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Abstract

The current dissertation suggests a consequence-based reasoning ap-
proach for the EL⊥ description logic with numerical datatypes. It provides
a set of saturation rules which are used in the formulation of a polyno-
mial classfication algorithm. Furthermore, it introduces the notion of safety
which is a property that numerical datatypes exhibit and guarantees the
preservation of polynomiality. The proposed algorithm is proved to be com-
plete only for the safe datatypes. Additionally, the corresponding reasoning
problem for non-safe datatypes is proved to be EXPTIME-hard. Apart from
that, a classification of specific instances of datatypes is attempted. Finally,
the present work, based on the results it produces, suggest a modification
of the EL Profile in OWL 2 in order to add datatype features, which are
currently available only in OWL 2.
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Chapter 1

Introduction

1.1 Description Logics

Artificial Intelligence, amongst other things, aims at bridging the gap be-
tween humans and machines. In the same spirit, Knowledge Representation
and Reasoning, which is a branch of Artificial Intelligence, aspires to render
human knowledge accessible to both humans and automated agents. On-
tologies are a promising approach towards that direction. An ontology can
be perceived as a formally defined set of entities and established relations
between them. Ontologies have been heavily used to model domain knowl-
edge in fields such as biology, medicine, geology, astronomy and defence.
Another important application area of ontologies is the Semantic Web [10],
where ontologies are used for information integration and annotation of web
content [4]. OWL (Web Ontology Language)1 is a W3C ontology language
standard initially developed for use in the semantic web and now widely
used both academically and commercially.

Description logics [3] (DL) are a family of logic-based languages that pro-
vide a firm mathematical background for the formulation and manipulation
of ontologies. The DL syntax mainly employs concepts, roles and individu-
als. Individuals are similar to constants—they are names for elements of the
domain. Concepts, like unary predicates, describe common characteristics
shared by a set of individuals. Roles, in the same way as binary predicates,
describe links between pairs of individuals. The constructors allow concepts
and roles to be combined in order to describe new concepts. E.g., if we want
to model in DL the concept of “a man who is a lecturer and has a young
doctoral student”, we may write:

Man u Lecturer u ∃hasDoctoralStudent.Young (1.1)

where Man, Lecturer and Young are concepts and hasDoctoralStudent is a
role. The constructor conjunction (u) is used to identify individuals that

1http://www.w3.org/2004/OWL/

1

http://www.w3.org/2004/OWL/


Chapter 1. Introduction

are instances of each of the conjoined concepts and the existential restric-
tion (∃r.C) to identify individuals which are connected via the role r to an
individual that is an instance of the concept C. DL is further equipped with
a terminological formalism and an an assertional formalism. The termino-
logical formalism includes axioms that allow the formulation of constraints
such as:

HappyLecturer ≡ Man u Lecturer u ∃hasDoctoralStudent.Young (1.2)

∃teaches.> v Lecturer (1.3)

(1.3) uses > (top concept) which is the most general concept in the sense
that all individuals are instances of it. (1.3) says that if an individual Ind
teaches something (whatever it may be) then Ind is necessarily a lecturer. In
DLs, a set of expressions of this form is called a TBox, but in applications
it is usually referred to as an ontology; we will from now on refer to such a
set of axioms as an ontology.

The assertional formalism, on the other hand, allows facts to be stated
about individuals. E.g., we can introduce the individuals ALICE and BOB
and make assertions such as Man(BOB) or hasDoctoralStudent(BOB,ALICE).
A set of similar assertions comprises what we call an ABox. However, as the
current dissertation focuses on the terminological rather than the assertional
part of DLs, we will not often mention individuals from now on.

DLs have a well defined semantics based on a first order style model
theory. Specifically, individuals are interpreted as set elements, concepts
are interpreted as sets of these elements and roles interpreted as binary
relations between the set elements. Constructors are interpreted in a same
set-theoretical way. For example, the conjunction (u) is interpreted as an
intersection between sets and the disjunction (t) as a union of them. As
far as axioms are concerned (e.g., A v B), the interpretation set of the
subsumee concept (A) is always subset of or equal to the interpretation set
of the subsumer concept (B). A set of axioms can have several different
interpretations (models). An ontology entails a statement if it is the case
that the statement is true in every model of the ontology.

Datatypes are similar to concepts, and represent sets of data values; the
datatypes integer and string, for example, represent the sets of integer and
string values respectively. Data values are similar to individuals and are
instances of some datatype; the integer 25 and the string “Hello World”
are, for example, values of the integer and string datatypes correspondingly.
Features are similar to roles, and describe relationships between individu-
als and data values. Features are used in restrictions such as ∃f.d, which
identifies those individuals that are linked via the feature f to a value of
the datatype d. Numerical datatypes are particularly important, e.g., in
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Chapter 1. Introduction

biomedical ontologies where they are needed to model information such as
height, temperature, age and drug dosage.

The main difference between concepts and datatypes is that datatypes
have a fixed or “concrete” interpretation that captures the structure of the
relevant data values, and are usually equipped with a set of predicates that
allow this structure to be examined. For example, an integer datatype may
be equipped with comparison operators such as < (less than), = (equal
to) and > (greater than). These can be used to form a new datatype by
restricting the range of values in one of the base datatypes. For example,
(<, 28) is a datatype whose interpretation consists of those integers less than
28. By using such a datatype in a restriction it is possible, for example, to
assert that individuals whose age is less than 28 are instances of the concept
Young:

∃hasAge.(<, 28) v Young (1.4)

One can perform several reasoning tasks w.r.t. an ontology, such as check-
ing whether a subsumption axiom holds; that is for A v B checking whether
the ontology entails that the interpretation set of A is a subset of or equal
to the interpretation set of B. It is often useful to compute the concept
hierarchy (the subsumption quasi-ordering on concept names occurring in
the ontology), a procedure known as classification.

Adding expressivity to a DL language can lead to increased reasoning
complexity. As a consequence, the trade-off between expressivity and com-
putational cost is a research issue of fundamental importance for the DL
community. Finding a balance between reasoning complexity and adequate
expressivity has been a field of thorough investigation and on each occasion
the appropriate DL language is higly dependent on the application case.
Identifying DLs whose key reasoning problems can be solved in polynomial
time has been an important goal in DL research [11, 14, 6]. From now on we
refer to such DLs as tractable, and to those that don’t have this property
as intractable.

DL datatype reasoning has also attracted a significant research interest.
Several investigations have systematically explored the complexity and de-
cidability of DL datatypes [8, 12]. Other works have suggested a specific
datatype implementation for OWL, such as the use of an external datatype
checker, which implies the separation of datatype reasoning from the re-
maining reasoning process [13].

1.2 Problem Statement

OWL is a highly expressive ontology language but reasoning in OWL, as a
result of the abovementioned trade-off, is in 2NEXPTIME. Therefore, con-
cerns over tractability have raised an increasing interest in restricted lan-

3



Chapter 1. Introduction

guages, with the new proposed version of OWL including language subsets
that correspond to tractable DLs. Reasoners for expressive languages are
typically based on tableau (model construction) algorithms, whereas rea-
soners for tractable languages typically use consequence-based techniques.
Consequence-based reasoning can be thought as a proof construction, where
a set of inference rules is used to add new axioms based on the existing
axioms of the ontology.

The consequence-driven technique was first employed for the EL lan-
guage, which includes top concept (>), conjunction (u), existential restric-
tion (∃r.C) and some further expressivity. Using this technique it proved
possible to develop a polynomial time classification algorithm for EL, and
a system based on this algorithm was able to classify the SNOMED CT
medical terminology ontology, which describes more than 400,000 named
concepts [7]. Later, the above EL language was extended to EL++ with
polynomiality preserved. EL++ further included the bottom concept (⊥),
nominals (singleton concepts), concrete domains (datatypes) and additional
role features [1]. The encouraging complexity results of EL also led to the
creation of the EL Profile of OWL 22, which is the corresponding language
subset of OWL 23. The culmination of this consequence-based investigation
was the devising of a reasoning algorithm for the Horn SHIQ DL language,
which corresponds to an intractable fragment of OWL. An implementation
of that algorithm in the CB4 was used to classify the largest available OWL
version of GALEN, a biomedical ontology that had never been classified
before (CB reasoner for Horn SHIF) [9].

Given the importance of datatypes in biomedical applications and the
increasing popularity of EL, a suggestion has been made in order to incor-
porate datatypes (concrete domains) in EL [1]. That work has proposed a
strict but coarse-grained framework on how to reason in EL in the presence
of datatypes and without losing polynomiality. Nevertheless, no detailed
description is given on how datatypes can be accommodated in the reason-
ing process. Moreover, it is not clear enough when numerical datatypes
cause intractability and which are the properties that make them exhibit
exponential complexity. Once boundaries w.r.t. retaining polynomiality are
identified and the relevant issues are resolved the numerical datatypes will
be integrated successfully to the consequence-based version of EL language.

1.3 Purpose and Structure of the Dissertation

The current dissertation mainly aims at studying how the numerical data-
types with operators (<, >, ≤, ≥, =) behave in conjunction with EL and

2http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
3http://www.w3.org/TR/owl2-syntax/
4http://code.google.com/p/cb-reasoner/reasoner
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Chapter 1. Introduction

consequence-based reasoning. Towards this end we introduce the notion
of safety for numerical datatypes with operators (NDOs), that guarantees
the preservation of polynomiality. We propose a set of inference rules that
accommodate datatype restrictions and formulate a consequence-based al-
gorithm based on them. The algorithm consists of two stages: the nor-
malization stage which performs a structural transformation on the input
ontology and the saturation stage which exhaustively applies the inference
rules to the transformed ontology. We prove soundness and completeness of
the algorithm for the safe cases and show how the non-safe cases can cause
intractability. Moreover, we attempt a classification of specific instances of
numerical datatypes and suggest how the EL Profile of OWL 2 (W3C pro-
posed recommendation) can be modified to allow more comprehensive use
of numerical datatypes without losing tractability.

We now give a brief description of the dissertation structure:

• Chapter 2 provides the greatest part of the preliminary definitions
which will later be used. It specifies the syntax and the semantics of
the DLs to be examined as well as some reasoning tasks.

• Chapter 3 describes the normalization stage which is the first stage of
the reasoning process we propose. We suggest a formal algorithm and
prove termination, polynomiality and correctness.

• Chapter 4 deals with the saturation stage of the reasoning process
and explores the complexity of reasoning. We define what NDOs are
and when they are considered to be safe. We propose a sound and
complete algorithm for safe NDOs and prove how non-safe NDOs lead
to intractability.

• Chapter 5 extensively lists specific instances of safe and non-safe NDOs
and offers a tractability guide to them.

• Chapter 6 puts forward a polynomial extension that can be made
to the EL Profile of OWL 2 concerning additional use of numerical
datatypes.

• Chapter 7 summarises the results, draws conclusions and indicates
some future prospects.
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Chapter 2

Preliminaries

The current chapter introduces the DL language to be studied and most of
the necessary background notation. Section 2.1 formally defines the syntax
of the language, Section 2.2 continues with the semantics and Section 2.3
indicates three reasoning tasks which are closely related to the algorithm
described in the subsequent chapters.

2.1 Syntax

EL⊥(D) is the EL⊥ Language [1] further extended with datatype restric-
tions with relational operators, such as <, ≤, >, ≥ and =. The syntax of
EL⊥(D) uses a set of concept names NC , a set of role names NR and a set
of feature names NF . EL⊥(D) is parametrised with a numerical datatype
D, such that D ⊆ R, where R is the set of real numbers. NC , NR and NF

are countably infinite sets and, additionally, pairwise disjoint. The set of
concepts is recursively defined using the constructors of Table 2.1, where C
and E are concepts, r ∈ NR, F ∈ NF , op ∈ {<,≤, >,≥,=} and q ∈ D. We
call (op, q), where op ∈ {<,≤, >,≥,=} and q ∈ D, a D-datatype restric-
tion (or simply a datatype restriction if the datatype D is clear from the
context). The expression v op q (Table 2.1), where op ∈ {<,≤, >,≥,=}, is
interpreted as the corresponding standard relation on real numbers. We say
that an x ∈ D satisfies (op, q), iff x op q holds. We typically use the capital
letters A, B to refer to concept names and the capital letters C, D or E to
refer to concepts. We also set the abbreviation N>C = NC ∪ {>}.

An axiom α in EL⊥(D) or simply an axiom α is either an expression of
the form C v D or Funct(F ), where C, D are concepts and F ∈ NF . An
ontology O in EL⊥(D) or simply an ontology O is a set of axioms. We say
that a concept E occurs in a concept C iff E is used as a concept in the
construction of C. Moreover, a concept E is said to positively (negatively)
occur in an axiom C v D iff it occurs in the concept D (C); we alternatively
say that we have a positive (negative) occurrence of E.

7



Chapter 2. Preliminaries

Name Syntax Semantics
top > ∆I

bottom ⊥ ∅
conjunction C u E CI ∩ EI
existential
restriction

∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}

existential
datatype

restriction
∃F.(op, q) {x ∈ ∆I | ∃v ∈ D : (x, v) ∈ F I ∧ (v op q)}

Table 2.1: Concept descriptions in EL⊥(D).

Name Syntax Semantics
concept inclusion C v D CI ⊆ DI

feature functionality Funct(F ) (x, v1) ∈ F I ∧ (x, v2) ∈ F I ⇒ v1 = v2

Table 2.2: Axioms in EL⊥(D).

Example 1. At this point, we introduce the ontology Oex, which we also
use in the next chapters in terms of a running example. We set D = {r ∈
Z | 0 ≤ r ≤ 120}. Oex consists of the axioms α1-α5:

α1 Child v ∃hasAge.(<, 12) u ∃hasAge.(>, 5)

α2 ∃hasAge.(<, 18) v MinorDosageAllowed

α3 ∃hasSymptom.Fever uMinorDosageAllowed v MinorDosagePrescribed

α4 FeverishChild v Child u Feverish

α5 Feverish v ∃hasSymptom.Fever

In the above example, Child, MinorDosageAllowed and Fever are examples of
concept names, hasSymptom of a role name, hasAge of a feature name and
(>, 5) of a D-datatype restriction. Moreover, the concept ∃hasAge.(<, 18)
negatively occurs in α2 and the concept Child u Feverish (as well as Child
and Feverish) positively occurs in α4 .

2.2 Semantics

An interpretation of EL⊥(D) is a pair I = (∆I , ·I), where ∆I is a non-empty
set which we call the domain of the interpretation and ·I is the interpretation
function. The interpretation function maps each concept name A to a subset

8
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AI of ∆I , each role name r ∈ NR to a relation rI ⊆ ∆I×∆I and each feature
name F ∈ NF to a relation F I ⊆ ∆I ×D. The constructors of EL⊥(D) are
interpretated as indicated in Table 2.1. For an axiom α we write I |= α and
we say that an interpretation I satisfies an axiom α, iff the corresponding
semantics condition of Table 2.2 holds. If I |= α for every α ∈ O then I
is a model of O and we write I |= O. Additionally, if every model I of O
satisfies the axiom α then we say that O entails α and we write O |= α. We
define the signature of an ontology O as the set sig(O) of concept, role and
feature names that occur in O. Say that a concept, role or feature name
X is fresh w.r.t. an ontology O iff X /∈ sig(O). If the ontology O is clear
from the context then we just say that X is fresh. Given two interpretations
I = (∆I , ·I) and J = (∆J , ·J ) and a set S ⊆ NC ] NR ] NF , we write
I|S = J |S (and we say that I and J coincide for the set S ) iff ∆I = ∆J

and XI = XJ , for every X ∈ S.

2.3 Reasoning Tasks

Some of the most common reasoning tasks w.r.t. an ontology O are:

• Satisfiability: Checking whether a concept name A is satisfiable, that
is whether AI is non-empty for every model I of O.

• Subsumption: Checking whether a concept name A is subsumed by a
concept name B w.r.t. an ontology O (O |= A v B), that is if AI ⊆ BI
holds for every model I of the ontology O.

• Classification: Classification of an ontology O, that is computing all
axioms of the form A v B, where A ∈ N>C ∪ ⊥ and B ∈ N>C ∪ ⊥ are
concept names and O |= A v B. The set of these axioms is called the
taxonomy of the ontology O.

In the following chapters, we will describe a procedure which performs
the classification of an ontology O. Specifically, the algorithm computes a
set of axioms from which the taxonomy can easily be extracted. Checking
satisfiability of a concept name A (or subsumption of an axiom A v B)
can be reduced to this process by verifying whether A v ⊥ (or A v B)
belongs to the computed taxonomy. The procedure consists of two stages:
the normalization stage (which is described in Chapter 3) and the saturation
stage (which is described in Chapter 4).

9





Chapter 3

Normalization Stage

Given an ontology O, the normalization stage performs a structural trans-
formation to it and produces the ontology O′, which is in appropriate form
to be used as an input for the saturation stage. In Section 3.1 we present the
normal form in which axioms of O′ should be and in Section 3.2 we describe
a set of rules that are able to convert axioms in arbitrary form to axioms in
normal form as well as a polynomial algorithm, which performs the above
transformation.

3.1 Normal Forms of Axioms

An axiom is in normal form if it has one of the forms NF1-NF8 of Table 3.1,
where A,A1, A2, B ∈ N>C , r ∈ NR, F ∈ NF , op ∈ {<,≤, >,≥,=} and q ∈ D
[1].

NF1 A v B NF2 A1 uA2 v B
NF3 A v ∃r.B NF4 ∃r.B v A
NF5 A v ∃F.(op, q) NF6 ∃F.(op, q) v A
NF7 A v ⊥ NF8 Funct(F )

Table 3.1: Axioms in normal form

3.2 Rules and Normalization Algorithm

In this section, we present a set of rules which can be used for the normaliza-
tion of axioms. Specifically, if rules NR1-NR6 from Table 3.2 are exhaustively
applied to axioms in arbitrary form of an ontology O, they produce an on-
tology O′ consisting of axioms in normal form [1]. For the rules NR1-NR6
of Table 3.2, we have that B ∈ N>C , G, H /∈ N>C , C, D, E, G and H are
concepts and NR1 is applied modulo commutativity of conjunction. The
concept name A introduced at the conclusions of the right column is fresh

11



Chapter 3. Normalization Stage

w.r.t. the ontology which has, so far, been transformed. This will become
clearer as we formally define the algorithm.

NR head body
NR1 C uH v E {H v A,C uA v E}
NR2 ∃R.G v D {G v A, ∃R.A v D}
NR3 G v H {G v A,A v H}
NR4 C v ∃R.H {C v ∃R.A,A v H}
NR5 B v C uD {B v C,B v D}
NR6 ⊥ v C ∅

Table 3.2: The normalization rules for EL⊥(D)

We now provide a few definitions which are necessary for the formulation
of the normalization algorithm.

Definition 1. We define:

• The set NCC as the set of all concepts

• The set Ax as the set of all axioms of the form C v D where C,
D ∈ NCC

We say that a rule R ∈ {NR1, . . . ,NR6} is applicable to an axiom α if α
matches the head of R. Let O be an ontology, R ∈ {NR1, . . . ,NR6} and
α ∈ Ax. The function R(α,O) returns the body of R (appropriately modified
according to the matching of α with the head of R) if R is applicable to α,
with the concept name A introduced to the body of R being fresh w.r.t. O;
otherwise, it returns the empty set.

Example 2. Let O = {∃r.(AuB) v CuD,EuF v ∃R.G} and α = ∃r.(Au
B) v CuD. In that case, we have NR2(α,O) = {AuB v H,∃r.H v CuD}.

Algorithm 1, which is based on rules NR1-NR6, performs the tranformation
we describe, i.e., the normalization of an ontology O.

Example 3. In order to clarify Algorithm 1 we apply it to Oex, which was
introduced in Example 1 (page 8). We set O = Oex. We do not describe
in full detail the execution of the algorithm. The loop iterates 11 times: 3
times when NR5(α1,O) 6= ∅, NR1(α3,O) 6= ∅ and NR5(α4,O) 6= ∅ (line 5)
and 8 times when axioms are moved from O to O′ (lines 7-8). The output
O′ consists of the following axioms:

12
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Algorithm 1 : Normalization Algorithm
Input: = ontology O consisting of axioms in arbitrary form
Output: = ontology O′ consisting of axioms in normal form
1: O′ := ∅;
2: repeat
3: choose an axiom α ∈ O;
4: if R(α,O) 6= ∅ for some R ∈ {NR1, . . . ,NR6} then
5: O := (O \ α) ∪ R(α,O ∪O′);
6: else
7: O′ := O′ ∪ α;
8: O := O \ α;
9: end if

10: until O := ∅;

α1a Child v ∃hasAge.(<, 12)

α1b Child v ∃hasAge.(>, 5)

α2 ∃hasAge.(<, 18) v MinorDosageAllowed

α3a ∃hasSymptom.Fever v A

α3b A uMinorDosageAllowed v MinorDosagePrescribed

α4a FeverishChild v Child

α4b FeverishChild v Feverish

α5 Feverish v ∃hasSymptom.Fever

The rules which have been applied are:

• NR5(α1,O) = {α1a, α1b} with O = {α1, α2, α3, α4, α5}

• NR1(α3,O) = {α3a, α3b} with O = {α1a, α1b, α2, α3, α4, α5}

• NR5(α4,O) = {α4a, α4b} with O = {α1a, α1b, α2, α3a, α3b, α4, α5}

Note that A is a fresh concept name w.r.t. the ontology O = {α1a, α1b, α2,
α3, α4, α5} since it does not occur in any of its axioms.

We now prove, using the following lemma, that Algorithm 1 produces only
axioms in normal form.

13
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Lemma 1. If none of the rules NR1-NR6 is applicable to α, then α is in
normal form.

Proof. We prove it by showing that if α is not in the form NF1-NF8, then at
least one of the rules NR1-NR6 is applicable to α. If α = Funct(F ) then α is
in NF8. If α = C v D, then we have that C /∈ N>C or D /∈ N>C ; otherwise,
α would be in NF1. We distinguish cases:

• If C = ⊥, then rule NR6 is applicable.

• If D = ⊥, then α is in NF7.

• If C /∈ N>C and D ∈ N>C , then C has one of the following three forms:

– A1 u A2, where A1 /∈ N>C or A2 /∈ N>C , otherwise α would be in
NF2. In this case, rule NR1 is applicable.

– ∃r.B, where B /∈ N>C , otherwise α would be in NF4. In this case,
rule NR2 is applicable.

– ∃F.(op, q). In this case α is in NF6.

• If C /∈ N>C and D /∈ N>C , then rule NR3 is applicable.

• If C ∈ N>C and D /∈ N>C , then D has one of the following three forms:

– A1 uA2. In this case, rule NR5 is applicable.

– ∃r.B, where B /∈ N>C , otherwise α would be in NF3. In this case,
rule NR4 is applicable.

– ∃F.(op, q). In this case α is in NF5.

Corollary 1. The ontology O′ as produced in Algorithm 1 contains only
axioms in normal form.

Proof. Algorithm 1 adds an axiom α to O′ only at line 7 after checking that
none of the rules NR1-NR6 is applicable to α. Since if none of the rules
NR1-NR6 is applicable to α, then α is in normal form (from Lemma 1), only
axioms in normal form are added to O′.

Our goal now is to prove termination of Algorithm 1. Intuitively, Algo-
rithm 1 terminates since rules NR1-NR6 replace axioms with simpler ones.
To formalize this idea, we use a notion of a multiset extension of well-
founded orders. We firstly describe what a multiset and union of multisets
is; we continue with the definition of a (well-founded) strict order and a
multiset extension of a strict order to finally present Lemma 2; Lemma 2 is
used in the termination proof.
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Definition 2 (Multiset and Operation on Multisets [5]). Let A be a
set. We define a multiset M over A as a function M : A → N. The value
M(a) for a ∈ A is called the multiplicity of a in M . A multiset is said to be
finite if there are only finitely many x ∈ A such that M(x) > 0. We say that
an element x belongs to a multiset M (x ∈ M) iff M(x) > 0. The union
M ∪mul N of two multisets M : A→ N and N : A→ N is defined by:

(M ∪mul N)(x) = M(x) +N(x)

Example 4. Let A = N. We define the multisets M and M ′ over N by
M(2) = 3, M(3) = 1, M ′(2) = 1, M ′(3) = 2 and M(n) = M ′(n) = 0 for
n ∈ N and n 6= 2, 3. The abbreviations M = {2, 2, 2, 3} and M ′ = {2, 3, 3}
are frequently used. The union between M and M ′ (using the abbreviation
notation) is M ∪mul N = {2, 2, 2, 2, 3, 3, 3}.

Definition 3 (Strictly ordered set [5]). A strict order on a set A is a
binary relation > (we use the infix notation for >), which is irreflexive (if
x ∈ A, then x 6> x) and transitive (if x > y and y > z, then x > z). A
strictly ordered set is a pair (A,>), where A is a set and > a strict order
on A.

Definition 4 (Multiset extension on strict order [5]). Let (A,>) be
a strictly ordered set. The multiset extension >mul of > to finite multisets
over A is defined by:

S1 >mul S2

⇔ S1 6= S2 ∧

∀m ∈ A : [S2(m) > S1(m)⇒ ∃m′ ∈ A : (m′ > m ∧ S1(m′) > S2(m′))]

Example 5. Continuing Example 4 and given that (N, >) is a strict order,
M ′ >mul M because M(2) > M ′(2) but M ′(3) > M(3).

Definition 5 (Well-founded strict order [5]). A strict order (A,>) is
said to be well-founded if there is no infinite decreasing chain such that:

x1 > x2 > x3 > . . .

with xi ∈ A.

Lemma 2 (Well-founded Multiset extension [5]). A multiset extension
>mul of a well-founded order, is well-founded as well.

We say that X is a symbol if X ∈ NC ] NR ] NF and we define the
size of an axiom α, size : Ax → N, as the number of symbols that α
contains. Similarly, we define the size of a concept C, size : NCC → N, as
the number of symbols that C contains. In both cases, multiple occurrences
count multiple times. Since > and ⊥ are concepts that do not contain any
symbols, we set size(>) = 1 and size(⊥) = 2.
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Lemma 3. For R ∈ {NR1, . . . ,NR6}, an ontology O and every α1 and α2

such that α1 matches rule R and α2 ∈ R(α,O), we have that size(α1) >
size(α2).

Proof. We prove the lemma by distinguishing six cases for the six different
rules:

• NR1

In this case size(C u H v E) = size(C) + size(H) + size(E) with
size(C) + size(H) + size(E) > size(H) + 1 = size(H v A) and
size(C)+size(H)+size(E) > size(C)+1+size(E) = size(CuA v E).

• NR2

In this case size(∃R.G v D) = 1+size(G)+size(D) with 1+size(G)+
size(D) > size(G) + 1 = size(G v A) and 1 + size(G) + size(D) >
1 + 1 + size(D) = size(∃R.A v D).

• NR3

In this case size(G v H) = size(G)+size(H) with size(G)+size(H) >
size(G) + 1 = size(G v A) and size(G) + size(H) > 1 + size(H) =
size(A v H).

• NR4

In this case size(C v ∃R.H) = size(C) + 1 + size(H) with size(C) +
1 + size(H) > size(C) + 1 + 1 = size(C v ∃R.A) and size(C) + 1 +
size(H) > 1 + size(H) = size(A v H).

• NR5

In this case size(B v CuD) = 1+size(C)+size(D) with 1+size(C)+
size(D) > 1 + size(C) = size(B v C) and 1 + size(C) + size(D) >
1 + size(D) = size(B v D).

• NR6

size(α1) > size(α2) holds trivially because size(α2) = 0 and size(α1) =
size(⊥) + size(C) = 2 + size(C) > 0.

Now, we are ready to continue with the termination proof of Algorithm 1.

Proposition 1 (Termination of Normalization Algorithm). Algo-
rithm 1 terminates.
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Proof. Let Ax be a set of axioms. We define a strict order > over Ax by
α1 > α2 iff size(α1) > size(α2), where α1, α2 ∈ Ax. The strict order > over
Ax is well-founded because there is no infinite descending chain such that
size(α1) > size(α2) > size(α3) > . . . and αi ∈ Ax. We define the multiset
S over Ax, S : Ax → N and the mapping multi from a set of axioms (an
ontology) to a multiset S (multi : P(Ax)→ S) by:

multi(O) =
⋃
α∈O

mul
{α}

We also define the multiset extension >mul of the well-founded strict order
> over Ax to S. >mul is well-founded as well from Lemma 2.

Claim 1. Let Oi be the ontology O before and Oi+1 be the ontology O after
the execution of algorithm’s loop. Then multi(Oi) >mul multi(Oi+1).

Proof. There are two possibilities for the algorithm’s loop:

• R(α,O) 6= ∅, for some R ∈ {NR1, . . . ,NR6}. In that case, multi(Oi)
>mul multi(Oi+1), because in multi(Oi), α is replaced with α1 and α2,
where α1, α2 ∈ R(α,O). However, from Lemma 3 size(α) > size(α1)
and size(α) > size(α2) and, thus, α > α1 and α > α2. Since
multi(Oi)(α) > multi(Oi+1)(α) and there is no α′, such that α′ > α
and multi(Oi+1)(α′) > multi(Oi)(α), we have that multi(Oi) >mul
multi(Oi+1).

• R(α,O) = ∅, for every R ∈ {NR1, . . . ,NR6}. In that case, multi(Oi)
>mul multi(Oi+1), because we remove an axiom α from the ontology
Oi and, hence, the multiplicity of α in multi(Oi+1) is reduced by
one. Again, since multi(Oi)(α) > multi(Oi+1)(α) and there is no α′,
such that α′ > α and multi(Oi+1)(α′) > multi(Oi)(α), we have that
multi(Oi) >mul multi(Oi+1).

Let O0 = O be the input of Algorithm 1; suppose that O1 is the ontol-
ogy O after the first execution of the loop, O2 is the ontology O after the
second execution and so on. From Claim 1 we have that multi(O1) >mul
multi(O2) >mul multi(O3) >mul . . .. Since the defined multiset extension is
well-founded, there is no infinite descending chain such that multi(O1) >mul
multi(O2) >mul multi(O3) >mul . . .. Therefore, after a finite number of
loop iterations there is multi(Ok), such that there exists no Ok+1 with
multi(Ok) > multi(Ok+1). However, this is true only when multi(Ok) = ∅
which means that Ok = ∅. Ok = ∅ (O = ∅) is the termination condition for
Algorithm 1 and, thus, the algorithm terminates.
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After proving that Algorithm 1 terminates we examine its complexity. The
termination proof we presented did not provide us with any complexity
bounds and, thus, we need to give a different argument concerning complex-
ity. Algorithm 1 constitutes the first part of the reasoning process that the
current dissertation describes and since we later intend to prove that the
whole reasoning process is polynomial, it is necessary to prove that Algo-
rithm 1 is at most polynomial.

Proposition 2 (Complexity of Normalization Algorithm). Algorithm 1
runs in linear space and linear time.

Proof. Suppose that O ∪ O′ after the initialization of line 1 contains kall
constructors (that is occurrences of u, ∃ and ⊥ in its axioms) and kf axioms
in NF8. We define a positive conjunction of an axiom as the positive occur-
rence of the constructor u. We denote the number of positive conjunctions
of the axioms contained in the input ontology O with ku and the number of
remaining constructors with krcon; thus, kall = ku + krcon.

Claim 2. Algorithm 1 runs in linear space.

We calculate the maximum number of axioms that Algorithm 1 can
produce in the output. The resulting axioms can either be of the form
NF1 (say k1) or NF2-NF7 (say k2) or NF8 (say k3). An axiom in O′ can
be in NF1 only as a result of the application of NR5, since B (from the
head of NR5 which is B v C u D) is a concept name. Every application
of NR5 results to the addition of at most two axioms in NF1. Thus, the
maximum number for k1 is 2ku. If the axiom is of the form NF2-NF7 then it
contains exactly one constructor, which is not a positive conjunction. The
initial ontology contains krcon such constructors and according to NR1-NR4,
krcon is preserved. Thus, the maximum number for k2 is krcon. Finally, the
maximum number of axioms in NF8 is k3 = kf . In total, O′ can contain at
most k1 + k2 + k3 = 2ku + krcon + kf ≤ 2kall + kf axioms, which is linear in
the size of input kall + kf .

Claim 3. Algorithm 1 runs in linear time.

Concerning the time which is needed for the execution of the algorithm
we calculate the number of loop iterations of Algorithm 1, that is how many
times rules NR1-NR6 are applied. We observe that each axiom in NF1-NF7
has at most three occurrences of concept names. For rules NR1-NR4, the
application of a rule is accompanied with the introduction of a fresh concept
name. Thus, the maximum number of rule applications of NR1-NR4 can be
found by multiplying the maximum number of axioms in O′ and in NF1-NF7
(that is 2kall as shown) with the maximum number of concept names that
an axiom can contain (that is 3). Hence, rules NR1-NR4 can be executed no
more than 6kall times. NR5 can be applied at most ku times. Therefore, an
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upper time bound for Algorithm 1 is 6kall +ku ≤ 7kall which is linear in the
size of the input kall + kf .

Now, we continue with two lemmas (Lemma 4 and Lemma 5) which are
later on used in order to prove that Algorithm 1 is correct. Given that O
is an ontology and O′ the ontology we receive after the application of one
of the {NR1, . . . ,NR6}, Lemma 4 proves that all models of O′ are models of
O as well; Lemma 5 on the other hand shows that a model of O can always
be extended to a model of O′, too. Both lemmas are necessary in order to
support the correctness proof of Algorithm 1, which intuitively says that an
axiom (that contains no fresh concepts) is entailed by O iff it is entailed by
O′.

Lemma 4. Let O be an ontology, R ∈ {NR1, . . . ,NR6} and O′ = (O \ α′)∪
R(α′,O). Then for every interpretation I:

I |= O′ ⇒ I |= O

Proof. We assume that:

I |= O′ (3.1)

and

O′ = (O \ α) ∪ R(α,O) (3.2)

and we need to prove that I |= O, that is I |= α, ∀α ∈ O. Take an arbitrary
α ∈ O. If α ∈ O′, then from (3.1), I |= α. Otherwise from (3.2), α matches
the head of R. We distinguish cases depending on the normalization rule
which was applied:

NR1 We need to show I |= C u H v E or (C u H)I ⊆ EI . From (3.1)
and H v A, C u A v E ∈ O′, we derive that I |= H v A and
I |= C u A v E, which is HI ⊆ AI and CI ∩ AI ⊆ EI . From
HI ⊆ AI we have that CI ∩ HI ⊆ CI ∩ AI . Using CI ∩ AI ⊆ EI ,
we finally get CI ∩HI ⊆ EI or (C uH)I ⊆ EI which we wanted to
prove.

NR2 We need to prove I |= ∃r.G v D or (∃r.G)I ⊆ DI . We need to prove
that for every x ∈ (∃r.G)I we have x ∈ DI . From (3.1) and G v A,
∃r.A v D ∈ O′, we derive that I |= G v A and I |= ∃r.A v D, that
is:

GI ⊆ AI (3.3)

(∃r.A)I ⊆ DI (3.4)
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Since x ∈ (∃r.G)I , we have that there exists a y such that (x, y) ∈ rI
and y ∈ GI . From (3.3), y ∈ AI . Since there exists a y such that
(x, y) ∈ rI and y ∈ AI , we have x ∈ (∃r.A)I , and from (3.4), we have
x ∈ DI , which we needed to prove.

NR3 We have to prove I |= G v H or GI ⊆ HI . From (3.1), G v A ∈ O′
and A v H ∈ O′, we derive that I |= G v A and I |= A v H, that is
GI ⊆ AI and AI ⊆ HI . GI ⊆ HI follows directly.

NR4 We have to show I |= C v ∃r.H or CI ⊆ (∃r.H)I . It is sufficient to
take an x such that x ∈ CI and prove that x ∈ (∃r.H)I . From (3.1)
and C v ∃r.A, A v H ∈ O′, we derive that I |= C v ∃r.A and
I |= A v H, which is:

CI ⊆ (∃r.A)I (3.5)

AI ⊆ HI (3.6)

From (3.5) and x ∈ CI , we have that x ∈ (∃r.A)I , that is there exists
a y such that (x, y) ∈ rI and y ∈ AI . Also, from (3.6) and y ∈ AI we
have that y ∈ HI and, therefore, x ∈ (∃r.H)I which was required to
show.

NR5 We need to show I |= B v C uD or BI ⊆ CI ∩DI . From (3.1) and
B v C, B v D ∈ O′, we derive that I |= B v C and I |= B v D,
which is BI ⊆ CI and BI ⊆ DI . As a consequence, BI ⊆ CI ∩DI
or BI ⊆ (C uD)I .

NR6 We need to prove I |= ⊥ v C or (⊥)I ⊆ CI , which is trivial since
(⊥)I = ∅.

Lemma 5. Let O be an ontology, R ∈ {NR1, . . . ,NR6}, O′ = (O \ α′) ∪
R(α′,O) and I a model such that I |= O. Then there exists an interpretation
J , such that I|sig(O) = J |sig(O) and J |= O′.

Proof. We assume that I |= O and distinguish cases according to the nor-
malization rule which was applied:

(NR1) We define an interpretation J = (∆J , ·J ) such that ∆J := ∆I and:

XJ :=
{
HI if X = A,
XI if X ∈ NC ]NR ]NF and X 6= A.

(3.7)

We prove that J |= O′. Take an arbitrary α ∈ O′.
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If α ∈ O, then from I |= O, I |= α. The axiom α does not contain
A, which is fresh w.r.t. O and since I|sig(O) = J |sig(O), we have that
J |= α.

If α = H v A, we need to prove that J |= H v A and, thus, HJ ⊆
AJ . From (3.7), HJ = HI (since A does not occur in H) and AJ =
HI . HJ ⊆ AJ follows trivially.

If α = C uA v E, it is sufficient to show that J |= C uA v E that is
(CuA)J ⊆ EJ . Since NR1 was applied, we have that CuH v E ∈ O
and from I |= O, I |= C u H v E. Thus, (C u H)I ⊆ EI or
CI ∩ HI ⊆ EI . Using (3.7) and since A does not occur neither in
C nor in E we have that CI = CJ , HI = AJ and EI = EJ . As a
consequence, CJ ∩AJ ⊆ EJ or (C uA)J ⊆ EJ , which we needed to
prove.

(NR2) We define an interpretation J = (∆J , ·J ) such that ∆J := ∆I and:

XJ :=
{
GI if X = A,
XI if X ∈ NC ]NR ]NF and X 6= A.

(3.8)

We prove that J |= O′. Take an arbitrary α ∈ O′.
If α ∈ O, then from I |= O, I |= α. The axiom α does not contain
A, which is fresh w.r.t. O and since I|sig(O) = J |sig(O), we have that
J |= α.

If α = G v A, we need to prove that J |= G v A and, thus, GJ ⊆ AJ .
From (3.8), GJ = GI (since A does not occur in G) and AJ = GI .
GJ ⊆ AJ follows trivially.

If α = ∃r.A v D, it is sufficient to show that J |= ∃r.A v D that is
(∃r.A)J ⊆ DJ . Since NR2 was applied, we have that ∃r.G v D ∈ O
and from I |= O, I |= ∃r.G v D. Thus, (∃r.G)I ⊆ DI . Using (3.8)
and the interpretation of existential restriction we have that (∃r.G)I

= {x | (x, y) ∈ rI ∧ y ∈ GI} = {x | (x, y) ∈ rJ ∧ y ∈ AJ } = (∃r.A)J .
From (3.8), and since A does not occur in D we have DI = DJ .
Using (∃r.A)J = (∃r.G)I , (∃r.G)I ⊆ DI and DI = DJ we derive
(∃r.A)J ⊆ DJ .

(NR3) We define an interpretation J = (∆J , ·J ) such that ∆J := ∆I and:

XJ :=
{
HI if X = A,
XI if X ∈ NC ]NR ]NF and X 6= A.

(3.9)

We prove that J |= O′. Take an arbitrary α ∈ O′.
If α ∈ O, then from I |= O, I |= α. The axiom α does not contain
A, which is fresh w.r.t. O and since I|sig(O) = J |sig(O), we have that
J |= α.
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If α = G v A, we need to prove that J |= G v A and, thus, GJ ⊆ AJ .
From (3.9), GJ = GI (since A does not occur in G) and AJ = HI .
Thus, we need to show that GI ⊆ HI which follows from G v H ∈ O
and I |= O.

If α = A v H, we need to prove that J |= A v H and, thus, AJ ⊆
HJ . From (3.9), AJ = HI and HJ = HI (since A does not occur in
H). Thus, AJ ⊆ HJ follows trivially.

(NR4) We define an interpretation J = (∆J , ·J ) such that ∆J := ∆I and:

XJ :=
{
HI if X = A,
XI if X ∈ NC ]NR ]NF and X 6= A.

(3.10)

We prove that J |= O′. Take an arbitrary α ∈ O′.
If α ∈ O, then from I |= O, I |= α. The axiom α does not contain
A, which is fresh w.r.t. O and since I|sig(O) = J |sig(O), we have that
J |= α.

If α = C v ∃r.A, it is sufficient to show that J |= C v ∃r.A that is
CJ ⊆ (∃r.A)J . Since NR4 was applied, we have that C v ∃r.H ∈ O
and from I |= O, I |= C v ∃r.H. Thus, CI ⊆ (∃r.H)I . Using (3.10)
and the interpretation of existential restriction we have that (∃r.H)I

= {x | (x, y) ∈ rI ∧ y ∈ HI} = {x | (x, y) ∈ rJ ∧ y ∈ AJ } = (∃r.A)J .
From (3.10), and since A does not occur in C we have CJ = CI .
Using CJ = CI , CI ⊆ (∃r.H)I and (∃r.H)I = (∃r.A)J we derive
CJ ⊆ (∃r.A)J .

If α = A v H, we need to prove that J |= A v H and, thus, AJ ⊆
HJ . From (3.10), HJ = HI (since A does not occur in H) and
AJ = HI . AJ ⊆ HJ follows trivially.

(NR5) We define the interpretation J = I and we prove that J |= O′. Take
an arbitrary α ∈ O′.
If α ∈ O, then from I |= O, I |= α. Since J = I, J |= α as well.

If α = B v C, we need to prove that J |= B v C and, thus, BJ ⊆ CJ .
Since NR5 was applied, we have that B v CuD ∈ O and from I |= O,
I |= B v C u D. Thus, BI ⊆ CI ∩ DI . Since J = I, we have
BJ ⊆ CJ ∩DJ and BJ ⊆ CJ follows directly.

If α = B v D, we need to prove that J |= B v D and, thus, BJ ⊆
DJ . As shown before, BI ⊆ CI ∩DI . Since J = I, we have BJ ⊆
CJ ∩DJ and BJ ⊆ DJ follows directly.

(NR6) We define the interpretation J = I and J |= O′ is trivial because
no new axiom is added to O′.
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After proving Lemma 4 and Lemma 5, we continue to the correctness
proof of Algorithm 1.

Theorem 6 (Correctness of Normalization Algorithm). Let O be an
ontology in EL⊥(D) and O′ the ontology obtained after applying Algorithm 1
to O. For every axiom α, that does not contain any fresh concepts w.r.t. O,
(1) and (2) are equivalent:

(1) O |= α

(2) O′ |= α

Proof. Let O0 = O ∪ O′ after the initialization (line 1) of Algorithm 1,
O1 = O ∪ O′ after the first loop iteration, O2 = O ∪ O′ after the second
and, so on. Let, also On = O ∪ O′ after the termination of the algorithm.
Since O′ = ∅ at the begining and O = ∅ at the end, we have that O0 = O
and On = O′. Therefore, it suffices to show O0 |= α ⇔ On |= α. We prove
Oi |= α ⇔ Oi+1 |= α and derive O0 |= α ⇔ On |= α from it. In the loop
iteration, either an axiom is moved from O to O′ or O = (O \α′)∪R(α′,O)
for some R ∈ {NR1, . . . ,NR6}. Since in the former case, Oi = Oi+1 and
Oi |= α ⇔ Oi+1 |= α follows trivially, we only cover the latter case, where
Oi+1 = (Oi \ α′) ∪ R(α′,O).

Oi |= α⇒ Oi+1 |= α, for every axiom α.

We assume that Oi |= α and we need to prove that Oi+1 |= α. From
Oi |= α we have that for every interpretation I:

I |= Oi ⇒ I |= α (3.11)

In order to prove Oi+1 |= α, we assume that I |= Oi+1 and we prove
I |= α. From Lemma 4 and since Oi+1 = (Oi \ α′) ∪ R(α′,O) and
I |= Oi+1, we have that I |= Oi. Therefore, by (3.11) we derive I |= α
which was required to show.

Oi+1 |= α⇒ Oi |= α, for every axiom α that does not contain any fresh
concept w.r.t. Oi.
We assume that Oi+1 |= α, that is for every interpretation I:

I |= Oi+1 ⇒ I |= α (3.12)

We want to prove that Oi |= α. Thus, we assume that I |= Oi and
we need to prove that I |= α. From Lemma 5 and since I |= Oi and
Oi+1 = (Oi \α′)∪R(α′,O) we have that there exists an interpretation
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J such that I|sig(Oi) = J |sig(Oi) and J |= Oi+1. From (3.12), we
derive J |= α. Since α does not contain any fresh concepts w.r.t. Oi
and I|sig(Oi) = J |sig(Oi), we have that I |= α, which was required to
show.

Example 6. The goal of this example is to show the necessity of the con-
dition of Theorem 6 that α should not contain any fresh concepts w.r.t.
O. Let Oex be the input and O′ex the output of Algorithm 1 as shown in
Example 1 (page 8) and Example 3 (page 12) respectively. For α =
∃hasSymptom.Fever v A, we have that O′ |= α, since α ∈ O′. We define
the interpretation I by:

∆I = {x, y}

MinorDosageAllowedI = {x}

MinorDosagePrescribedI = {x}

FeverI = {y}

hasSymptomI = {(x, y)}

XI = ∅ for X /∈ {MinorDosageAllowed,MinorDosageAllowed,Fever, hasSymptom}

We have I |= O because:

α1 ∅ ⊆ ∅

α2 ∅ ⊆ {x}

α3 {x} ∩ {x} ⊆ {x}

α4 ∅ ⊆ ∅

α5 ∅ ⊆ {x}

However, I 2 α because (∃hasSymptom.Fever)I = {x} * ∅ = AI . There-
fore, O 2 α, which is a consequence of the fact that α contains the fresh
concept A.
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Chapter 4

Saturation Stage and
Complexity of Reasoning

In the current chapter, we present the second phase of the reasoning process,
which is the saturation stage. Chapter 4 is divided to three sections. In Sec-
tion 4.1 we provide preliminary definitions and notation which will be widely
used from now on. In Section 4.2 we present a polynomial consequence-based
reasoning algorithm and we prove in which cases it is sound and in which
cases complete. Section 4.3 deals with the subsumption problem for some
specific fragments of EL⊥(D); for these cases subsumption problem proves
to be EXPTIME-hard.

4.1 Numerical Datatypes with Operators for the
EL Language

The present section introduces the notion of NDOs. An NDO can be per-
ceived as a datatype with commonly used binary operators (<, ≤, >, ≥, =)
along with restrictions on the use of the operators. Informally, an NDO de-
termines which operators can be used at which side of an ontology’s axioms.

Section 4.1.1 describes some connections that can be detected between
D-datatype restrictions. Section 4.1.2 defines formally what a Numerical
Datatype with Operators (NDO) is and when it is considered to be safe and
convex.

4.1.1 Datatype Restrictions

We begin by defining when one or two datatype restrictions are inconsistent
and when one datatype restriction implies another. The definitions are
followed by a couple of examples, which clarify them.

Definition 7 (Inconsistency for datatype restriction(s)). Let D be
a numerical datatype and (op, q), (op′, r) two D-datatype restrictions. A
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datatype restriction (op, q) is defined to be inconsistent w.r.t. a datatype D
(written (op, q) →D ⊥) iff there is no x ∈ D such that x satisfies (op, q).
Otherwise, we write (op, q) 9D ⊥. Given that (op, q) 9D ⊥ and (op′, r) 9D

⊥, we write (op, q) ∧ (op′, r) →D ⊥ and we say that (op, q) and (op′, r) are
inconsistent w.r.t. a datatype D iff there is no number x ∈ D such that x
satisfies (op, q) and (op′, r) at the same time. Again, in the opposite case we
write (op, q) ∧ (op′, r) 9D ⊥.

Definition 8 (Implication between datatype restrictions). Let D be
a numerical datatype and (op, q), (op′, r) two D-datatype restrictions. We
say that (op, q) implies (op′, r) w.r.t. a datatype D and we write (op, q)→D

(op′, r) iff every number x ∈ D, which satisfies (op, q), satisfies (op′, r) as
well; we also require (op, q) 9D ⊥. Otherwise, we write (op, q) 9D (op′, r).

Example 7. Let D = R+, where R+ is the set of positive real numbers
and (<, 5), (≤, 7), (<, 1) and (>, 8) be datatype restrictions. x = 4 satisfies
(<, 5) because 4 < 5, but x = 8 does not. Furthermore, (<, 5) implies
(≤, 7) w.r.t. R+ because for every x ∈ R+, if x < 5 then x ≤ 7 as well.
Additionally, (≤, 7) 9R+ (<, 5), because e.g., x = 6 satisfies (≤, 7) but not
(<, 5). Also, (<, 1)→R+ ⊥ and (<, 5) ∧ (>, 8)→R+ ⊥.

Example 8. Let D = {2, 3, 4} and (>, 3), (<, 3), (≤, 4), (≤, 2), (<, 2)
and (=, 2) be D-datatype restrictions. Then (>, 3) implies (≤, 4) and (≤, 2)
implies (=, 2) w.r.t. D. Additionally, (<, 2)→D ⊥ and (>, 2)∧(<, 3)→D ⊥.

Definition 9. Let D be a numerical datatype. We write p = max(D) if
p ∈ D and @ q ∈ D such that q > p. We, further, write p = min(D) if
p ∈ D and @ q ∈ D such that q < p.

Table 4.1 provides a complete listing of the cases where a datatype re-
striction is inconsistent w.r.t. a datatype D; the listing is complete: from
the five different datatype restrictions only two can be inconsistent and are
presented with the corresponding conditions.

Table 4.2 presents exhaustively the cases, where two datatype restrictions
are inconsistent w.r.t. a datatype D modulo commutativity of conjunction
between the datatype restrictions; there are no more cases to be included,
because we present conditions for all possible pairs of datatype restrictions
apart from the ones that do not imply inconsistency at any condition. Sup-
pose that the first and second datatype restrictions define sets S1, S2 ⊆ R;
the condition given at Table 4.2 corresponds to disjointness between S1 and
S2.

Finally, Table 4.3 gives a comprehensive list of datatype restrictions that
imply other datatype restrictions and the necessary conditions for this to
happen. Again, all cases are considered (25 in total) and the corresponding
conditions are given. Again, if we assume that the first and second datatype
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(op, q) (op, q)→D ⊥
(<, q) q = min(D)
(>, q) q = max(D)

Table 4.1: (op, q)→D ⊥ cases

(op, q) (op′, r) Condition for (op, q) ∧ (op′, r)→D ⊥
(≤, q) (≥, r) @ p ∈ D s.t. r ≤ p and p ≤ q
(<, q) (≥, r) @ p ∈ D s.t. r ≤ p and p < q

(≤, q) (>, r) @ p ∈ D s.t. r < p and p ≤ q
(<, q) (>, r) @ p ∈ D s.t. r < p and p < q

(=, q) (>, r) q ≤ r
(=, q) (<, r) q ≥ r
(=, q) (≥, r) q < r

(=, q) (≤, r) q > r

(=, q) (=, r) q 6= r

Table 4.2: (op, q) ∧ (op′, r)→D ⊥ cases

restrictions define sets S1, S2 ⊆ R, the condition given at Table 4.3 is the
condition such that S1 ⊆ S2.

Since there is case that one or two datatype restriction can be incon-
sistent w.r.t. a datatype D ((op, q) →D ⊥ or (op1, q1) ∧ (op2, q2) →D ⊥),
one may wonder whether there is a similar case for three datatype restric-
tions. The answer is that there is not such a case, as proved by the following
proposition. We provide a definition first which is used in the proof of the
proposition.

Definition 10. We say that two datatype restrictions have the same direc-
tion if their relational operators are one of the following: both >, both ≥,
both <, both ≤, > and ≥, < and ≤. We say that two datatype restrictions
have opposite directions in the remaining cases, excluding the cases where
at least one operator is equality. The definition can be generalized for more
than two datatype restrictions.

Proposition 3. If three datatype restrictions are inconsistent then at least
a pair or one of them is inconsistent.

Proof. We assume the opposite and prove that it is false. Let D be a
datatype and r1, r2 and r3 be three D-datatype restrictions, such that
ri 9D ⊥ and ri ∧ rj 9D ⊥ for i, j = 1, 2, 3 and i 6= j, and there is no
x ∈ D which satisfies r1, r2 and r3 at the same time. We distinguish three
cases:

• There is at least one equality, e.g., r1 = (=, a). Since r1 ∧ r2 9D ⊥
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(op, q) (op′, r) Condition for (op, q)→D (op′, r)
(≤, q) (≤, r) @ p ∈ D s.t. p ≤ q and p > r

(≤, q) (<, r) @ p ∈ D s.t. p ≤ q and p ≥ r
(<, q) (≤, r) @ p ∈ D s.t. p < q and p > r

(<, q) (<, r) @ p ∈ D s.t. p < q and p ≥ r
(≥, q) (≥, r) @ p ∈ D s.t. p ≥ q and p < r

(≥, q) (>, r) @ p ∈ D s.t. p ≥ q and p ≤ r
(>, q) (≥, r) @ p ∈ D s.t. p > q and p < r

(>, q) (>, r) @ p ∈ D s.t. p > q and p ≤ r
(=, q) (≤, r) q ≤ r
(=, q) (<, r) q < r

(=, q) (≥, r) q ≥ r
(=, q) (>, r) q > r

(=, q) (=, r) q = r

(>, q) (=, r) @ p ∈ D s.t. p 6= r and p > q

(<, q) (=, r) @ p ∈ D s.t. p 6= r and p < q

(>, q) (≤, r) @ p ∈ D s.t. p > q and p > r

(>, q) (<, r) @ p ∈ D s.t. p > q and p ≥ r
(≥, q) (≤, r) @ p ∈ D s.t. p > q and p > r

(≥, q) (<, r) @ p ∈ D s.t. p ≥ q and p ≥ r
(≥, q) (=, r) @ p ∈ D s.t. p ≥ q and p 6= r

(<, q) (≥, r) @ p ∈ D s.t. p < q and p < r

(<, q) (>, r) @ p ∈ D s.t. p < q and p ≤ r
(≤, q) (≥, r) @ p ∈ D s.t. p ≤ q and p < r

(≤, q) (>, r) @ p ∈ D s.t. p ≤ q and p ≤ r
(≤, q) (=, r) @ p ∈ D s.t. p ≤ q and p 6= r

Table 4.3: (op, q)→D (op′, r) cases

and r2∧ r3 9D ⊥, a satisfies both r2 and r3. Hence, there is an x ∈ D
which satisfies r1, r2 and r3 at the same time.

• r1, r2 and r3 have the same direction. W.l.o.g. we assume that r1 =
(>, a), r2 = (>, b) and r3 = (>, c). Since ri 9D ⊥ for i = 1, 2, 3, there
is an x ∈ D, such that x > max(a, b, c), which satisfies all the three of
them.

• r1, r2 have the same direction and r3 has direction opposite to them.
W.l.o.g. we assume that r1 = (>, a), r2 = (>, b) and r3 = (<, c). Since
ri ∧ rj 9D ⊥ for i, j = 1, 2, 3 and i 6= j, there is an x ∈ D, such that
max(a, b) < x < c, which satisfies all the three of them.

Thus, our initial assumption (that there is no x ∈ D which satisfies
r1, r2 and r3 at the same time where ri 9D ⊥ and ri ∧ rj 9D ⊥ for
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i, j = 1, 2, 3 and i 6= j) was false and if, three datatype restrictions are
inconsistent then at least one or a pair of them is inconsistent.

4.1.2 Safety and Convexity for NDOs

At this point, we describe a Numerical Datatype with Operators with a
formal definition and an explanatory example.

Definition 11 (Numerical Datatype with Operators(NDO)). We call
the triple (D,O−, O+), where D ⊆ R and O−, O+ ⊆ {<,≤, >,≥,=} a nu-
merical datatype with operators (NDO). The EL⊥(D,O−, O+) language is
the EL⊥(D) language, where for every positive occurrence of concepts of the
form ∃F.(op, q) (in axioms) there should be op ∈ O+ and q ∈ D and for ev-
ery negative occurrence of concepts of the form ∃F.(op, q) (in axioms) there
should be op ∈ O− and q ∈ D. We say that an axiom is in EL⊥(D,O−, O+)
if it obeys the above restrictions.

Intuitively, an NDO restricts the expressivity of EL⊥(D) by defining
precisely which operators can be used at the left-hand side of axioms (O−)
and which at the right-hand side of axioms (O+).

Example 9. EL(Z, {<,>}, {=}) permits the axioms A v ∃F.(=, 4), ∃F.(<
, 8) v B or ∃F.(>, 13) v C but not the axioms A v ∃F.(>, 9), ∃F.(<
, 10.5) v B.

Now, we define what we call from now on a constraint and when it is
considered to be satisfiable. We also consider a separate case of functional
constraints. The constraint proves to be a particularly useful structure at
the definition of a safe NDO and during the completeness proof.

Definition 12 (Satisfiability of a Constraint). Let (D,O−, O+) be an
NDO. Let, also, S+ = {(op1, q1), . . . , (opn, qn)} such that op1, . . . , opn ∈ O+,
q1, . . . , qn ∈ D and S− = {(op′1, r1), . . . , (op′m, rm)} such that op′1, . . . , op

′
m ∈

O−, r1, . . . , rm ∈ D; we further require (opi, qi) 9D (op′j , rj) and (opi, qi) 9D

⊥ for i = 1, . . . , n and j = 1, . . . ,m. We call the pair (S+, S−) a constraint
w.r.t. (D,O−, O+) and we say that (S+, S−) is satisfiable w.r.t. D iff there
exists a set V ⊆ D such that every r+ ∈ S+ is satisfied by at least one v ∈ V
but no r− ∈ S− is satisfied by any v ∈ V .

Definition 13 (Satisfiability of a Functional Constraint). Let (D,O−,
O+) be an NDO. Let, also, S+ = {(op1, q1), . . . , (opn, qn)} such that op1, . . . ,
opn ∈ O+, q1, . . . , qn ∈ D and S− = {(op′1, r1), . . . , (op′m, rm)} such that
op′1, . . . , op

′
m ∈ O−, r1, . . . , rm ∈ D; we further require (opi, qi) 9D (op′j , rj),

(opi, qi) 9D ⊥ and (opi, qi) ∧ (opl, ql) 9D ⊥ for i = 1, . . . , n, j = 1, . . . ,m,
l = 1, . . . , n and l 6= i. We call the pair (S+, S−) a functional constraint
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w.r.t. (D,O−, O+) and we say that (S+, S−) is satisfiable w.r.t. D iff there
exists a set V ⊆ D such that |V | ≤ 1 and every r+ ∈ S+ is satisfied by at
least one v ∈ V but no r− ∈ S− is satisfied by any v ∈ V .

At this point, we are going to introduce the notion of safety for NDOs.
As we show later in full detail, if an NDO (D,O−, O+) is safe, then there is a
polynomial, sound and complete classification algorithm for the EL⊥(D,O−,
O+) language. We further consider functional safety which is an even stricter
property; its usefulness is clarified in the completeness proof.

Definition 14 (Safe NDO). Let (D,O−, O+) be an NDO. (D,O−, O+) is
safe iff every constraint w.r.t. (D,O−, O+) is satisfiable.

Definition 15 (Functionally Safe NDO). Let (D,O−, O+) be an NDO.
(D,O−, O+) is safe iff every functional constraint w.r.t. (D,O−, O+) is sat-
isfiable.

Definition 16. Let D be a numerical datatype. We say that a conjunction
of datatype restrictions implies a disjunction of datatype restriction w.r.t. a

datatype D and we write
n∧
i=1

ri →D

m∨
j=1

r′j iff for every x ∈ D, if x satisfies

every ri with i = 1, . . . , n, then it satisfies at least one r′j with j = 1, . . . ,m.

Another property of NDOs which proves to be important is convexity
[1]. We formally define it here.

Definition 17 (Convex NDO). Let (D,O−, O+) be an NDO, opi ∈ O+,
op′j ∈ O− and qi, rj ∈ D, for i = 1, . . . , n and j = 1, . . . ,m. (D,O−, O+) is

convex iff for
n∧
i=1

(opi, qi)→D

m∨
j=1

(op′j , rj) there exists j, such that 1 ≤ j ≤ m

and
n∧
i=1

(opi, qi)→D (op′j , rj).

We also formulate the condition that an NDO should satisfy in order
to be non-convex. The non-convexity of an NDO is a significant property
because in Section 4.3 we prove that the non-convexity of an NDO leads to
intractability.

Definition 18 (Violation Convexity Condition). Let (D,O−, O+) be
an NDO, opi ∈ O+, op′j ∈ O− and qi, rj ∈ D, for i = 1, . . . , n and j =
1, . . . ,m. The tuple ((op1, q1), . . . , (opn, qn), (op′1, r1), . . . , (op′1, rm)) is called
a violation convexity condition when the following conditions hold:

n∧
i=1

(opi, qi)→D

m∨
j=1

(op′j , rj)

n∧
i=1

(opi, qi) 9D (op′1, r1)
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n∧
i=1

(opi, qi) 9D (op′2, r2)

...
n∧
i=1

(opi, qi) 9D (op′m, rm)

Proposition 4. Let (D,O−, O+) be an NDO. There is a violation convexity
condition for (D,O−, O+) iff (D,O−, O+) is not convex.

Proof. If we negate the condition from the definition of convexity we directly
derive the violation convexity condition.

Now we prove that safety implies convexity. Thus, safety is a property
stronger and preciser than convexity, since a safe NDO is always convex.

Proposition 5. Let (D,O−, O+) be an NDO. If (D,O−, O+) is safe, then
it is convex as well.

Proof. We proceed by proving the contrapositive, that is if (D,O−, O+) is
not convex then it is not safe. In order to prove that (D,O−, O+) is not safe,
it is sufficient to prove that there is a constraint (S+, S−) w.r.t. (D,O−, O+)
such that (S+, S−) is not satisfiable.

According to 4, since (D,O−, O+) is not convex, there exists a violation
convexity condition such that, for opi ∈ O+, op′j ∈ O− and qi, rj ∈ D, with
i = 1, . . . , n and j = 1, . . . ,m, the following conditions hold:

n∧
i=1

(opi, qi)→D

m∨
j=1

(op′j , rj)

n∧
i=1

(opi, qi) 9D (op′1, r1)

n∧
i=1

(opi, qi) 9D (op′2, r2)

...
n∧
i=1

(opi, qi) 9D (op′m, rm)

We form the constraint (S+, S−) with S+ = {(op1, q1), . . . , (opn, qn)} and
S− = {(op′1, r1), . . . , (op′1, rm)}. The above (S+, S−) is indeed a constraint
because according to Definition 12 we need (opi, qi) 9D (op′j , rj), for i =
1, . . . , n and j = 1, . . . ,m, which is a consequence of the violation convexity
condition. (S+, S−) is not satisfiable because (from Definition 12) there
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can be found no v ∈ D such that it satisfies
n∧
i=1

(opi, qi) but none of the

(op′j , rj) for j = 1, . . . ,m as a result from
n∧
i=1

(opi, qi)→D

m∨
j=1

(op′j , rj) which

is included in the violation convexity condition.

4.2 Rules and Saturation Algorithm

The current section depicts the saturation stage, which is the second part
of the reasoning process. Section 4.2.1 provides some consequence-based
rules which lie at the heart of the saturation algorithm which is described
in Section 4.2.2. Section 4.2.3. specifies when the algorithm is sound, when
it is complete and supplies the accompanying proofs. The notation and
definitions provided in Section 4.1 are widely used here.

4.2.1 Consequence-based Rules

Firstly, we present in Table 4.4 the rules IR1-IR2 and CR1-CR5 [1] which
do not involve any datatypes and are essential for the saturation algorithm,
which will be presented in the subsequent section. For the rules IR1-IR2,
and CR1-CR5 we have that A,B,C,D ∈ N>C , C ′ ∈ N>C ∪ {⊥} and r ∈ NR.
The premise(s) of each rule is (are) over the line, the conclusion is under the
line and on the right appear the side conditions, which are necessary to be
satisfied for the rule to be applied.

Table 4.5 brings in the rules ID1-CD3, which deal with the datatype
part of the language. For ID1-CD3 it holds that A,B ∈ N>C and F ∈ NF .
We assume that there exists a procedure based on Table 4.1, Table 4.2 and
Table 4.3 that checks in polynomial time whether (op, q) →D ⊥, (op, q) ∧
(op′, r)→D ⊥ and (op, q)→D (op′, r) correspondingly.

4.2.2 The Saturation Algorithm

After presenting the rules, we are ready to continue with the description of
the saturation algorithm. Before that we define some notation which is used
in the algorithm.

Definition 19. Let O be an ontology, R ∈ {CR1, . . . ,CD3}, α ∈ Ax and
S ⊆ Ax. The function R(O, α, S) returns a set of axioms which is the union
of the conclusions we obtain if we apply rule R, with α as one premise and
with a member of S as the other premise (only for rules CR2, CR4, CR5
and CD3); the first argument, O, is used in the side condition(s), if there
exist any, which should be satisfied for the rules to be applicable (Table 4.4,
Table 4.5).
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Rule Premises-Conclusion Side condition

IR1
A v A

–

IR2
A v >

–

CR1
A v B
A v C ′

B v C ′ ∈ O

CR2
A v B A v C

A v D
B u C v D ∈ O

CR3
A v B
A v ∃r.C

B v ∃r.C ∈ O

CR4
A v ∃r.B B v C

A v D
∃r.C v D ∈ O

CR5
A v ∃r.B B v ⊥

A v ⊥
-

Table 4.4: Reasoning rules in EL⊥(D) (no datatypes)

Example 10. Let O = {B uC v D,∃r.C v D} and S = {A v C,B v C}.
In that case, we have CR2(A v B,S) = CR4(A v ∃r.B, S) = {A v D}.

Algorithm 2 takes as input an ontology O of axioms in normal form and
produces as output the ontology O′; a taxonomy of O can be extracted from
O′ by retaining only axioms of the form NF1 (A v B) and NF7 (A v ⊥).
Algorithm 2 follows the pattern of the Given Clause Algorithm [15] and
splits the axioms into two sets: the set of unprocessed (O′1) and processed
(O′2) axioms. O′1 is initialized with the rules that do not require any premises
(IR1, IR2, ID1). After that, every axiom α in O′1 is examined and all the rules
are checked; at least one premise of the rule should be α and the other one (if
there exists one) is taken from O′2. The new conclusions are checked if they
occur in O′1 ∪O′2 and if not they are added to O′1; α is now moved from the
set of unprocessed (O′1) to the set of processed (O′2) axioms. The algorithm
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Rule Premises-Conclusion Side-condition(s)

ID1
A v ⊥

A v ∃F.(op, q) ∈ O
∧ (op, q)→D ⊥

CD1
A v ∃F.(op, q)

A v B
∃F.(op′, r) v B ∈ O
∧ (op, q)→D (op′, r)

CD2
A v B

A v ∃F.(op, q)
B v ∃F.(op, q) ∈ O

CD3
A v ∃F.(op, q) A v ∃F.(op′, r)

A v ⊥
(op, q) ∧ (op′, r)→D ⊥
∧ Funct(F ) ∈ O

Table 4.5: Reasoning rules in EL⊥(D) (for datatypes)

terminates when the set of unprocessed axioms (O′1) becomes empty.

Example 11. In order to clarify Algorithm 2 we apply it to O′, which was
computed in Example 3 (page 12). We set O = O′ as the input of Algo-
rithm 2 to avoid confusion. We do not show the detailed execution of the
algorithm; we only show the axioms that the output (O′ = O′1∪O′2) contains
and which rules produced them. We first present the axioms which were
added to O′1 during initialization.

α6 Child v > α7 Feverish v >

α8 FeverishChild v > α9 Fever v >

α10 A v > α11 MinorDosagePrescribed v >

α12 MinorDosageAllowed v > α13 Child v Child

α14 Feverish v Feverish α15 FeverishChild v FeverishChild

α16 Fever v Fever α17 A v A
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Algorithm 2 : Saturation Algorithm
Input: = ontology O consisting of axioms in normal form
Output: = ontology O′ consisting of axioms in NF1, NF3, NF5 and NF7
1: O′1 := {A v A,A v > | A ∈ NC ∩ sig(O)}; \\IR1, IR2
2: O′1 := O′1 ∪ {A v ⊥ | A v ∃F.(op, q) ∈ O ∧ (op, q)→D ⊥}; \\ID1
3: O′2 := ∅;
4: repeat
5: choose an axiom α such that α ∈ O′1;
6: U :=

⋃
R ∈ CR1−CR5,CD1−CD3

R(O, α,O′2);

7: for any α′ ∈ U such that α′ /∈ O′1 ∪ O′2 do
8: O′1 := O′1 ∪ {α′};
9: end for

10: O′1 := O′1 \ {α};
11: O′2 := O′2 ∪ {α};
12: until O′1 := ∅;
13: O′ := O′2;

α18 MinorDosagePrescribed v MinorDosagePrescribed

α19 MinorDosageAllowed v MinorDosageAllowed

Now we show the axioms which were added to O′1 ∪O′2 during the loop iter-
ations, as a result of the rules CR1-CR5, CD1-CD3:

α20 Child v ∃hasAge.(<, 12)
after application of CD2 to α13 and α1a ∈ O

α21 Child v ∃hasAge.(>, 5)
after application of CD2 to α13 and α1b ∈ O

α22 FeverishChild v Child
after application of CR1 to α15 and α4a ∈ O

α23 FeverishChild v Feverish
after application of CR1 to α15 and α4b ∈ O

α24 Feverish v ∃hasSymptom.Fever
after application of CR3 to α14 and α5 ∈ O

α25 Child v MinorDosageAllowed
after application of CD1 to α20 and α2 ∈ O, (<, 12)→D (<, 18)
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α26 FeverishChild v ∃hasAge.(<, 12)
after application of CD2 to α22 and α1a ∈ O

α27 FeverishChild v ∃hasAge.(>, 5)
after application of CD2 to α22 and α1b ∈ O

α28 FeverishChild v ∃hasSymptom.Fever
after application of CR3 to α23 and α5 ∈ O

α29 Feverish v A
after application of CR4 to α24, α16 and α3a ∈ O

α30 FeverishChild v MinorDosageAllowed
after application of CD1 to α26 and α2 ∈ O, (<, 12)→D (<, 18)

α31 FeverishChild v A
after application of CR4 to α28, α16 and α3a ∈ O

α32 FeverishChild v MinorDosagePrescribed
after application of CR2 to α30, α31 and α3b ∈ O

For D′ = {r ∈ Z | 12 ≤ r ≤ 120} we would have Child v ⊥ as a result
of the application of ID1 and α1a ∈ O, (<, 12) →D′ ⊥. Additionally, if
Child v ∃hasAge. (>, 12) ∈ O and Funct(F ) ∈ O, Child v ⊥ would have
been added as a result of the application of CD3.

We now prove that the algorithm terminates and after that we prove that
the algorithm costs polynomial space and polynomial time.

Proposition 6 (Termination of Saturation Algorithm). Algorithm 2
terminates.

Proof. We prove termination by proving that the loop of Algorithm 2 iterates
finitely many times. It is sufficient to prove that the conditional assignment
O′1 := O′1 ∪ {α′} is executed a finite number of times. Thus, O′1 contains
finitely many axioms and since one axiom is unconditionally removed from
O′1 per loop iteration, Algorithm 2 terminates.

Now we prove that O′1 := O′1 ∪ {α′} is executed finitely many times.
According to the algorithm, an axiom α′ is added to O′1 if it is a conclusion
of one of the rules CR1-CD3 and does not belong to O′1 ∪ O′2. The number
of possible conclusions of CR1-CD3 is bounded because they are axioms in
normal form and formed using symbols from the finite set sig(O). Further-
more, once an axiom is added to O′1, either it remains there or it is moved
to O′2. Since there is a check for duplicate axioms in O′1 ∪ O′2, after finitely
many additions of axioms to O′1, no more axiom is added to it.
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Proposition 7 (Complexity of Saturation Algorithm). Algorithm 2
runs in polynomial space and polynomial time.

Proof. We set the finite sets (since O is finite) N ′C = N>C ∩ sig(O), N ′R =
NR ∩ sig(O) and N ′F = NF ∩ sig(O). Suppose that |N ′C | = n, |N ′R| = m
and O contains k axioms.

Claim 4. Algorithm 2 runs in polynomial space.

We calculate the maximum number of axioms that Algorithm 2 adds to
O′2, which is its output. Axioms are added to O′2 only if they are produced
by one of the IR1-IR2, CR1-CR5, ID1, CD1-CD3. Thus, only axioms of the
form A v B, A v >, A v ⊥, A v ∃r.B or A v ∃F.(op, q) with A, B ∈ N ′C ,
r ∈ N ′R and F ∈ N ′F are added. Since no fresh concepts, roles or features
are introduced, N ′C , N ′R and N ′F remain the same. Furthermore, there is a
check for the axioms that have already been added to O′2 not to be added
again. We count how many different axioms there are at most for each form:

• A v B, A, B ∈ NC : n2 axioms

• A v >, A ∈ NC : n axioms

• A v ⊥, A ∈ NC : n axioms

• A v ∃r.B, A, B ∈ NC , r ∈ NR: n2m axioms

• A v ∃F.(op, q), A ∈ NC , ∃F.(op, q) occurs in O: nk axioms

In total, the maximum size of O′ (that is the size of O′2 after the last iteration
loop) is 2n+n2(m+1)+kn = n(2+nm+n+k). As a consequence Algorithm 2
runs in O(n2m+ n · k) space.

Claim 5. Algorithm 2 runs in polynomial time.

We set the maximum size ofO′, l = n(2+nm+n+k). Let also Cimp, Cinc1
and Cinc2 be the cost (polynomial as we have assumed) for checking whether
(op, q) →D (op′, r), (op, q) →D ⊥ and (op, q) ∧ (op′, r) →D ⊥ respectively.
During the initialization the algorithm runs in O(2n + k · Cinc1). Now, we
calculate the worst-case time cost by multiplying:

• the upper bound of loop iterations

The loop cannot be executed more than l times which is the upper
space limit for O′1, since one axiom is unconditionally removed from
O′1 per iteration.

• the worst-case cost per loop

It is the sum of:
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– time to calculate CR1(O, α,O′2) (CR3(O, α,O′2)) which is the size
of O, i.e., O(k).

– time to calculate CR2(O, α,O′2) (CR4(O, α,O′2)) which is the size
of O multiplied by the maximum size of O′2, i.e., O(k · l).

– time to calculate CR5(O, α,O′2) which is the maximum size of O′2,
i.e., O(l).

– time to calculate CD1(O, α,O′2) which is the size of O and the
cost to check implication, i.e., O(k · Cimp).

– time to calculate CD2(O, α,O′2) which is the size of O, i.e., O(k).

– time to calculate CD3(O, α,O′2) which is the maximum size of
O′2 times the cost to check inconsistency for two datatype restric-
tions, i.e., O(l · Cinc2).

In total, we have a polynomial upper time bound, which is O(2n+k ·Cinc1)+
l ·O(k + kl + l + k · Cimp + l · Cinc2). If we further assume that Cimp, Cinc1
and Cinc2 run in constant time we finally find that Algorithm 2 runs in
O(k · n4 ·m2 + n2 · k3).

4.2.3 Soundness and Completeness

Now we continue with the soundness and completeness proof for Algo-
rithm 2. The soundness means that the axioms contained in the output
ontology are entailed by the input ontology, while completeness guarantees
that if an axiom of the form A v B is entailed by the input ontology,
then A v B or A v ⊥ is included in the output ontology. We prove
that Algorithm 2 is sound without any further restriction. However, for
the completeness we require that the axioms in the input ontology O be in
EL⊥(D,O−, O+), where (D,O−, O+) is a (functionally) safe NDO.

Theorem 20 (Soundness for Saturation Algorithm). Let O be an
ontology in EL⊥(D) consisting of axioms in normal form and O′ the ontology
we obtain after applying Algorithm 2 to O. Every model I of O is a model
of O′ as well.

Proof. After the termination of the algorithm, we have that O′ = O′1 ∪ O′2.
Hence, we prove our lemma using induction on the size of O′1 ∪ O′2. We
consider as base case the ontology O′1 after the initialization (lines 1-3) of
the algorithm (since O′2 is empty at that point). The induction case is the
addition of axioms to O′1 during the loop (lines 4-12), since the axioms are
first added to O′1 and then moved to O′2.

• Base case
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Every model I of O is a model of O′1∪O′2, where O′1∪O′2 = {A v A,A v
> | A ∈ NC ∩ sig(O)} ∪ {A v ⊥ | A v ∃F.(op, q) ∈ O ∧ (op, q)→D ⊥}.

If I is a model of O, then I is a model of O′1 ∪ O′2 as well, because
AI ⊆ AI and AI ⊆ ∆I (for A ∈ NC ∩sig(O)) hold trivially. For the axioms
of the form A v ⊥ we have to show that AI ⊆ ∅. Since, A v ∃F.(op, q) ∈ O
and I is a model of O, AI ⊆ (∃F.(op, q))I . However, from (op, q) →D ⊥,
we have that there exists no x ∈ D, such that it satisfies (op, q) and, as a
result, (∃F.(op, q))I = ∅.

• Induction step

Let I be a model of O. If I is a model of O′1 ∪ O′2, then it is also a
model of (O′1 ∪ O′2) ∪ {α′}, with α′ ∈ R(O, α,O′2), where R ∈ CR1 − CD3,
α′ /∈ O′1 ∪ O′2 and α ∈ O′1.

Since I is a model of O′1 ∪ O′2, it is only left to show that I |= α′ for
α′ ∈ R(O, α,O′2), where R ∈ CR1 − CD3, α′ /∈ O′1 ∪ O′2 and α ∈ O′1. We
distinguish cases:

CR1 In that case, α′ = A v C ′ has been added to O′1 ∪ O′2. Therefore,
there should be a B ∈ N>C , such that A v B ∈ O′1 and B v C ′ ∈ O.
Since I is a model both of O and O′1 ∪ O′2, we have that I |= A v B
and I |= B v C ′. Hence, AI ⊆ BI and BI ⊆ C ′I , which gives us
AI ⊆ CI . Thus, I |= A v C ′, which we needed to prove.

CR2 In that case, α′ = A v D has been added to O′1 ∪ O′2. Therefore,
there should be B,C ∈ N>C , such that A v B ∈ O′1, A v C ∈ O′2
and B u C v D ∈ O. Since I is a model both of O and O′1 ∪ O′2, we
have that I |= A v B, I |= A v C and I |= B u C v D. Hence,
AI ⊆ BI , AI ⊆ CI and BI ∩ CI ⊆ DI , which gives us AI ⊆ DI .
Thus, I |= A v D, which is what we wanted to show.

CR3 In that case, α′ = A v ∃r.C has been added to O′1 ∪ O′2. Therefore,
there should be a B ∈ N>C , such that A v B ∈ O′1 and B v ∃r.C ∈ O.
Since I is a model of both O and O′1 ∪ O′2, we have that I |= A v B
and I |= B v ∃r.C. Hence, AI ⊆ BI and BI ⊆ (∃r.C)I , which gives
us AI ⊆ (∃r.C)I . Thus I |= A v ∃r.C, which was required to prove.

CR4 In that case, α′ = A v E has been added to O′1 ∪ O′2. Therefore,
there should be B, C ∈ N>C and r ∈ NR, such that A v ∃r.B ∈ O′1,
B v C ∈ O′2 (or A v ∃r.B ∈ O′2, B v C ∈ O′1) and ∃r.C v E ∈ O.
Since I is a model both of O and O′1∪O′2, we have that I |= A v ∃r.B,
I |= B v C and I |= ∃r.C v E. Hence, AI ⊆ (∃r.B)I , BI ⊆ CI and
(∃r.C)I ⊆ EI . Take an x ∈ AI . In order to show AI ⊆ EI , we prove
x ∈ EI . For every x ∈ AI there exists a y such that (x, y) ∈ rI and
y ∈ BI . Since y ∈ BI , then y ∈ CI . Furthermore, for every z such
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that (z, y) ∈ rI we have that z ∈ EI and since (x, y) ∈ rI , we have
that x ∈ EI . Thus, I |= A v E, which we needed to show.

CR5 In that case, α′ = A v ⊥ has been added to O′1 ∪O′2. Therefore, there
should be an r ∈ NR and B ∈ N>C , such that A v ∃r.B ∈ O′1 and
B v ⊥ ∈ O′2 (or A v ∃r.B ∈ O′2 and B v ⊥ ∈ O′1). Since I is a
model of O′1 ∪ O′2, we have that I |= A v ∃r.B, I |= B v ⊥. Hence,
AI ⊆ (∃r.B)I and BI ⊆ (⊥)I . From the semantics of bottom concept,
(⊥)I = ∅ and, as a consequence, BI = ∅. From the interpretation of
existential restriction, we have that (∃r.B)I = ∅. Since AI ⊆ (∃r.B)I

and (∃r.B)I = ∅, AI ⊆ ∅. Thus, A v ⊥, which we needed to show.

CD1 In that case, α′ = A v B has been added to O′1 ∪ O′2. Therefore,
there should be an F ∈ NF , such that A v ∃F.(op, q) ∈ O′1 and
∃F.(op′, r) v B ∈ O with (op, q) →D (op′, r). Since I is a model
both of O and O′1 ∪ O′2, we have that I |= A v ∃F.(op, q) and I |=
∃F.(op′, r) v B. Hence AI ⊆ (∃F.(op, q))I and (∃F.(op′, r))I ⊆ BI .
However, since (op, q) →D (op′, r), every x ∈ D that satisfies (op, q),
satisfies (op′, r) as well. Hence, (∃F.(op, q))I ⊆ (∃F.(op′, r))I and,
thus, AI ⊆ BI , which we wanted to show.

CD2 In that case, α′ = A v ∃F.(op, q) has been added to O′1 ∪ O′2. There-
fore, there should be a B ∈ N>C , such that A v B ∈ O′1 and
B v ∃F.(op, q) ∈ O. Since I is a model both of O and O′1 ∪ O′2,
we have that I |= A v B and I |= B v ∃F.(op, q). Hence, AI ⊆ BI

and BI ⊆ (∃F.(op, q))I . We directly derive that AI ⊆ (∃F.(op, q))I .

CD3 In that case, α′ = A v ⊥ has been added to O′1 ∪ O′2. Therefore,
there should be an F ∈ NF such that A v ∃F.(op, q) ∈ O′1, A v
∃F.(op′, r) ∈ O′2 with (op, q)∧(op′, r)→D ⊥ and Funct(F ) ∈ O. Since
I is a model of O′1 ∪ O′2, we have that I |= A v ∃F.(op, q) and I |=
A v ∃F.(op′, r). Hence AI ⊆ (∃F.(op, q))I and AI ⊆ (∃F.(op′, r))I .
However, given that (op, q) ∧ (op′, r) →D ⊥ there is no v ∈ D, which
satisfies at the same time (op, q) and (op′, r). Therefore, since F is
a functional feature, there is no x, such that x ∈ (∃F.(op, q))I and
x ∈ (∃F.(op′, r))I and, thus, AI ⊆ ∅.

The following lemma is later used in the completeness proof. It intu-
itively says that if the axioms of an input ontologyO are in EL⊥(D,O−, O+),
then the axioms of the ontology obtained after applying Algorithms 1 and 2
to the input ontology are in EL⊥(D,O−, O+) as well.

Lemma 6. Let O be an ontology and O′ the ontology obtained after applying
Algorithm 1 to O and subsequently Algorithm 2 to the output of Algorithm 1.
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A concept of the form ∃F.(op, q) positively (negatively) occurs in O′ only if
it positively (negatively) occurs in O.

Proof. It suffices to prove that the normalization rules (NR1-NR5) and sat-
uration rules (IR1-CR3) preserve the positive(negative) occurrences of ex-
istential datatype restrictions. For the rules NR1-NR5 (table 3.2 on page
12) a concept C occurs positively (negatively) in the head of a rule if it
occurs positively (negatively) in one of the axioms of its body. For positive
occurrences, this is the case for concepts E of NR1, D of NR2 and NR5, H
of NR3 and NR4 and C of NR5. For negative occurrences, this is the case
for concepts C and H of NR1, G of NR2 and NR3 and C of NR4. The only
saturation rule which adds an axiom with a positive occurrence of ∃F.(op, q)
is CR3, where a concept of the form ∃F.(op, q) positively occurs at the con-
clusion only if positively occurs at the ontology O of the side-condition. No
saturation rules concern any negative occurrences.

Theorem 21 (Completeness for Saturation Algorithm). Let (D,O−,
O+) be a (functional) safe NDO and O an ontology containing axioms in
normal form and in EL⊥(D,O−, O+). For every A, B ∈ N>C ∩ sig(O), if
O |= A v B, then A v B ∈ O′ or A v ⊥ ∈ O′.

Proof. Initially, we are going to construct an interpretation I based on the
axioms that O′ contains. Subsequently, we prove that the interpretation I is
a model of O for axioms of the form NF1-NF8. We prove that if O |= A v B,
then A v B ∈ O′ or A v ⊥ ∈ O′ by showing the contrapositive. We assume
that A v B /∈ O′ and A v ⊥ /∈ O′ and we show that for the model I we
constructed (for which I |= O is shown) it is I 2 A v B. We call the model
I canonical model.

We define the domain of the interpretation by adding to it one element
for each name concept of N>C ∩ sig(O) under the condition that the name
concept is not subsumed by ⊥:

∆I = {xA | A ∈ N>C ∩ sig(O) ∧A v ⊥ /∈ O′} (4.1)

We continue with the interpretation of the concept names:

BI = {xA | xA ∈ ∆I ∧A v B ∈ O′} (4.2)

Furthermore, we define the interpretation of the role names:

rI = {(xA, xB) | A v ∃r.B ∈ O′ ∧ xA, xB ∈ ∆I} (4.3)

Now we deal with the definition of the interpretation for feature names.
Before that, we define S+ and S−; they are parameterised with a concept
name A such that A v ⊥ /∈ O′ and a feature name each, because they
are different for different axioms of the form A v ∃F.(op, q) (NF5) and
∃F.(op′, r) v B (NF6):
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S+(A,F ) = {(op, q) | A v ∃F.(op, q) ∈ O′} (4.4)

According to Lemma 6, concepts of the form ∃F.(op, q) positively occur in
O′ only if they positively occur in O and, as a consequence, op ∈ O+. S− is
defined depending on A and F as follows:

S−(A,F ) = {(op′, r) | ∃F.(op′, r) v B ∈ O ∧A v B /∈ O′} (4.5)

S+(A,F ) and S−(A,F ) are defined for the same A and F (from now on we
omit the parameters of S+ and S− for readibility reasons).

We now show that (S+, S−) is indeed a constraint. For every r ∈ S+ it
holds that r 9D ⊥; otherwise from rule ID1 it would be A v ⊥ ∈ O′ which
is opposite to what we have assumed. It is also true that for (op, q) ∈ S+ and
(op′, r) ∈ S− we have (op, q) 9D (op′, r); otherwise from A v ∃F.(op, q) ∈
O′, ∃F.(op′, r) v B ∈ O, (op, q) →D (op′, r) and rule CR1 we would have
A v B ∈ O′, which is opposite to 4.5. Additionally, since from Lemma 6
negative occurrences of axioms of the form ∃F.(op, q) are preserved, it can
be derived that for every op′ from S−, we have op′ ∈ O−.

For the definition of F I , we distinguish cases according to whether
Funct(F ) ∈ O or not:

• Funct(F ) /∈ O

Since (S+, S−) is a constraint w.r.t. (D,O−, O+) and (D,O−, O+) is
safe, (S+, S−) is satisfiable. Thus, there exists a set V ⊆ D such that every
r+ ∈ S+ is satisfied by at least one v ∈ V but no r− ∈ S− is satisfied by
any v ∈ V . V depends on A and F since they uniquely define S+ and S−.
We define F I as:

F I = {(xA, v) | v ∈ V (A,F )} (4.6)

• Funct(F ) ∈ O

If Funct(F ) ∈ O, (S+, S−) is a functional constraint. We prove that it
is a functional constraint by showing that no two datatype restrictions in
S+ are inconsistent w.r.t. D; if this was the case then from A v ∃F.(op, q),
A v ∃F.(op′, r), (op, q) ∧ (op′, r) →D ⊥ and rule CD3, we would have A v
⊥ ∈ O′ which comes in contrast with our assumption that A v ⊥ /∈ O′.

Since (S+, S−) is a functional constraint w.r.t. (D,O−, O+) and (D,O−,
O+) is functionally safe, (S+, S−) is satisfiable. Thus, there exists a set
V ⊆ D, with |V | ≤ 1, such that every r+ ∈ S+ is satisfied by v ∈ V but
no r− ∈ S− is satisfied by any v ∈ V . V depends on A and F since they
uniquely define S+ and S−. We define F I as:
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F I = {(xA, v) | v ∈ V (A,F )} (4.7)

Since |V | ≤ 1 the above relation is indeed a functional relation.

Now, we prove that I |= O. In order to do that, we need to prove that
I |= α for every α ∈ O. However, O contains only axioms in normal form.
Therefore, it is sufficient to prove that I |= α, when α takes one of the
NF1-NF8.

NF1 A v B

We need to prove I |= A v B; in other words AI ⊆ BI . Take an
x ∈ AI ; we show that x ∈ BI . By (4.2), x = xC such that C v A ∈ O′.
Since A v B ∈ O and O′ is closed under CR1, we have C v B ∈ O′. Hence
x = xC ∈ BI by (4.2).

We examine separately the case when A = >. We have that xA ∈ ∆I and
we need to show that xA ∈ BI . From rule IR2, we have that A v > ∈ O′.
From rule CR1, A v B ∈ O′ and as a consequence xA ∈ BI .

NF2 A1 uA2 v B

In order to prove that I |= A1 uA2 v B we assume that x ∈ (A1 uA2)I

and we prove that x ∈ BI . Since x ∈ (A1 u A2)I , we have x ∈ AI1 , x ∈ AI2
and x = xA for some concept name A. From x ∈ AI1 , x ∈ AI2 and (4.2) we
have A v A1 ∈ O′ and A v A2 ∈ O′. Since A v A1 ∈ O′, A v A2 ∈ O′ and
A1 uA2 v B ∈ O the axiom A v B has also been added to O′ (due to rule
CR2) and, therefore, x ∈ BI , from (4.2).

NF3 A v ∃r.B

We show that I |= A v ∃r.B by proving AI ⊆ (∃r.B)I . Take an x ∈ AI ;
we prove that x ∈ (∃r.B)I . From (4.2), x = xC where C v A ∈ O′. Since
A v ∃r.B ∈ O and O′ is closed under CR3, we have C v ∃r.B ∈ O′. Since
xC ∈ ∆I , we have C v ⊥ /∈ O′ and, hence, B v ⊥ /∈ O′ by CR5. Thus,
xB ∈ ∆I and (xC , xB) ∈ rI by (4.3). Since B v B ∈ O′ by IR1, we have
xB ∈ BI by (4.2). Thus, x = xC ∈ (∃r.B)I .

NF4 ∃r.B v A

We prove that I |= ∃r.B v A by taking an x ∈ (∃r.B)I and proving that
x ∈ AI . Since x ∈ (∃r.B)I there exists y ∈ ∆I such that (x, y) ∈ rI and
y ∈ BI . From (4.3) and (4.2) x = xC and y = xD such that C v ∃r.D ∈ O′
and D v B ∈ O′. Since ∃r.B v A ∈ O and O′ is closed under CR4, we have
C v A ∈ O′. Hence, x = xC ∈ AI by (4.2).
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NF5 A v ∃F.(op, q)

We prove that I |= A v ∃F.(op, q), that is AI ⊆ (∃F.(op, q))I , by taking
an x ∈ AI and proving that x ∈ (∃F.(op, q))I . Since x ∈ AI by (4.2), there
exists C such that x = xC and C v A ∈ O′. Since A v ∃F.(op, q) ∈ O
and O′ is closed under CD2, we have C v ∃F.(op, q) ∈ O′. Let (S+, S−) be
the constraint constructed for F and C as defined in (4.4) and (4.5). Then
(op, q) ∈ S+. By (4.6) we have (xC , v) ∈ F I for every v ∈ V , where V is
a solution for (S+, S−). Since V is a solution for (S+, S−) and (op, q) ∈
S+, there exists v ∈ V such that v satisfies (op, q). Hence, x = xC ∈
(∃F.(op, q))I .

NF6 ∃F.(op′, r) v B

We prove that I |= ∃F.(op, q) v B, that is (∃F.(op, q))I ⊆ BI . Take an
arbitrary x ∈ (∃F.(op, q))I . We have to show that x ∈ BI . We have that
x = xC for some concept name C. Let (S+, S−) be the constraint for F
and C. Since xC ∈ (∃F.(op′, r))I , by (4.6), there exists v ∈ V , such that v
satisfies (op′, r), where V is a solution for (S+, S−). Hence, (op′, r) /∈ S−,
and so, C v B ∈ O′ by definition of S−. Now from (4.2) we have that
xC ∈ BI .

NF7 A v ⊥

We need to prove that AI = ∅. Assume to the contrary that there
exists x ∈ AI . Then by (4.2) x = xC for some concept name C such that
C v A ∈ O′. Since O′ is closed under CR1 and A v ⊥ ∈ O′, we have
C v ⊥ ∈ O′. Hence, xC /∈ ∆I by (4.1).

NF8 Funct(F )

We assume that there exists x ∈ ∆I , such that (x, v1), (x, v2) ∈ F I . Ac-
cording to the semantics of Funct(F ), it is sufficient to prove that v1 = v2.
From (4.7), V can contain at most one element and, consequently, v1 = v2.

We now show that if A v B /∈ O′ and A v ⊥ /∈ O′, then there is a model
I of O such that I 2 A v B. We choose as a model the canonical model I.
AI * BI holds, since xA ∈ ∆I (A v ⊥ /∈ O′) and xA ∈ AI (using rule IR1)
but xA /∈ BI since A v B /∈ O′.

4.3 Non-convexity and Intractability

The current section deals with the non-convex NDOs and proves that the
subsumption problem in EL⊥(D,O−, O+), where (D,O−, O+) is a non-
convex NDO, is EXPTIME-hard.
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Lemma 7 (Non-convexity and Intractability Lemma). For every non-
convex NDO (D,O−, O+) and every ontology O expressed in ELU , there can
be constructed in polynomial time an ontology O′ in EL⊥(D,O−, O+), such
that (1) and (2) are equivalent:

(1) O |= α

(2) O′ |= α

on condition that α does not contain any concept of the form ∃F.(op, q).

Proof. Since (D,O−, O+) is a non-convex NDO and from the definition of
convexity there are op ∈ O+ and op1, op2 ∈ O−, such that the following three
conditions hold (we take w.l.o.g. the minimum requirement for violation of
convexity):

1. (op, q)→D (op1, r1) ∨ (op2, r2)

2. (op, q) 9D (op1, r1)

3. (op, q) 9D (op2, r2)

First, we normalize the ontology O in order to make disjunction occur
only in axioms of the form A v BtC. To achieve that we apply Algorithm 1
to O augmented by the following two rules:

NR head body
NR6 B v G t C {G v A,B v A t C}
NR7 B t C v D {B v C,B v D}

where A is a fresh concept w.r.t. the, so far, tranformed ontology, G /∈ N>C ,
D ∈ N>C name and B, C and G are concepts. Rule NR6 is applied modulo
commutativity of disjunction. If O′0 is the resulting ontology, for an axiom α
that does not contain any of the introduced fresh concepts it can be proved
that O |= α⇔ O′O |= α, using an extended version of the correctness proof
for the Normalization Algorithm (page 23).

Now, we deal with axioms of the form A v B t C. Suppose that O′0
contains n axioms of the form A v B t C, where A,B,C ∈ NC . We set
O0 = O′0 and the ontologies O1, . . . ,On are the resulting ontologies of the
following transformation for each one of the n axioms:

Oi+1 = (Oi \ {A v B t C}) ∪

{A v ∃F.(op, q), ∃F.(op1, r1) v B, ∃F.(op2, r2) v C} (4.8)

where F ∈ NF is a fresh feature name. We set O′ = On. We can show
in a similar way as in the complexity proof of Algorithm 1 that the above
transformation from O to O′ has polynomial cost.
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(1) ⇒ (2): O |= α⇒ O′ |= α, for every axiom α.

We show it by initially proving that Oi |= α ⇒ Oi+1 |= α. Then, if
we combine the implications for i = 0, . . . , n− 1 we obtain O0 |= α⇒
On |= α, which is O |= α⇒ O′ |= α. We assume that:

Oi |= α (4.9)

and we need to prove that Oi+1 |= α. From (4.9) we have that for
every interpretation I:

I |= Oi ⇒ I |= α (4.10)

In order to prove Oi+1 |= α, we assume that:

I |= Oi+1 (4.11)

and we prove I |= α. By (4.11) and (4.8) we have that:

AI ⊆ (∃F.(op, q))I (4.12)

(∃F.(op1, r1))I ⊆ BI (4.13)

(∃F.(op2, r2))I ⊆ CI (4.14)

We prove that I |= Oi, that is I |= A v BtC and, thus, AI ⊆ BI∪CI .
Take a x ∈ AI . From (4.12) we have that x ∈ (∃F.(op, q))I , that is,
there is an r such that (x, r) ∈ F I and r satisfies (op, q). However, since
(op, q)→D (op1, r1)∨ (op2, r2), r also satisfies (op1, r1) or (op2, r2). So,
we have x ∈ (∃F.(op1, q1))I or x ∈ (∃F.(op2, q2))I . Therefore, from
(4.13) and (4.14) x ∈ BI or x ∈ CI , that is x ∈ (B ∪ C)I , which
was required to show. Therefore, we have shown that I |= Oi and
from (4.10) we have that I |= α which we needed to show.

(2) ⇒ (1): O′ |= α⇒ O |= α, for every axiom α that does not contain any
concept of the form ∃F.(op, q).
Again, we initially prove that Oi+1 |= α ⇒ Oi |= α. Then, by com-
bining the implications for i = n − 1, . . . , 0 we have that On |= α ⇒
O0 |= α, which is the same as O′ |= α ⇒ O |= α. We assume that
Oi+1 |= α, that is for every interpretation I:

I |= Oi+1 ⇒ I |= α (4.15)
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In order to prove that Oi |= α, we prove that for every interpretation
I if:

I |= Oi (4.16)

then I |= α.

We define an interpretation J such that J |= Oi+1 and I|sig(Oi) =
J |sig(Oi).

XJ := XI if X ∈ NC ]NR ]NF \ {F} (4.17)

FJ :=


{(x, b)} if x ∈ BI ∩AI ,
{(x, c)} if x ∈ (CI \BI) ∩AI ,
∅ otherwise.

(4.18)

where b, c ∈ D. We choose number b in such a way that it satisfies
(op, q) and (op1, r1) but not (op2, r2), which is possible since (op, q) 9D

(op2, r2). Similarly, we choose number c in such a way that it satisfies
(op, q) and (op2, r2) but not (op1, r1), which is possible since (op, q) 9D

(op1, r1).

We need to prove that:

• AJ ⊆ (∃F.(op, q))J

Take an arbitrary x ∈ AJ . Since I|sig(Oi) = J |sig(Oi), then AJ =
AI and, thus, x ∈ AI . From (4.16) and A v B tC ∈ Oi we have
that AI ⊆ BI∪CI . Therefore, x ∈ BI or x ∈ CI . If x ∈ BI , then
x ∈ BI ∩ AI as well and, so, (x, b) ∈ FJ and x ∈ (∃F.(op, q))J
(since b satisfies (op, q)). Otherwise x ∈ (CI \ BI) ∩ AI and so,
(x, c) ∈ FJ and x ∈ (∃F.(op, q))J (since c satisfies (op, q)).

• (∃F.(op1, r1))J ⊆ BJ

Take an arbitrary x ∈ (∃F.(op1, r1))J . In that case, from the
definition of FJ , (x, b) ∈ FJ , because (x, c) ∈ FJ cannot be the
case since c does not satisfy (op1, q1). Consequently, x ∈ BI ∩AI
and, thus, x ∈ BI which was required to show.

• (∃F.(op2, r2))J ⊆ CJ

Take an arbitrary x ∈ (∃F.(op2, r2))J . In that case, from the
definition of FJ , (x, c) ∈ FJ (because (x, b) ∈ FJ cannot be the
case since b does not satisfy (op2, q2)) and, thus, x ∈ CI ∩AI . As
a consequence, x ∈ CI and, thus, x ∈ (CI \ BI) ∩ AI which we
needed to prove.
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From the above we have that J |= Oi+1 and from (4.15) we deduce
that:

J |= α (4.19)

Since α does not contain any fresh concepts w.r.t. Oi and I|sig(Oi) =
J |sig(Oi), we have that I |= α, which was required to show.

Example 12. The goal of this example is to show the necessity of the re-
striction of Lemma 7 that axiom α should not contain any concept of the
form ∃F.(op, q). Let O be the initial ontology in ELU and O′ the reduced
ontology as follows:

O = {A v B t C}

O′ = {A v ∃F.(op, q),∃F.(op1, r1) v B, ∃F.(op2, r2) v C}

We prove that there is an axiom which does not satisfy the above restriction
and O′ |= α but O 2 α. For α = A v ∃F.(op, q), we have that O′ |= α, since
α ∈ O′. Let I be the following interpretation :

∆I = {x}

AI = {x}

BI = {x}

XI = ∅ for X /∈ {A,B}

We have that I |= O, (because AI = {x} ⊆ {x} = (B t C)I), but I 2 α
because AI = {x} * ∅ = (∃F.(op, q))I . Therefore, O 2 α, which is a
consequence of the occurrence of ∃F.(op, q) in α.

Theorem 22. In EL⊥(D,O−, O+), where (D,O−, O+) is a non-convex
NDO, the subsumption problem is EXPTIME-hard.

Proof. The same reasoning task in ELU is EXPTIME-complete [1]. From
Lemma 7 the subsumption problem O |= α in ELU can be reduced in
polynomial time to the subsumption problem in EL⊥(D,O−, O+), where
(D,O−, O+) is a non-convex NDO. Hence, the subsumption problem in
EL⊥(D,O−, O+), where (D,O−, O+) is a non-convex NDO, is EXPTIME-
hard.
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A similar result has been shown for non-convex concrete domains [1];
however, in that case the convexity property is less precisely defined and
is not connected to specific NDOs. Additionally, the technique used in the
proof is different from the one used here. In our case we reduce the ontology
in ELU to an ontology in EL⊥(D,O−, O+), where (D,O−, O+) is a non-
convex NDO. In the other case the ontology in ELU is first reduced to an
ontology with a single disjunction axiom and then to an ontology in EL(D),
where D is a non-convex concrete domain.
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Chapter 5

Important NDO Instances

The present chapter points out specific instances of tractable and intractable
EL⊥(D) fragments by dealing with particular NDOs and proving which of
them are safe and which not. Firstly, we define in Section 5.1 some properties
that datatypes D can exhibit and are used later in the chapter. Section
5.2 presents some minimal instances of non-safe NDOs, while Section 5.3
discusses some maximal instances of safe NDOs. At last, Section 5.4 sums
up the overall results and gives a general overview.

5.1 Datatypes with Special Properties

We pinpoint some special properties of datatypes D which will later be used
both in safety and non-safety cases.

Definition 23 (Density and Double-non-density). Let D be a datatype.
We say that D is a dense datatype iff for every a, b ∈ D there is a c ∈ D
such that a < c < b. We say that D is a double non-dense datatype iff
there exist a, b and c ∈ D such that a < b < c and there is no d ∈ D with
a < d < b or b < d < c.

Definition 24 (Previous/Next Elements and Sparsity). Let D be a
datatype. If D is a non-dense datatype and for a, b ∈ D with a < b there
is no c ∈ D such that a < c < b, we say that b (a) is the next (previous)
element of a (b). We also define the respective functions next : D → D
and previous : D → D which return the next and previous element of an
element. We call a datatype D sparse when the min(D) (if there exists
one) has the next element, the max(D) (if there exists one) has the previous
element and all the remaining elements of the datatype have the previous
and the next element.

Definition 25 (Left(Right)-openness). Let D be a datatype. We say
that D is a right-open (or left-open) datatype iff it does not have a max(D)
(or min(D)) element.
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Example 13. R+ ∩ {0} is an example of a right-open dense datatype and
Z is an example of a sparse datatype.

5.2 Minimal Non-safe NDOs

In the current section we present cases of non-safe NDOs and prove their
non-safety. The following non-safe NDOs are minimal, that is if one of
the relational operators is removed from O− or O+ they become safe. The
NDOs which are symmetric to the ones we present here are non-safe as well;
the corresponding proof is symmetric to the given proof. By symmetric
cases and symmetric proof we mean that the relational operators have been
replaced with the operators of opposite direction (i.e., ≤⇔≥, <⇔> and
=⇔=).

Proposition 8. (D2, {≤,≥}, {≥}), (D2, {≤,≥}, {>}), (D2, {≤, >}, {≥}),
(D2, {≤, >}, {>}), (D3, {<,>}, {≥}), (D3, {<,>}, {>}) and (D1, {<,=}, {≤
}), where D1, D2 and D3 are datatypes that have at least 1, 2 and 3 elements
respectively, are non-safe NDOs.

Proof. From Proposition 5 in order to prove non-safety it suffices to prove
non-convexity. From Proposition 4 it is adequate for non-convexity to pro-
vide a violation convexity condition. The following table supplies such a
violation convexity condition ((op, q), (op1, r1), (op2, r2)) for every NDO:

NDO (op, q) (op1, r1) (op2, r2) Condition
(D2, {≤,≥}, {≥}) (≥, p) (≤, q) (≥, q) p < q

(D2, {≤,≥}, {>}) (>, p) (≤, q) (≥, q) p < q

(D2, {≤, >}, {≥}) (≥, p) (≤, q) (>, q) p ≤ q
(D2, {≤, >}, {>}) (>, p) (≤, q) (>, q) p < q

(D3, {<,>}, {≥}) (≥, p) (<, r) (>, q) p < q < r

(D3, {<,>}, {>}) (>, p) (<, r) (>, q) p < q < r

(D1, {<,=}, {≤}) (≤, p) (<, p) (=, p) -

Proposition 9. (Dnd, {≤,=}, {≤}), (Dnd, {<,=}, {<}), (D2nd, {≤,=}, {<
}), where Dnd is a non-dense datatype and D2nd is a double non-dense
datatype, are non-safe NDOs.

Proof. Similarly to the previous case we only need the violation convexity
conditions ((op, q), (op1, r1), (op2, r2)) which are given in the following table:

NDO (op, q) (op1, r1) (op2, r2)
(Dnd, {≤,=}, {≤}) (≤, p) (=, p) (≤, q)
(Dnd, {<,=}, {<}) (<, p) (<, q) (=, q)
(D2nd, {≤,=}, {<}) (<, p) (≤, r) (=, q)
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For the first two NDOs we require q < p and @r ∈ Dnd such that q < r < p.
For the third NDO we choose p, r and q ∈ D2nd, such that r < q < p and
@s ∈ D2nd such that r < s < q or q < s < p.

Proposition 10. (Dnr, {≤,=}, {≥}), (Dnr, {≤,=}, {>}), (Dnr, {<,=}, {≥
}) and (Dnr, {<,=}, {>}), where Dnr is a non-right-open datatype such that
there exists a q ∈ Dnr with q < maxDnr but there exists no r ∈ Dnr with
q < r < maxDnr , are non-safe NDOs.

Proof. We give the violation convexity conditions ((op, q), (op1, r1), (op2, r2)):

NDO (op, q) (op1, r1) (op2, r2)
(Dnr, {≤,=}, {≥}) (≥, p) (=,maxDnr) (≤, q)
(Dnr, {≤,=}, {>}) (>, p) (=,maxDnr) (≤, q)
(Dnr, {<,=}, {≥}) (≥, p) (=,maxDnr) (<,maxDnr)
(Dnr, {<,=}, {>}) (>, p) (=,maxDnr) (<,maxDnr)

For the first two NDOs we choose p and q such that p < q and @r ∈ Dnr

with q < r < maxDnr .

5.3 Maximal Safe NDOs

Now, we present a series of safe NDOs and prove their safety. The safe
NDOs of Propositions 11, 12, 13, 14, 15 and 16 are maximal, that is if one
of the relational operators is added to O− or O+ they become non-safe. Like
before, the NDOs which are symmetric to the ones we present here are safe
as well.

Proposition 11. The NDO (Dd, {≤,=}, {<,>,≤,≥,=}), where Dd is a
dense, left- and right-open datatype, is a safe NDO.

Proof. In order to prove that the NDO is safe, it is sufficient to prove that
every constraint (S+, S−) w.r.t. this NDO is satisfiable, that is, there is a
set V ⊆ Dd, such that every r ∈ S+ is satisfied by at least one v ∈ V and,
additionally, no v ∈ V satisfies any r ∈ S−. Let (S+, S−) be a constraint.
We set the following values:

p1 = min{p | (<, p) ∈ S+}, p2 = max{p | (>, p) ∈ S+}

p3 = min{p | (≤, p) ∈ S+}, p4 = max{p | (≥, p) ∈ S+}
n = max{n′ | (≤, n′) ∈ S−}

It is necessarily n < min(p1, p3), because otherwise we would have n ≥
min(p1, p3) and, thus, (<, p1) →D (≤, n) or (≤, p3) →D (≤, n) which is
prohibited by the definition of S−. We define V as:

V = {v1, v2} ∪ {v | (=, v) ∈ S+}
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such that n < v1 < min(p1, p3) (left-openness if n does not exist), v2 >
max(n, p2, p4) (right-openness) and v1, v2 6= q for (=, q) ∈ S−. There can
always be found values (for v1 and v2) between two other fixed values and
6= q for (=, q) ∈ S−, because the datatype Dd is dense. If one of the max or
min partial functions does not return a value because the respective set is
empty (e.g., there is no p such that (<, p) ∈ S+), we relax the corresponding
restriction (e.g., instead of v1 < min(p1, p3) it is v1 < p3). We now show
that every r ∈ S+ is satisfied. We distinguish cases for r:

• (<, p) and (≤, p) are satisfied by v1, since v1 < min(p1, p3) and min(p1,
p3) ≤ p from the definition of p1, p3

• (>, p) and (≥, p) is satisfied by v2, since v2 > max(n, p2, p4) and
max(p2, p4) ≥ p from the definition of p2, p4

• (=, p) is satisfied by p which by definition has been added to V

On the other hand, no r ∈ S− is satisfied because:

• v1 > n and, thus, v1 does not satisfy any (≤, n′) ∈ S− with n′ ≤ n

• v2 > max(n, p2, p4) ≥ n and, thus, v2 does not satisfy any (≤, n′) ∈ S−
because n′ ≤ n

• v1, v2 6= q for every (=, q) ∈ S−

Proposition 12. The NDO (Dd, {<,≤}, {<,>,≤,≥,=}), where Dd is a
dense, left- and right-open datatype, is a safe NDO.

Proof. As previously, we need to prove that every constraint (S+, S−) w.r.t.
this NDO is satisfiable, that is, there is a set V ⊆ Dd, such that every r ∈ S+

is satisfied by at least one v ∈ V and, additionally, no v ∈ V satisfies any
r ∈ S−. Let (S+, S−) be a constraint. We set the following values:

p1 = min{p | (<, p) ∈ S+}, p2 = max{p | (>, p) ∈ S+}

p3 = min{p | (≤, p) ∈ S+}, p4 = max{p | (≥, p) ∈ S+}

n1 = max{n | (<,n) ∈ S−}, n2 = max{n | (≤, n) ∈ S−}

We define V as:

V = {v1, v2} ∪ {v | (=, v) ∈ S+}

where v2 > max(n1, n2, p2, p4) (right-openness) and we distinguish two cases
for the definition of v1:
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p1 ≤ p3 We take v1 such that max(n1, n2) < v1 < p1 (which is possible
since Dd is a dense and left-open datatype; left-openness is required if
max(n1, n2) does not exist).

p3 < p1 We take v1 = p3.

As previously, if one of the max or min partial functions does not return
a value because the respective set is empty, we relax the corresponding
restriction. Specifically, if there are no (≤, p) ∈ S+ we take the first case
above and if there are no (<, p) ∈ S+ we take the second case above. We
now show that every r ∈ S+ is satisfied. We distinguish cases for r:

• (<, p) is satisfied either by v1 < p1 or by v1 = p3 < p1, where p1 ≤ p

• (>, p) and (≥, p) are satisfied by v2, since v2 > max(n1, n2, p2, p4)

• (≤, p) is satisfied either by v1 < p1 ≤ p3 or by v1 = p3, where p3 ≤ p

• (=, p) is satisfied by p which by definition has been added to V

At the same time, no r ∈ S− is satisfied because:

• either v1 > max(n1, n2) and, thus, v1 does not satisfy (<,n1) or v1 =
p3 and, still v1 does not satisfy (<,n1) because n1 ≤ p3. n1 ≤ p3 is a
consequence of (≤, p3) 9Dd

(<,n1) since (<,n1) ∈ S−.

• either v1 > max(n1, n2) and, thus, v1 does not satisfy (≤, n2) or v1 =
p3 and, still v1 does not satisfy (≤, n2) because n2 < p3. n2 < p3 is a
consequence of (<, p3) 9Dd

(≤, n2) because (≤, n2) ∈ S−.

• v2 > max(n1, n2, p2, p4) > n and, thus, v2 does not satisfy neither
(<,n1) nor (≤, n2)

Proposition 13. The NDO (Dd, {<,≤,=}, {<,>,≥,=}), where Dd is a
dense, left- and right-open datatype, is a safe NDO.

Proof. As done before, we need to prove that every constraint (S+, S−)
w.r.t. this NDO is satisfiable, that is, there is a set V ⊆ Dd, such that every
r ∈ S+ is satisfied by at least one v ∈ V and, additionally, no v ∈ V satisfies
any r ∈ S−. Let (S+, S−) be a constraint. We set:

p1 = min{p | (<, p) ∈ S+}, p2 = max{p | (>, p) ∈ S+}

p3 = max{p | (≥, p) ∈ S+}, n1 = max{n | (<,n) ∈ S−}

n2 = max{n | (≤, n) ∈ S−}
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It is necessarily n1, n2 < p1, because if p1 ≤ n1 (or p1 ≤ n2), then (<
, p1)→D (<,n1) (or (<, p1)→D (≤, n2)) and (<,n1) (or (<,n2)) would not
be in S−. We define V as:

V = {v1, v2} ∪ {v | (=, v) ∈ S+}

such that max(n1, n2) < v1 < p1 (which is possible since Dd is a dense and
left-open datatype; left-openness is required if max(n1, n2) does not exist),
v2 > max(n1, n2, p2, p3) (since Dd is a right left-open datatype) and v1,
v2 6= q for (=, q) ∈ S−. Every r ∈ S+ is satisfied because:

• (<, p) is satisfied by v1, since v1 < p1 ≤ p

• (>, p) and (≥, p) are satisfied by v2, since v2 > max(n1, n2, p2, p3) ≥ p

• (=, p) is satisfied by p which by definition has been added to V

On the other hand, no r ∈ S− is satisfied because:

• v1 > max(n1, n2) and, thus, v1 neither satisfies (<,n1) nor (≤, n2)

• v2 > max(n1, n2, p2, p3) and, thus, v2 neither satisfies (<,n1) nor (≤
, n2)

• v1, v2 6= q for every (=, q) ∈ S−

Proposition 14. The NDO (Ds, {<,≤}, {<,≤, >,≥,=}), where Ds is a
sparse, left- and right-open datatype, is a safe NDO.

Proof. As in the previous cases, we need to prove that every constraint
(S+, S−) w.r.t. this NDO is satisfiable, that is, there is a set V ⊆ Ds, such
that every r ∈ S+ is satisfied by at least one v ∈ V and, additionally, no
v ∈ V satisfies any r ∈ S−. Let (S+, S−) be a constraint. We can replace
every (≤, p) ∈ S−, (≤, p) ∈ S+ and (≥, p) ∈ S+ with (<, p′), (<, p′) and
(>, p′′) respectively, where p′ is the next element of p and p′′ is the previous
element of p. Since Ds is a left- and right-open datatype the next and
previous element of a p ∈ Ds always exist. We set:

p1 = min{p | (<, p) ∈ S+}

p2 = max{p | (>, p) ∈ S+}

n = max{n′ | (<,n′) ∈ S−}

It is necessarily n < p1, because if p1 ≤ n, it would be (<, p1) →D (<,n)
and so (<,n) /∈ S−. We distinguish two cases for the definition of V :
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• p1 ≤ next(p2)

V = {v1, v2} ∪ {v | (=, v) ∈ S+}

where v1 = previous(p1) and v2 = next(p2).

• next(p2) < p1

V = {v1} ∪ {v | (=, v) ∈ S+}

where v1 = previous(p1).

Every r ∈ S+ is satisfied because:

• (<, p) is satisfied by v1, since v1 = previous(p1) and p1 ≤ p

• (>, p2) is either satisfied by v2 = next(p2) > p2 when p1 ≤ next(p2)
or by v1 = previous(p1) > p2 when p1 > next(p2)

• (=, p) is satisfied by p which by definition has been added to V .

Moreover, no r ∈ S− is satisfied because:

• v1 = previous(p1) ≥ n and, thus, v1 does not satisfy any (<,n′) with
n′ ≤ n

• v2 = next(p2) ≥ p1 > n and, thus, v2 does not satisfy (<,n′) with
n′ ≤ n

Proposition 15. The NDO (Ds, {<,≤,=}, {>,≥,=}), where Ds is a sparse,
left- and right-open datatype, is a safe NDO.

Proof. Like before, we need to prove that every constraint (S+, S−) w.r.t.
this NDO is satisfiable, that is, there is a set V ⊆ Ds, such that every r ∈ S+

is satisfied by at least one v ∈ V and, additionally, no v ∈ V satisfies any
r ∈ S−. Let (S+, S−) be a constraint. We can replace every (≤, p) ∈ S− and
(≥, p) ∈ S+ with (<, p′) and (>, p′′) correspondingly; p′ is the next element
of p and p′′ is the previous element of p. Since Ds is a left- and right-open
datatype the next and previous element of a p ∈ Ds always exist. Thus, we
end up with an S+ which only contains datatype restrictions of the form
(<, p) and (=, p) and an S− with datatype restrictions of the form (>, p)
and (=, p). We define V :

V = {v1} ∪ {v | (=, v) ∈ S+}
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such that v1 > max(n, p1) (which is possible sinceDs is a right-open datatype)
and v1 6= q, for every (=, q) ∈ S−, where:

p1 = max{p | (>, p) ∈ S+}, n = max{n′ | (<,n′) ∈ S−}

Every r ∈ S+ is satisfied because:

• (>, p) is satisfied by v1 > max(n, p1) ≥ p

• (=, p) is satisfied by p which by definition has been added to V .

Additionally, no r ∈ S− is satisfied because:

• v1 > max(n, p1) ≥ n′ and, thus, v1 does not satisfy (<,n′)

• v1 6= q, for every (=, q) ∈ S−

Proposition 16. The NDO (D, {<,≤, >,≥,=}, {=}) is safe.

Proof. As done previously, we need to prove that there is a set V ⊆ D, such
that every r ∈ S+ is satisfied by at least one v ∈ V and, additionally there
exists no r ∈ S−, which is satisfied by any v ∈ V . We define V as:

V = {v | (=, v) ∈ S+}

Every r ∈ S+ is satisfied because of the definition. Moreover, no r ∈ S−
is satisfied because no v ∈ V satisfies any of the datatype restrictions of
S−; in that case, we would have (=, v) →D r− for some r− ∈ S−, which is
prohibited by the definition of S−.

Proposition 17. The NDOs (D, {<}, {<}), (D, {<}, {≤}), (D, {≤}, {<})
and (D, {≤}, {≤}) are safe.

Proof. Like before, it is sufficient to provide a set V ⊆ D, such that every
r ∈ S+ is satisfied by at least one v ∈ V and, additionally there exists no
r ∈ S−, which is satisfied by any v ∈ V . The following table gives such a
v ∈ V for every NDO (or a condition for it):

NDO V

(D, {<}, {<}) max{p | (<, p) ∈ S−} < v < min{p | (<, p) ∈ S+}
(D, {<}, {≤}) v = min{p | (≤, p) ∈ S+}
(D, {≤}, {<}) max{p | (≤, p) ∈ S−} < v < min{p | (<, p) ∈ S+}
(D, {≤}, {≤}) v = min{p | (≤, p) ∈ S−}
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Proposition 18. The NDOs (D, {<}, {>}), (D, {≤}, {>}), (D, {≤}, {≥})
and (D, {<}, {≥}) are safe.

Proof. As previously, it is sufficient to provide a set V ⊆ D, such that every
r ∈ S+ is satisfied by at least one v ∈ V and, additionally there exists no
r ∈ S−, which is satisfied by any v ∈ V . We supply a table that shows a
v ∈ V for every NDO (or a condition for it):

NDO V

(D, {<}, {>}) v > max{p | (<, p) ∈ S− ∨ (>, p) ∈ S+}
(D, {≤}, {>}) v > max{p | (≤, p) ∈ S− ∨ (>, p) ∈ S+}
(D, {≤}, {≥}) v > max{p | (≤, p) ∈ S− ∨ (≥, p) ∈ S+}
(D, {<}, {≥}) v = max{p | (<, p) ∈ S− ∨ (≥, p) ∈ S+}

Proposition 19. The NDOs (D, {=}, {<}), (D, {=}, {≤}), (D, {=}, {>})
and (D, {=}, {≥}) are safe.

Proof. As done previously, it is sufficient to provide a set V ⊆ D, such that
every r ∈ S+ is satisfied by at least one v ∈ V and, additionally there exists
no r ∈ S−, which is satisfied by any v ∈ V . The following table gives a
v ∈ V for every NDO by specifying the corresponding condition:

NDO V

(D, {=}, {<}) v < min{p | (<, p) ∈ S+} ∧ v 6= p for (=, p) ∈ S−
(D, {=}, {≤}) v ≤ min{p | (≤, p) ∈ S+} ∧ v 6= p for (=, p) ∈ S−
(D, {=}, {>}) v > max{p | (>, p) ∈ S+} ∧ v 6= p for (=, p) ∈ S−
(D, {=}, {≥}) v ≥ max{p | (≥, p) ∈ S+} ∧ v 6= p for (=, p) ∈ S−

5.4 A tractability guide to NDOs

After dealing with concrete cases separately, we sum up the previous results
in a single table. Tables 5.1 shows which NDOs are safe (noted with a 3) and
which are not (noted with an 7). In these tables, D1, D2, D3 are datatypes
which have at least 1, 2 or 3 elements respectively, Dnd is a non-dense
datatype and D2nd is a double non-dense datatype. Dnr is a non-right-open
datatype such that there exists a q ∈ Dnr with q < maxDnr but there exists
no r ∈ Dnr with q < r < maxDnr . Finally, Dd is a dense datatype and Ds is
a sparse and right-open datatype. Both Dd and Ds are left- and right-open.

The symmetric NDOs of the ones that appear in Tables 5.1 are corre-
spondingly safe or non-safe. E.g., (D2, {≤,≥}, {≤}) which is symmetric to
(D2, {≤,≥}, {≥}) is non-safe as well. Additionally, if (D,O−, O+) is a safe
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NDO Safety Proof page
(D2, {≤,≥}, {≥}) 7 52
(D2, {≤,≥}, {>}) 7 52
(D2, {≤, >}, {≥}) 7 52
(D2, {≤, >}, {>}) 7 52
(D3, {<,>}, {≥}) 7 52
(D3, {<,>}, {>}) 7 52
(D1, {<,=}, {≤}) 7 52
(Dnd, {≤,=}, {≤}) 7 52
(Dnd, {<,=}, {<}) 7 52
(D2nd, {≤,=}, {<}) 7 52
(D1r, {≤,=}, {>}) 7 53
(D1r, {<,=}, {>}) 7 53
(D1r, {≤,=}, {≥}) 7 53
(D1r, {<,=}, {≥}) 7 53
(Dd, {≤,=}, {<,>,≤,≥,=}) 3 53
(Dd, {<,≤}, {<,>,≤,≥,=}) 3 54
(Dd, {<,≤,=}, {<,>,≥,=}) 3 55
(Ds, {<,≤}, {<,>,≤,≥,=}) 3 56
(Ds, {<,≤,=}, {>,≥,=}) 3 57
(D, {<,>,≤,≥,=}, {=}) 3 58

Table 5.1: Maximal safe and minimal non-safe NDOs

NDO then (D′, O′−, O
′
+) with D′ ⊆ D (with the properties of D being pre-

served in D′), O′− ⊆ O− or O′+ ⊆ O+ is safe as well. In the same sense, if
(D,O−, O+) is not a safe NDO then (D′, O′−, O

′
+) with D′ ⊇ D (again, with

the properties of D being preserved in D′), O′− ⊇ O− or O′+ ⊇ O+ neither
is it.

The safe NDOs we have presented are maximal, that is if one or more
relational operator is added to O− or O+ they become non-safe. The maxi-
mality of the safe NDOs can be verified by the non-safe NDOs of table 5.1.

Similarly, the displayed non-safe NDOs are minimal, that is if one rela-
tional operator is removed from O− or O+ they become safe. The minimality
of the non-safe NDOs can be verified using the propositions 17, 18 and 19.
This is the reason why the NDOs of propositions 17, 18 and 19 are not
included in the overall table; their safety has mainly been proved to support
the minimality of the non-safe NDOs.

Finally, we remind that according to Proposition 7 the subsumption
problem in EL⊥(D,O−, O+), where (D,O−, O+) is a safe NDO is in PTIME.
Theorem 22 on the other hand has proved that the subsumption problem in
EL⊥(D,O−, O+), with (D,O−, O+) being a non-convex NDO, is EXPTIME-
hard. As a general conclusion, we observe that polynomiality is preserved
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when relational operators that have the same direction are used on the
left-hand side; however, polynomiality is lost when operators of opposite
direction are used on the left-hand side with the case of (D, {<,>,≤,≥,=
}, {=}) being an exception.

Table 5.1 along with the results of propositions 17, 18 and 19 do not
provide a full classification of all the different NDOs that can appear. The
number of all the possible NDOs is determined by the use of relational
operators on the left- and right-hand side along with the different properties
of the datatype (density, sparsity etc.). A thorough case analysis of this
vast number is not a topic of the current work, but it might be a subject of
future research.
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Chapter 6

EL Profile in OWL 2

OWL 2 (Web Ontology Language) is a Semantic Web declarative language,1

which is widely used for knowledge representation and reasoning purposes.
It allows to model domain knowledge with adequate expressivity via the
building of ontologies. Moreover, the availability of numerous implemented
reasoning tools is a significant assistant factor for the modeling process.
Additionally, the W3C standardization of OWL, which is the predecessor of
OWL 2, assures the interoperability between the several ontologies expressed
in OWL. OWL 2, which enriches OWL with additional features, is expected
to be the new W3C standard version of OWL once it receives the final
approval.

W3C has published a set of documents which strictly define the language
(and an excellent guide to them)2. The documents specify the syntax and
semantics of the language, as well as other relevant information such as
useful sub-languages of OWL 2. OWL 2 EL Profile3 is one of these sub-
languages; it restricts the expressivity of OWL 2 for the sake of polynomial
reasoning algorithms. The existing OWL 2 EL Profile corresponds to the
most recent version of EL++ description logic [1, 2]. The main application
area of OWL 2 EL Profile is considerably large ontologies for which basic
expresivity is sufficient but polynomial reasoning is essential.

6.1 A Suggestion for a Datatype Extension

Our suggestion concerns the OWL 2 EL Profile; we attempt to introduce
a small enhancement related to the datatypes part of the language. Thus,
the work presented throughout this dissertation can be viewed as a practical
contribution to this ontology language.

1http://www.w3.org/TR/owl2-syntax/
2http://www.w3.org/TR/2009/WD-owl2-overview-20090611/#
3http://www.w3.org/TR/2009/CR-owl2-profiles-20090611/#OWL_2_EL
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OWL 2 4 allows for extensive expressivity concerning the use of numeri-
cal datatypes. Specifically, it permits the use of multiple datatypes, such as
reals or integers, in the same ontology. As a consequence, one can formulate
concepts of the form ∃hasAge.18 or ∃hasTemperature.37.5. Apart from that
OWL 2 offers support for limited datatypes, with the employment of con-
straining facets. Constraining facets restrict numerical datatypes to subsets
of them by using relational operators such as <, ≤, > and ≥. Consequently,
concepts such as ∃hasTemperature.(>, 36.6) can be expressed.

However, the EL Profile of OWL 2, in an effort to retain polynomiality,
reduces expressivity related to numerical datatypes. Similarly to OWL 2,
multiple numerical datatypes, such as doubles or nationals, can be used;
however, the corresponding constraining facets are now eliminated. There-
fore, the ontology can contain concepts of the form ∃hasAge.18 but not of
the form ∃hasAge.(<, 18).

What we propose is a modification of the existing EL Profile in order to
accommodate concepts of the form ∃F.(op,q), where op is a relational opera-
tor (one of the {<,>,≤,≥,=}) and q is a data value. However, concepts of
the form ∃F .(op, q) cannot be used arbitrarily in either side of a subsumption
axiom. There should be exact rules which specify which relational operators
are used at which sides, obeying the restrictions that a safe NDO imposes.
The proofs we have provided for the soundness, completeness and polyno-
miality of the consequence-driven reasoning algorithm guarantees that the
so-desired tractability is not lost. The choice of the NDO may be different
for each case, depending on the special needs of the aplication area.

However, the currently suggested framework still requires an extension in
order to convey multiple NDOs, that is the use of different NDOs in the same
ontology, provided that different NDOs are not shared by the same feature.
The aforementioned extension is necessary in order to ensure compatibility
with the current EL Profile and particularly its multiple datatypes. Since
such an extension was not feasible in the current dissertation (mostly due
to time and space limitations), it may well be part of future work.

If the EL Profile of OWL 2 is adapted in the abovementioned way, the
constraining facets, which are available in OWL 2 at the moment, will be
inserted in the EL Profile. As a consequence, numerical datatypes will be
more precisely used in the modeling of knowledge. On the one hand ontology
engineers will be able to formulate axioms of the form:

Child v hasAge.(>, 5) u hasAge.(<, 12)

and be more accurate in the representation of knowledge; on the other hand,
given the axioms:

Child v hasAge.(<, 12)
4http://www.w3.org/TR/2009/CR-owl2-syntax-20090611/
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and
hasAge.(<, 18) v MinorDosageAllowed

the axiom
Child v MinorDosageAllowed

can be derived, improving, thus, the quality of the classification process.
Hence, the above enrichment will enhance the restricted expressivity of OWL
2 EL Profile and enable the knowledge engineers to encode the domain
knowledge in a more accurrate and meaningful way.
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Chapter 7

Conclusions and Future
Work

The present dissertation has produced results in the field of datatype DL
reasoning and, particularly, for the numerical datatypes of the EL language.
It has provided a set of inference rules for consequence-based reasoning in
EL with numerical datatypes and formulated a sound and polynomial algo-
rithm based on them. Furthermore, it has introduced and formally defined
the notion of safety for numerical datatypes and proved completeness for
the reasoning algorithm when the numerical datatype is safe. Additionally,
it has attempted a classification of the several EL fragments with numeri-
cal datatypes in terms of safety and supplied a tractability guide to them.
The dissertation as a whole can be seen as an effort to further sharpen the
border between tractable and intractable fragments of EL w.r.t. numerical
datatypes.

The current work presents several similarities with another work which
involves the extension of EL with concrete domains (datatypes) [1]. In that
approach, the property which datatypes should have in order to preserve
polynomiality is p-admissibility. The p-admissibility property for datatypes
assumes the satisfaction of two conditions: datatypes should be convex and
satifiability and implication for the datatypes should be decided in polyno-
mial time. If we compare with our approach we come up with two conclu-
sions. Firstly, the safety condition which is introduced in this dissertation
is a stricter and preciser version of convexity. Second, instead of assuming
polynomiality for satifiability and implication for the datatypes we supply
a full listing of exact cases where datatype expressions are unsatisfiable and
where one datatype expression implies another. Additionally, we give spe-
cific instances of many polynomial EL fragments (not just examples) and,
in general, provide a more fine-graned classification of tractable fragments
concerning numerical datatypes.

Many difficulties were encountered throughout the completion of the
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current project, the main of which was the various combinations of numerical
datatypes with relational operators. If we take into consideration that five
operators are examined, which can be used either on the left- or on the
right-hand side of axioms, and the different properties that a datatype D
can present, we end up with a great many possible fragments. Towards
that end, we tried to detect maximal tractable fragments which can be used
in practical applications and minimal intractable fragments which can be
avoided. Furthermore, we explored the particular properties of datatypes
that lead to (in)tractability. However, an exhaustive classification of the
total amount of fragments neither was feasible nor among the main purposes
of this dissertation.

Additionally, there are some issues that this dissertation did not deal
with, primarily due to time restrictions. These matters might be questions
of future research. For example, an assertional formalism should be de-
veloped for the above framework that will allow reasoning w.r.t. ABoxes.
Apart from that, other useful datatypes may be considered which are used
widely in practice such as strings. The notion of safety can be appropriately
modified for strings or even generalised for all categories of datatypes. In
addition to this, the current datatype approach could be applied in associa-
tion with expressive description logics, such as SHIQ and the impact of this
tractable extension of the language could be explored. Finally, the possibil-
ity of implementing the theoretical extension that this dissertation suggests
and conducting experiments in order to compare with similar approaches
might attract a research interest.
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