z, y), with R(t3, t2) ∈ Mc and t3 ≈ t1 ∈ Mc. Similar
to above.

x) R(t1, t2) ∈ Mc, with R being backward-sound: similar to case ix) above taking
into account that the inverse of a backward-sound role is a forward-sound role.

Definition 8. Let Φ be a conjunction of atoms of the form:

m∧
i=1

Ai(ti) ∧
n∧
j=1

Rj(u1j , u2j).

An adornment for Φ is a vector ~a such that |~a| = n, and aj ∈ {f, b, }, for every
1 ≤ j ≤ n (where denotes the empty adorning: R is the same as R).



Then, we denote with Φ~a the adorned formula:

m∧
i=1

Ai(ti) ∧
n∧
j=1

R
aj
j (u1j , u2j).

Definition 9. Let Φ~a be an adorned formula of the form:

m∧
i=1

Ai(ti) ∧
n∧
j=1

R
aj
j (u1j , u2j).

Then, the normal form of Φ~a, denoted Φ~an, is the formula:

m∧
i=1

Ai(ti) ∧
n∧
j=1

Lj

where:

Lj =


R(u1j , u2j), if aj =
Rf (u1j , u2j), if aj = f

Inv(R)f (u2j , u1j), if aj = b.

Lemma 6. Let ~a be an adornment for ψ(~x, ~y) and let λ : terms(Q)→ terms(M) be
a homomorphism. Then: M |= (ψ(λ(~x), λ(~y)))~a iff M |= (ψ(λ(~x), λ(~y)))~an.

Definition 10. Let λ : terms(Q) → terms(M) be a homomorphism and let ~a be an
adornment for ψ(~x, ~y). Then, (λ,~a) is said to be an adorned match for Q overM iff
the following hold:

1. M |= (ψ(λ(~x), λ(~y)))~a, and
2. R(t1, t2) ∈ (ψ(λ(~x), λ(~y)))~a implies Rf (t1, t2) /∈M and Rb(t1, t2) /∈M.

When the adornment ~a is irrelevant/not applicable (i.e.M |= ψ(λ(~x), λ(~y))) we say
that λ is a match for Q overM.

Definition 11. Let (λ,~a) be an adorned match for Q w.r.t. M. We say that (λ,~a) is
non-anonymous if named(λ(x)) ∈M, for every x ∈ ~x.

Definition 12. Let (λ,~a) be an adorned match for Q w.r.t. M. We say that (λ,~a) is
fork-free iff for every two atoms of the form Rf (s, yi), S

f (t, yj) ∈ (ψ(~x, ~y))~an, such
that s, t ∈ terms(Q), yi, yj ∈ ~y, and id(λ(~x), λ(~y), i, j) ∈ M, it is the case that
λ(s) ≈ λ(t).

Definition 13. Let (λ,~a) be an adorned match for Q w.r.t. M. We say that (λ,~a) is
acyclic iff there is no sequence of atoms:

Rfo1(yl1 , yl2), R
f
o2(yl3 , yl4), . . . , R

f
op(yl2p−1

, yl2p) ∈ (ψ(~x, ~y))~an

such that:



1. id(λ(~x), λ(~y), l2i, l2i+1) ∈M, for every 1 ≤ i ≤ p (l2p+1 = l1), and
2. NI(λ(ylj )) /∈M, for every 1 ≤ j ≤ 2p.

Lemma 7. For a given substitution λ : ~x → terms(M), it is the case that M |=
ANS(λ(x)) iff there exists an adorned match (λ′,~a) for Q over M which is non-
anonymous, fork-free, and acyclic, where λ′ is a homomorphism that extends λ to
terms(Q).

Proof. From the semantics of π(O)≈,> and Lemma 6. 2

Definition 14. Let (λ,~a) be an adorned match forQ overMc and let id(λ,~a) : ~y×~y be
the binary relationship containing exactly the pairs (yi, yj) for which id(λ(~x), λ(~y), i, j) ∈
Mc.

Claim. For any given adorned match (λ,~a) for Q over M, id(λ,~a) is a congruence
relationship.

Definition 15. For (λ,~a) an adorned match for Q over Mc, let τ : terms(Q) →
terms(Q) be such that τ(y), where y ∈ ~y, maps y to a term y′ which is the represen-
tative of the equivalence class w.r.t. id(λ,~a) to which y belongs; τ(x) = x, for every
x ∈ terms(Q) \ ~y.

Definition 16. Let (λ,~a) be an adorned match forQ overMc. We denote with ;(λ,~a):
terms(Q) × ~y the smallest binary relation containing the pairs (s, t), for which there
exists an adorned atom Rf (s, t) ∈ (ψ(~x, ~y))~an, such that NI(λ(t)) /∈Mc.

Lemma 8. Let (λ,~a) be a fork-free, non-anonymous, and acyclic adorned match for Q
over M. Then ;(λ,~a) is acyclic: for every t1, . . . , tn ∈ terms(Q), it is not the case
that: t1 ;(λ,~a) t2 ;(λ,~a) . . .;(λ,~a) tn ;(λ,~a) t1.

Proof.
Follows from the fact that (λ,~a) is acyclic.

Definition 17. Let (Ti)1≤i≤m be the congruence classes induced by≈ over terms(Mc),
and let (ti)1≤i≤m be a sequence of terms fromMc s.t. for every 1 ≤ i ≤ m:

1. ti ∈ Ti,
2. ti ∈ NI, if there exists t ∈ Ti s.t. t ∈ Ni,

Then, let σ : terms(Mc) → terms(Mc) be the function σ(t) = ti, for every
t ∈ Ti, for every 1 ≤ i ≤ m.

Let (λ,~a) be an adorned match for Q overM, and let INI(λ,~a) and ROOTS(λ,~a) be
the following sets:

– INI(λ,~a) = {t ∈ terms(Q) |6 ∃t′.t′ ;(λ,~a) t}, and
– ROOTS(λ,~a) = {root(σ(λ(t))) | t ∈ INI}



Let also ρ0 : ROOTS(λ,~a) → terms(Mu) be some function having the property
that: ρ0(r) ∈ µ(r), for every r ∈ ROOTS(λ,~a), where µ and σ are as in Lemma 5.
Furthermore, let ρ(λ,~a) : terms(Q)→ 2terms(Mu) be as follows:

ρ(λ,~a)(t) =


(σ(λ(t)))r||ρ0(r), where r = root(σ(λ(t))), if τ(t) ∈ INI(λ,~a),

fAR,B(ρ(λ,~a)(v)), where ∃v s.t. v ;(λ,~a) τ(t), and σ(λ(t)) is
of type (A,R,B)

Lemma 9. Let (λ,~a) be an adorned match for Q over Mc that is non-anonymous,
fork-free and acyclic and let ρ(λ,~a) be as in Definition 17. Then, ρ(λ,~a) is a well-defined
total function: for every t ∈ terms(Q), there is a unique value assigned to ρ(λ,~a)(t).
Furthermore, ρ(λ,~a)(t) ∈ µ(σ(λ(t))), for every t ∈ terms(Q).

Proof. That each ρ(λ,~a)(t) is assigned at least one value, follows from the fact that
the guards in Definition 17 cover all possible cases as concerns τ(t).

It remains to be shown that for each ρ(λ,~a)(t), no more than one value is assigned.
We first note that:

– τ(u) = τ(v) implies ρ(λ,~a)(u) = ρ(λ,~a)(v) (†): this is the case as all guards in the
recursive definition of ρ′(λ,~a)(t) concern τ(t).

Let rank : terms(Q)→ N be the following function:

rank(t) =

{
0, if τ(t) ∈ INI(λ,~a)

max{1 + rank(v) | v ;(λ,~a) τ(t)}, otherwise.

Note that rank is well-defined as ;(λ,~a) is acyclic (Lemma 8).
We show the claims of the lemma by induction on rank(t).
For t ∈ INI, the claims are obvious. We assume that the claims hold for every t

such that rank(t) < k, where k > 0. Let t ∈ terms(Q) be such that rank(t) =
k > 0. Then, for every v s.t. v ;(λ,~a) τ(t), it holds that fAR,B(ρλ,a(v)) ∈ µ(σ(λ(t))),
where σ(λ(t)) is of type (A,R,B). If ρ(λ,~a)(t) is not well-defined, there exist v1, v2,
s.t. t ;(λ,~a) v1 and t ;(λ,~a) v2 and ρ(λ,~a)(v1) 6= ρ(λ,~a)(v2). Then, we distinguish
between:

– σ(λ(v1)) ∈ NI; then, from the fact that (λ,~a) is fork-free, it follows that λ(v1) ≈
λ(v2), and thus: σ(λ(v1)) = σ(λ(v2)) ∈ NI. Then, µ(σ(λ(v1))) = µ(σ(λ(v2))) =
{a}. As rank(v1), rank(v2) < rank(t), if follows that ρ(λ,~a)(v1) is well-defined
and ρ(λ,~a)(v1) ∈ µ(σ(λ(v1))) = {a} and that ρ(λ,~a)(v2) is well-defined and
ρ(λ,~a)(v2) ∈ µ(σ(λ(v2))) = {a} – contradiction with ρ(λ,~a)(v1) 6= ρ(λ,~a)(v2)

– σ(λ(v2)) /∈ NI; then, from the fact that (λ,~a) is fork-free and Definition 15, it
follows that τ(v1) = τ(v2). As rank(v1), rank(v2) < rank(t), if follows that
ρ(λ,~a)(v1) and ρ(λ,~a)(v2) are well-defined and from (†) it follows that ρ(λ,~a)(v1) =
ρ(λ,~a)(v2) – contradiction, again.



Lemma 10. Let (λ,~a) be an adorned match for Q over Mc that is non-anonymous,
fork-free and acyclic, and let ρ(λ,~a) be as in Definition 17. Then, ρ(λ,~a) is a non-
anonymous match for Q overMu.

Proof. From the fact that (λ,~a) is an adorned match for Q overMc, it follows that
Mc |= (ψ(λ(~x), λ(~y)))~a, and thus, from Lemma 6:Mc |= (ψ(λ(~x), λ(~y)))~an.

We analyse different types of atoms which occur in (ψ(λ(~x), λ(~y)))~an:

– Assume Ai(λ(ti)) ∈ Mc. Then Ai(σ(λ(ti))) ∈ Mc, and from Lemma 5 ii) it
follows thatAi(u) ∈Mu, for every u ∈ µ(σ(λ(ti))). But ρ(λ,~a)(ti) ∈ µ(σ(λ(ti)))
(from Lemma 9), thus Ai(ρ(λ,~a)(ti)) ∈Mu.

– AssumeRf (λ(t1), λ(t2))∈Mc andNI(t2) /∈Mc. ThenRf (σ(λ(t1)), σ(λ(t2))) ∈
Mc and σ(t2) /∈ NI and from Lemma 5 iii) it follows that R(u, fR,B(u)) ∈
Mu, for every u ∈ µ(σ(λ(t1))), where σ(λ(t2)) = viR,B . Then, ρ(λ,~a)(t1) ∈
µ(σ(λ(t1))) (from Lemma 9) and ρ(λ,~a)(t2) = fR,B( ρ(λ,~a)(t1)). Thus, it holds
that R(ρ(λ,~a)(t1), ρ(λ,~a)(t2)) ∈Mu.

– AssumeRf (λ(t1), λ(t2))∈Mc andNI(t2) ∈Mc. ThenRf (σ(λ(t1)), σ(λ(t2))) ∈
Mc and σ(t2) ∈ NI and from Lemma 5 iv) it follows that R(u, σ(λ(t2))) ∈ Mu,
for every u ∈ µ(σ(λ(t1))): then ρ(λ,~a)(t1) ∈ µ(σ(λ(t1))) (from Lemma 9) and
ρ(λ,~a)(t2) = σ(λ(t2)). Thus, R(ρ(λ,~a)(t1), ρ(λ,~a)(t2)) ∈Mu.

– Assume R(λ(t1), λ(t2)) ∈ Mc, NI(t1) ∈ Mc, and NI(t2) ∈ Mc: then, it
is the case that R(σ(λ(t1)), σ(λ(t2))) ∈ Mu. But ρ(λ,~a)(t1) = σ(λ(t1)) and
ρ(λ,~a)(t2) = σ(λ(t2)), thus R(ρ(λ,~a)(t1), ρ(λ,~a)(t2)) ∈Mu.

Lemma 11. For a given substitution λ : ~x → terms(M), it is the case that ~x ∈
cert(Q,O) iff there exists a match λ′ for Q overMu where λ′ is a homomorphism that
extends λ to terms(Q).

Definition 18. Let (T ′i )1≤i≤m be the congruence classes induced by≈ over terms(Mu),
and let (t′i)1≤i≤m be a sequence of terms fromMu s.t. for every 1 ≤ i ≤ m:

1. t′i ∈ T ′i ,
2. t′i ∈ NI, if there exists t′ ∈ Ti s.t. t′ ∈ Ni.

Then, let ξ : terms(Mu) → terms(Mu) be such that ξ(t) = t′i, if t ∈ T ′i and let
σ : terms(Mu)→ terms(Mu) be a function which has the following properties:

σ(t) =

{
ξ(t), if ξ(t) ∈ NI

f(σ(u)), if ξ(t) = f(u)

Also, let θ : terms(Mu)→ terms(Mc) be the following function:

θ(t) =



t, if t ∈ NI

fAR,B(θ(u)), if t = fAR,B(u) and R is unsafe,
vA,0R,B if t = fAR,B(u), R is safe, and θ(u) /∈ unfold(A,R,B),

vA,i+1
R,B if t = fAR,B(u), R ∈ confl(R), and θ(u) = vA,iR,B , for i = 0, 1

vA,1R,B if t = fAR,B(u) and θ(u) ∈ cycle(A,R,B).



Lemma 12. Let σ be as in Definition 18. Then for every t, t1, t2 ∈ terms(Mu), it
holds that:

1. σ(t) ≈ t ∈Mu

2. σ(f(t)) ≈ f(σ(t)) ∈Mu

3. t1 ≈ t2 ∈Mu implies σ(t1) ≈ σ(t2) ∈Mu

4. σ(f(t)) = h(σ(t)) or σ(f(t)) ∈ NI.

Proof. For a term t ∈ terms(Mu), let:

depthu(t) =

{
0, if ξ(t) ∈ NI

1 + depthu(u), if ξ(t) = f(u)

1. We show by induction on depthu(t) that σ(t) ≈ t ∈ Mu. If depthu(t) = 0,
σ(t) = ξ(t) and ξ(t) ≈ t ∈Mu. If depthu(t) > 0, σ(t) = f(σ(u)), where ξ(t) =
f(u), and from the IH σ(u) ≈ u ∈ Mu. Then f(σ(u)) ≈ f(u) = ξ(t) ∈ Mu. As
ξ(t) ≈ t ∈Mu, it follows that σ(t) ≈ t ∈Mu.

2. From point 1. above, σ(f(t)) ≈ f(t) ∈ Mu. Furthermore, as t ≈ σ(t) ∈ Mu, it
follows that f(t) ≈ f(σ(t)) ∈Mu. Thus, σ(f(t)) ≈ f(σ(t)) ∈Mu.

3. follows from the fact that ξ(t1) = ξ(t2), for t1 ≈ t2 ∈Mu.
4. Assume ξ(f(t)) = h(u). Then, f(t) ≈ h(u) ∈ Mu and from Lemma 2 it follows

that t ≈ u ∈Mu. Then, σ(f(t)) = h(σ(u)) = h(σ(t)) or σ(f(t)) ∈ NI.

Lemma 13. Let σ be as defined in Definition 18. ThenR(σ(t1), σ(t2)) ∈Mu implies:
σ(t1) = fR,B(σ(t2)) or σ(t2) = fR,B(σ(t1)) or σ(t1) ∈ NI or σ(t2) ∈ NI, for some
fR,B .

Proof. From the fact that R(σ(t1), σ(t2)) ∈Mu, there must be a rule in π(O)≈,>:

1. A(x) → R(x, fAR,B(x)) such that A(t1) ∈ Mu and t2 = fAR,B(t1). Then, from
Lemma 12 it follows that σ(t2) = h(σ(t1)) or σ(t2) ∈ NI.

2. S(x, y)→ R(x, y) such that S(t1, t2) ∈ Mu. The claim follows directly from the
IH.

3. Inv(R)(y, x) → R(x, y) such that Inv(R)(t2, t1) ∈ Mu. The claim follows di-
rectly from the symmetry of the IH.

4. R(x, z)∧ z ≈ y → R(x, y) and a term t3 such that R(t1, t3) ∈Mu and t3 ≈ t2 ∈
Mu. Then, σ(t3) = σ(t2) and the claim follows from the IH.

5. R(x, y) ∧ x ≈ z → R(x, z)) and a term t3 such that R(t3, t2) ∈ Mu and t1 ≈
t3 ∈Mu. Then, σ(t3) = σ(t1) and the claim follows from the IH.

Lemma 14. Let σ and θ be as in Definition 18. Then, for every t, t1, t2 ∈ terms(Mu):

i) A(t) ∈Mu implies A(θ(σ(t))) ∈Mc,
ii) R(t1, t2) ∈Mu implies R(θ(σ(t1)), θ(σ(t2))) ∈Mc,
iii) t1 ≈ t2 ∈Mu implies θ(t1) ≈ θ(t2) ∈Mc.



Proof.
From Lemma 12 it follows that:

i) A(t) ∈Mu implies A(σ(t)) ∈Mu,
ii) R(t1, t2) ∈Mu implies R(σ(t1), σ(t2)) ∈Mu.

In the following we show by induction on the derivation level of atoms inMu that:

i) A(t) ∈Mu implies A(θ(t)) ∈Mc,
ii) R(t1, t2) ∈Mu implies R(θ(t1), θ(t2)) ∈Mc,
iii) t1 ≈ t2 ∈Mu implies θ(t1) ≈ θ(t2) ∈Mc.

Let a be in atom inMu. We distinguish between:

i) a = A(t). Then there must be a rule in π(O)≈,>:
1. B(x)→ R(x, fBR,A(x))∧A(fBR,A(x)) and a term u such thatB(u) ∈Mu and
t = fBR,A(u). Then, from the IH: B(θ(u)) ∈Mc and EO must contain a rule:

– B(x)→ R(x, fBR,A(x)) ∧ A(fBR,A(x)) if R is unsafe: then A(fBR,A(θ(u))
= A( θ(fBR,A(u))) = A(θ(t)) ∈Mc;

– B(x)→ R(x, vB,0R,A) ∧A(v
B,0
R,A) if θ(u) /∈ unfold(B,R,A): then vB,0R,A =

θ(fBR,A(u)) = θ(t) and A(θ(t)) ∈Mc;
– B(x) → R(x, vB,1R,A) ∧ A(v

B,1
R,A) if θ(u) ∈ cycle(B,R,A) : similar to the

previous case;
– B(vB,iR,A) → R(vB,iR,A, v

B,i+1
R,A ) ∧ A(vB,i+1

R,A ) if θ(u) = vB,iR,A and R ∈
confl(R): similar to the previous case;

2. R(x, y)∧B(y)→ A(y) and a term u s.t.R(t, u), B(u) ∈Mu: straightforward
application of the IH.

3. B1(x) ∧ . . . Bn(x) → A(x) s.t. B1(t), . . . Bn(t) ∈ Mu: straightforward ap-
plication of the IH.

4. A(x), x ≈ y → A(y) and a term u s.t. A(u), u ≈ t ∈ Mu: straightforward
application of the IH.

ii) a = R(t1, t2). Then there must be a rule in π(O)≈,>:
1. B(x)→ R(x, fBR,A(x))∧A(fBR,A(x)) and a term u such thatB(u) ∈Mu and
t = fBR,A(u): similar to case i)1. above.

2. S(x, y)→ R(x, y): straightforward application of the IH.
3. Inv(R)(y, x)→ R(x, y): straightforward application of the IH.
4. R(x, y) ∧ y ≈ z → R(x, z) and a term u such that R(t1, u), u ≈ t2 ∈ Mu:

straightforward application of the IH.
5. R(z, y) ∧ x ≈ z → R(x, y) and a term u such that R(u, t2), t1 ≈ u ∈ Mu:

straightforward application of the IH.
iii) a = t1 ≈ t2: similar to case ii) above.

Lemma 15. Let σ and θ be as defined in Definition 18. Then, for every t, t1, t2 ∈
terms(Mu):

i) R(t1, t2) ∈ Mu, σ(t1) < σ(t2), and σ(t1) /∈ NI implies Rf (θ(σ(t1)), θ(σ(t2))) ∈
Mc.



ii) R(t1, t2) ∈Mu, σ(t1) < σ(t2), and σ(t1) ∈ NI implies Rf (θ(σ(t1)), θ(σ(t2))) ∈
Mc or Rb(θ(σ(t1)), θ(σ(t2))) ∈Mc.

iii) R(t1, t2) ∈Mu, σ(t1) 6< σ(t2), σ(t1) ∈ NI, and σ(t2) /∈ NI implies Rb(θ(σ(t1)),
θ(σ(t2))) ∈Mc.

iv) R(t1, t2) ∈Mu, σ(t2) < σ(t1), and σ(t2) /∈ NI implies Rb(θ(σ(t1)), θ(σ(t2))) ∈
Mc.

v) R(t1, t2) ∈Mu, σ(t2) < σ(t1), and σ(t2) ∈ NI implies Rf (θ(σ(t1)), θ(σ(t2))) ∈
Mc or Rb(θ(σ(t1)), θ(σ(t2))) ∈Mc.

vi) R(t1, t2) ∈Mu, σ(t2) 6< σ(t1), σ(t2) ∈ NI, and σ(t1) /∈ NI impliesRf (θ(σ(t1)),
θ(σ(t2))) ∈Mc.

Proof. We show that the claims of the lemma hold by induction on the derivation
level of atoms inMu.

Let a be in atom inMu. We distinguish between:

i) a = R(t1, t2), with σ(t1) < σ(t2), and σ(t1) /∈ NI. Then there must be a rule in
π(O)≈,>:
1. A(x)→ R(x, fAR,B(x))∧B(fAR,B(x)), with A(t1) ∈Mu and t2 = fAR,B(t1).

From Lemma 14 A(θ(σ(t1))) ∈Mc and one of the following holds:
– R is unsafe andEO contains a ruleA(x)→ Rf (x, fAR,B(x))∧B( fAR,B(x)).

Then Rf (θ(σ(t1)), f
A
R,B(θ(σ(t1)))) ∈ Mc. But, fAR,B(θ(σ(t1))) = θ(

fAR,B(σ(t1))), from Lemma 12, fAR,B(σ(t1)) ≈ σ(fAR,B(t1)) ∈ Mc, and
fAR,B(t1) = t2. Thus, fAR,B(θ(σ(t1))) ≈ θ(σ(t2)), and Rf (θ(σ(t1)), θ(
σ(t2))) ∈Mc.

– R is safe and EO contains a rule A(x) ∧ notIn(x, unfold(A,R,B)) →
Rf (x, vA,0R,B)∧B(vA,0R,B), and θ(σ(t1)) /∈ unfold(A,R,B). Then, θ(σ(t2)) =
θ(σ(fAR,B(t1)))≈ θ(fAR,B(σ(t1))) = vA,0R,B ∈Mc and. Thus,Rf (θ(σ(t1)),
θ(σ(t2))) ∈Mc.

– R is safe and EO contains a rule A(x) → Rf (x, vA,1R,B) ∧B(vA,1R,B), and
θ(σ(t1)) ∈ cycle(A,R,B). Similar to above.

– R ∈ confl(R) and EO contains a rule A(vA,iR,B) → Rf (vA,iR,B , v
A,i+1
R,B ) ∧

B(vA,i+1
R,B ), and θ(σ(t1)) = vA,iR,B . Similar to above.

2. S(x, y)→ R(x, y) with S(t1, t2) ∈Mu. From the IH, Sf (θ(σ(t1)), θ(σ(t2)) ∈
Mc, andEO contains a rule: Sf (x, y)→ Rf (x, y), thusRf (θ(σ(t1)), θ(σ(t2))
∈Mc.

3. Inv(R)(y, x)→ R(x, y) with Inv(R)(t2, t1) ∈ Mu. From the IH: Inv(R)b(θ(
σ(t2)), θ(σ(t1)) ∈Mc, and thus Rf (θ(σ(t1)), θ(σ(t2)) ∈Mc.

4. R(x, y), z ≈ y → R(x, z), and term t3 s.t. R(t1, t3), t3 ≈ t2 ∈ Mu. Then,
from Lemma 12 σ(t3) = σ(t2) and thus, one can apply the IH to R(t1, t3):
Rf (θ(σ(t1)), θ(σ(t3))) ∈Mc.

5. R(z, y), z ≈ x → R(x, y), and term t3 s.t. R(t3, t2), t3 ≈ t1 ∈ Mu. Similar
to above.

ii) a = R(t1, t2), with σ(t1) < σ(t2), and σ(t1) ∈ NI: similar to case i).
iii) a = R(t1, t2), with σ(t1) 6< σ(t2), σ(t1) ∈ NI, and σ(t2) /∈ NI. Then there must

be a rule in π(O)≈,>:



1. A(x)→ R(x, fAR,B(x))∧B(fAR,B(x)), with A(t1) ∈Mu and t2 = fAR,B(t1).
But then, from Lemma 12 it follows that σ(t2) = h(σ(t1)) or σ(t2) ∈ NI
–contradiction with the original assumptions

2. S(x, y)→ R(x, y) – similar to case i) 2.
3. Inv(R)(y, x)→ R(x, y) – similar to case i) 3.
4. R(x, y) ∧ y ≈ z → R(x, z) – similar to case i) 4.
5. R(z, y) ∧ x ≈ z → R(x, y) – similar to case i) 5.

iv) a = R(t1, t2) ∈Mu, with σ(t2) < σ(t1), and σ(t2) /∈ NI. Similar to case iii).
v) a = R(t1, t2) ∈Mu, with σ(t2) < σ(t1), and σ(t2) ∈ NI. Similar to case ii).
vi) R(t1, t2) ∈ Mu, with σ(t2) 6< σ(t1), σ(t2) ∈ NI, and σ(t1) /∈ NI. Similar to case

i).

Definition 19. For a term t ∈ terms(Mc), let:

depthc(t) =

{
1 + depthc(u), if t = f(u) and t 6≈ a, for any a ∈ NI

0, otherwise

Lemma 16. For every t1, t2 ∈ terms(Mc): t1 ≈ t2 implies depthc(t1) = depthc(t2).

Proof. We fix a term t1 and show by induction on depthc(t1) that for every t2 ∈
terms(Mc) s.t. t1 ≈ t2 ∈Mc, depthc(t1) = depthc(t2). 2

Lemma 17. For every t ∈ terms(Mc), concepts A,B, and role R, such that vA,0R,B 6≈
a, for every a ∈ NI, it holds that:

1. t ∈ cycle(A,R,B) and Rf (t, vA,iR,B) ∈Mc implies i = 1;

2. t /∈ cycle(A,R,B) and Rf (t, vA,iR,B) ∈Mc implies i = 0.

t1 ≈

t2

s

t≈

t3

t4

≈

≈

Rf , T f T b, Sf

Fig. 6: Ambiguous roles inMc: both T f (s, t) and T b(s, t) hold

Lemma 18. For any role T and terms s and t, it is not the case that both T f (s, t) ∈Mc

and T b(s, t) ∈Mc.



Proof. Assume the opposite. Then, there must be some roles R and S and terms t1,
t2, t3, and t4 such that: R v∗R T , S v∗R Inv(T ), t1 ≈ s ∈ Mc, t2 ≈ t ∈ Mc,
t3 ≈ s ∈ Mc, t4 ≈ t ∈ Mc, Rf (t1, t2) ∈ Mc, Sf (t4, t3) ∈ Mc (see Figure 6), t2 is
of type (A,R,B) and t3 is of type (D,S,C), for some concepts A, B, C and D.

We first deal with the case where one of t1, t2, t3, and t4 is equal to a named
individual. W.l.o.g., let us assume that t1 ≈ a ∈ Mc, where a ∈ NI. Then, t3 ≈
a ∈ Mc, as well. From the fact that R(a, t2) ∈ Mc and Lemma 1 it follows that
R(a, uAR,B) ∈MRSA (1). Further on, S(t4, t3) ∈ Mc implies S(t2, a) ∈ Mc, and thus
S(uAR,B , a) ∈MRSA (2). From (1), (2), and the fact that R v∗R T , and S v∗R Inv(T ), it
follows that O is not equality-safe – contradiction.

In the following, we assume that none of t1, t2, t3, and t4 are equal to a named
individual. Then, one of the following holds:

– if t1 is of form vD,iS,C , then t3 = t1 (from Lemma 3). We distinguish between:
• t2 is of form vA,iR,B : then t4 = t2 (from Lemma 3) and all of the following hold:

∗ if (A,R,B) ≺ (D,S,C):

{
t1 = vD,0S,C

t2 = vA,1R,B

or

{
t1 = vD,1S,C

t2 = vA,0R,B

. At the same

time:

{
t3 = vD,0S,C

t4 = vA,0R,B

or

{
t1 = vD,1S,C

t2 = vA,1R,B

. This is in contradiction to the fact

that t1 = t3 and t2 = t4.
∗ if (D,S,C) ≺ (A,R,B): similar to the previous case.

• t2 = fAR,B(t1) andR is unsafe. Then, Sf (fAR,B(t1), t1) = Sf (fAR,B(v
D,i
S,C), v

D,i
S,C)

∈Mc. If i = 0, fAR,B(v
D,0
S,C) ∈ cycle(D,S,C), and from Lemma 17, Sf (fAR,B

(vD,0S,C), v
D,0
S,C) /∈ Mc – contradiction. If i = 1, fAR,B(v

D,1
S,C) /∈ cycle(D,S,C).

Thus, by applying Lemma 17, Sf (fAR,B(v
D,1
S,C), v

D,1
S,C) /∈Mc – contradiction.

– if both t1 and t2 are functional, t3 and t4 are functional as well, and furthermore
t2 = fAR,B(t1) and t3 = fDS,C(t4). From Lemma 16 it follows that: depthc(t1) =
depthc(t3), and depthc(t2) = depthc(t4). But depthc(t2) = depthc(t1) + 1, and
depthc(t3) = depthc(t4) + 1 – contradiction.

Lemma 19. Let ρ be a non-anonymous match forQ overMu and let λ(·) = θ(σ(ρ(·))).
Furthermore, let ~a be the following adornment for ψ(~x, ~y):

aj =


, if Rj(λ(u1j), λ(u2j)) ∈Mc, and

Rfj (λ(u1j), λ(u2j)), R
b
j(λ(u1j), λ(u2j)) /∈Mc

f, if Rfj (λ(u1j), λ(u2j)) ∈Mc

b, if Rfb (λ(u1j), λ(u2j)) ∈Mc.

Then (λ, ~a) is an adorned match for Q over Mc. Furthermore, (λ,~a) is non-
anonymous, fork-free and acyclic.

Proof. That (λ,~a) is an adorned match for Q overMc, follows from Lemma 15. It
is also easy to see that (λ,~a) is non-anonymous provided that ρ is non-anonymous.

To see that (λ,~a) is acyclic, assume the contrary. Then, there exists a sequence
Rfo1(yl1 , yl2), R

f
o2(yl3 , yl4), . . . , R

f
op(yl2p−1

, yl2p) ∈ (ψ(~x, ~y))~an, such that:



1. id(λ(~x), λ(~y), l2i, l2i+1) ∈M, for every 1 ≤ i ≤ p (l2p+1 = l1), and
2. NI(λ(ylj )) /∈M, for every 1 ≤ j ≤ 2p.

Let si = σ(ρ(yl2i)), for 1 ≤ i ≤ p. Then:Ro1(sp, s1), Ro2(s1, s2), . . . , Rop(sp−1, sp) ∈
Mu, where si /∈ NI, for every 1 ≤ i ≤ p. Then, from Lemma 15 and Lemma 18, and
Rfoi(θ(si), θ(si+1)) ∈ Mc, for every 1 ≤ i ≤ p, it follows that si < si+1, for every
1 ≤ i ≤ p - thus si < si – contradiction.

To see that (λ,~a) is fork-free, we assume again the contrary. Then, there must be a
pair of atoms Rf (u, yi), Sf (v, yj) ∈ (ψ(~x, ~y))~an, such that u, v ∈ ~x∪~y, yi, yj ∈ ~y, and
id(λ(~x), λ(~y), i, j) ∈M, and λ(u) 6≈ λ(v).

From the fact that id(λ(~x), λ(~y), i, j) ∈M, it follows that either:

– i = j: then, asNI(λ(yi)), NI(λ(yj)) /∈M, it follows thatNI(σ(ρ(yi))), NI(σ(ρ(
yj))) /∈ Mu, σ(ρ(yi)) = fR,B(σ(ρ(u)), and σ(ρ(yj)) = fS,C(σ(ρ(v)). But, as
i = j, σ(ρ(yi)) = σ(ρ(yj)), and thus fR,B and fS,C must be in fact the same
function symbol, and σ(ρ(u)) = σ(ρ(v)). Then: λ(u) = λ(v) – contradiction.

– or there exist two sequences of atoms:
• Rfl1(yi, yl1), . . . , R

f
lm
(ylm−1 , ylm), and

• Rfk1(yj , yk1), . . . , R
f
km

(ykm−1 , ykm),
such that: lm = km, and id(λ(~x), λ(~y), li, ki) ∈M, for every 1 ≤ i ≤ m.

Then, it can be shown by induction on the length m of the sequences introduced above
that σ(ρ(yli)) = σ(ρ(yki)), for every 1 ≤ i ≤ m, and then, further on, that σ(ρ(u)) =
σ(ρ(v)), and consequently λ(u) = λ(v) – contradiction.

Theorem 1 and Theorem 2 recapitulate results related to RSA, thus their proofs can be
found in the related publication [4]. The proof sketch for Theorem 5 is already provided
in the paper. As such, we will provide next the proofs for Theorem 3 and Theorem 4.

Theorem 3. The following holds: (i) M [EO] is polynomial in |O| (ii) O is satisfiable
iff EO 6|= ∃y.⊥(y) (iii) if O is satisfiable, O |= A(c) iff A(c) ∈ M [EO] and (iv) there
are no terms s, t and role R s.t. EO |= Rf (s, t) ∧Rb(s, t).

Proof.

(i) M [EO] is polynomial in |O|: the size of EO is linear in |O| and the number of
variables in each rule is bounded by a constant. Thus, the LHM of the program is
bounded in size by |O|3.

(ii) O is satisfiable iff EO 6|= ∃y.⊥(y): follows from Lemma 5 and Lemma 15;
(iii) if O is satisfiable, O |= A(c) iff A(c) ∈ M [EO]: follows from Lemma 5 and

Lemma 15;
(iv) there are no terms s, t and role R s.t. EO |= Rf (s, t) ∧Rb(s, t): see Lemma 18.

Theorem 4. (i) PO,Q is stratified; (ii) M [PO,Q] is polynomial in |O| and exponential
in |Q|; and (iii) if O is satisfiable, ~x ∈ cert(Q,O) iff PO,Q |= Ans(~x).

Proof.



(i) PO,Q is stratified: a three-layered stratification of PO,Q can be constructed as
follows:

– first stratum contains all predicates fromEO as well as predicates NI and QM;
– second stratum contains predicates id, fk , AQ∗, TQ∗, and sp;
– third stratum contains predicate Ans.

(ii) M [PO,Q] is polynomial in |O| and exponential in |Q|: the number of rules inPO,Q
is linear in |O| and quadratic in |Q|. At the same time, the number of variables in
these rules is bounded by a constant in |O| and linearly in |Q| (due to rule (1)
in PO,Q). Thus, the materialization of PO,Q is bounded polynomially in |O| and
exponentially in |Q|.

(iii) if O is satisfiable, ~c ∈ cert(Q,O) iff PO,Q |= Ans(~c):
Assume PO,Q |= Ans(λ(~x)), where λ : ~x → terms(M). Then, according to
Lemma 7, there exists an adorned match (λ′,~a) for Q over M which is non-
anonymous, fork-free, and acyclic, where λ′ is a homomorphism that extends λ
to terms(Q). Furthermore, according to Lemma 10, ρ(λ′,~a) is a non-anonymous
match for Q over Mu. Note that ρ(λ′,~a) is such that for every t ∈ terms(Q),
ρ(λ′,~a)(t) ∈ µ(σ(λ(t))). Thus, ρ(λ′,~a) does not necessary extend λ. But ρ′ ob-

tained from ρ by setting ρ′(t) =

{
λ′(t) if t ∈ terms(Q) \ ~y
ρ(t), otherwise

is a homomor-

phism that extends λ′. At the same time, it is a match forQ overMu (note that ac-
cording to Lemma 5 vii) t1 ≈ t2 ∈ M, with t1, t2 ∈ NI implies t1 ≈ t2 ∈ Mu).
Then, according to Lemma 11: ~x ∈ cert(Q,O).
Assume ~x ∈ cert(Q,O). Then, according to Lemma 11, there exists a match ρ for
Q overMu. According to Lemma 19 one can construct from ρ a match (λ,~a) over
M which is non-anonymous, fork-free and acyclic. Again, λ does not necessary
preserve the mapping of ρ over terms(Q) \ ~y. But, λ can be transformed into

another mapping λ′ such that λ′(t) =

{
ρ(t), for every t ∈ terms(Q) \ ~y,
t, otherwise

. It

can be checked that (λ′,~a) is still non-anonymous, fork-free and acyclic. Then,
by applying Lemma 7 we obtain that PO,Q |= Ans(λ(~x)).


