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WHAT IS OWL?

Family of logic-based knowledge
representation languages

Web Ontology Language: a W3C standard,
widely used in ontology-based applications,
e.g. formal biomedical vocabularies

Formal foundations of OWL provided by
Description Logics

What are Description Logics?
 Decidable fragments of first-order logic with
well-understood computational properties
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AUTOMATE CHEMICAL CLASSIFICATION

ChEBI is manually incremented

Currently contains approx. 27,000 fully annotated entries

Grows at a rate of 1,500 entries per curator per year

Biologically interesting entities possibly > 1,000,000

Each new molecule is subsumed by several chemical
classes

Is dinitrogen inorganic?  Yes
Does cyclobutane contain a four-membered ring?  Yes
Is acetylene a hydrocarbon?  Yes
Does benzaldehyde contain a benzene ring?  Yes

Speed up curating tasks with automated reasoning tools
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All DGLP ontologies were found acyclic
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20 < 0.01 < 0.01 0.02 2.07 0.21 10.66
30 0.01 < 0.01 0.03 2.23 0.23 13.85
40 0.01 < 0.01 0.04 2.58 0.29 19.06
50 0.01 0.01 0.06 3.55 0.41 27.15
60 0.04 0.02 0.51 109.88 21.68 300.84
70 0.06 0.03 0.75 172.14 35.08 447.12

T1: hydrocarbons, T2: inorganic molecules
T3: molecules with exactly two carbons
T4: molecules with a four-membered ring
T5: molecules with a benzene
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