EXTENDING LOGIC PROGRAMMING FOR LIFE SCIENCES APPLICATIONS

Despoina Magka

Department of Computer Science, University of Oxford

November 16, 2012

Life sciences data deluge

1

- Life sciences data deluge
- Hierarchical organisation of biochemical knowledge

(日)

- Life sciences data deluge
- Hierarchical organisation of biochemical knowledge

- Life sciences data deluge
- Hierarchical organisation of biochemical knowledge

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

- Life sciences data deluge
- Hierarchical organisation of biochemical knowledge

 Fast, automatic and repeatable classification driven by Semantic technologies

- Life sciences data deluge
- Hierarchical organisation of biochemical knowledge

- Fast, automatic and repeatable classification driven by Semantic technologies
- Web Ontology Language, a W3C standard family of logic-based formalisms

- Life sciences data deluge
- Hierarchical organisation of biochemical knowledge

- Fast, automatic and repeatable classification driven by Semantic technologies
- Web Ontology Language, a W3C standard family of logic-based formalisms
- OWL bio- and chemo-ontologies widely adopted

OWL ontology Chemical Entities of Biological Interest

OWL ontology Chemical Entities of Biological Interest

Dictionary of molecules with taxonomical information

OWL ontology Chemical Entities of Biological Interest Dictionary of molecules with taxonomical information

~ caffeine is a cyclic molecule

OWL ontology Chemical Entities of Biological Interest
Dictionary of molecules with taxonomical information

→ serotonin is an organic molecule

OWL ontology Chemical Entities of Biological Interest

Dictionary of molecules with taxonomical information

→ ascorbic acid is a carboxylic ester

- OWL ontology Chemical Entities of Biological Interest
- Dictionary of molecules with taxonomical information
- Pharmaceutical design and study of biological pathways

- OWL ontology Chemical Entities of Biological Interest
- Dictionary of molecules with taxonomical information
- Pharmaceutical design and study of biological pathways

ChEBI is manually incremented

- OWL ontology Chemical Entities of Biological Interest
- Dictionary of molecules with taxonomical information
- Pharmaceutical design and study of biological pathways

- ChEBI is manually incremented
- Currently ~30,000 chemical entities, expands at 3,500/yr

- OWL ontology Chemical Entities of Biological Interest
- Dictionary of molecules with taxonomical information
- Pharmaceutical design and study of biological pathways

- ChEBI is manually incremented
- Currently ~30,000 chemical entities, expands at 3,500/yr
- Existing chemical databases describe millions of molecules

- OWL ontology Chemical Entities of Biological Interest
- Dictionary of molecules with taxonomical information
- Pharmaceutical design and study of biological pathways

- ChEBI is manually incremented
- Currently ~30,000 chemical entities, expands at 3,500/yr
- Existing chemical databases describe millions of molecules
- Speed up growth by automating chemical classification

I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles

I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles

EXAMPLE

I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles

I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles

OWL-based reasoning support

1 Is cyclobutane a cyclic molecule? X

- I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles
- 2 No minimality condition on the models → hard to axiomatise classes based on the absence of attributes

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

OWL-based reasoning support

Is cyclobutane a cyclic molecule? X

- I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles
- 2 No minimality condition on the models → hard to axiomatise classes based on the absence of attributes

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

OWL-based reasoning support

Is cyclobutane a cyclic molecule? X

- I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles
- 2 No minimality condition on the models → hard to axiomatise classes based on the absence of attributes

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

OWL-based reasoning support

- Is cyclobutane a cyclic molecule? X
- 2 Is cyclobutane a hydrocarbon? X

- I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles
- 2 No minimality condition on the models → hard to axiomatise classes based on the absence of attributes

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

- I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles
- 2 No minimality condition on the models → hard to axiomatise classes based on the absence of attributes

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

Required reasoning support

- 1 Is cyclobutane a cyclic molecule?
- 2 Is cyclobutane a hydrocarbon?

- I At least one tree-shaped model for each consistent OWL ontology → problematic representation of cycles
- 2 No minimality condition on the models → hard to axiomatise classes based on the absence of attributes

EXAMPLE

Cyclobutane $\sqsubseteq \exists (= 4)$ hasAtom.(Carbon $\sqcap \exists (= 2)$ hasBond.Carbon)

Required reasoning support

- Is cyclobutane a cyclic molecule? ✓
- 2 Is cyclobutane a hydrocarbon?

Expressive and decidable formalism for modelling structured domains: Description Graphs Logic Programs

- Expressive and decidable formalism for modelling structured domains: Description Graphs Logic Programs
- 2 Acyclicity conditions for existential rules that extend previously suggested criteria

- Expressive and decidable formalism for modelling structured domains: Description Graphs Logic Programs
- 2 Acyclicity conditions for existential rules that extend previously suggested criteria
 - Model-faithful acyclicity: 2EXPTIME-complete to check

- Expressive and decidable formalism for modelling structured domains: Description Graphs Logic Programs
- 2 Acyclicity conditions for existential rules that extend previously suggested criteria
 - Model-faithful acyclicity: 2EXPTIME-complete to check
 - Model-summarising acyclicity: EXPTIME-complete to check

- Expressive and decidable formalism for modelling structured domains: Description Graphs Logic Programs
- 2 Acyclicity conditions for existential rules that extend previously suggested criteria
 - Model-faithful acyclicity: 2EXPTIME-complete to check
 - Model-summarising acyclicity: EXPTIME-complete to check
- Implementation that draws upon DLV and performs structure-based classification with a significant speedup

- Expressive and decidable formalism for modelling structured domains: Description Graphs Logic Programs
- 2 Acyclicity conditions for existential rules that extend previously suggested criteria
 - Model-faithful acyclicity: 2EXPTIME-complete to check
 - Model-summarising acyclicity: EXPTIME-complete to check
- Implementation that draws upon DLV and performs structure-based classification with a significant speedup
- Evaluation over part of the manually curated ChEBI ontology revealed modelling errors

- Expressive and decidable formalism for modelling structured domains: Description Graphs Logic Programs
- 2 Acyclicity conditions for existential rules that extend previously suggested criteria
 - Model-faithful acyclicity: 2EXPTIME-complete to check
 - Model-summarising acyclicity: EXPTIME-complete to check
- Implementation that draws upon DLV and performs structure-based classification with a significant speedup
- Evaluation over part of the manually curated ChEBI ontology revealed modelling errors

Language for representing complex objects with a favourable performance/expressivity trade-off

$$\begin{split} \text{ascorbicAcid}(x) \rightarrow & \text{hasAtom}(x, f_1(x)) \land \ldots \land \text{hasAtom}(x, f_{13}(x)) \\ & \text{o}(f_1(x)) \land \ldots \land c(f_7(x)) \land \ldots \land \\ & \text{single}(f_1(x), f_7(x)) \land \text{double}(f_7(x), f_2(x)) \land \ldots \end{split}$$

$$\begin{split} \text{ascorbicAcid}(x) \rightarrow & \text{hasAtom}(x, f_1(x)) \land \ldots \land \text{hasAtom}(x, f_{13}(x)) \\ & \text{o}(f_1(x)) \land \ldots \land c(f_7(x)) \land \ldots \land \\ & \text{single}(f_1(x), f_7(x)) \land \text{double}(f_7(x), f_2(x)) \land \ldots \end{split}$$

$$\begin{split} & \text{hasAtom}(x,y_1) \wedge \text{hasAtom}(x,y_2) \wedge y_1 \neq y_2 \rightarrow \text{polyatomicEntity}(x) \\ & \wedge_{i=1}^5 \text{hasAtom}(x,y_i) \wedge c(y_1) \wedge o(y_2) \wedge o(y_3) \wedge \\ & c(y_4) \wedge \text{horc}(y_5) \wedge \text{double}(y_1,y_2) \wedge \\ & \text{single}(y_1,y_3) \wedge \text{single}(y_3,y_4) \wedge \text{single}(y_1,y_5) \rightarrow \underset{\sim}{\text{carboxylicEster}(x)} \\ & \searrow \\ & \bigcirc \\$$

Input fact: ascorbicAcid(a)

 $\begin{array}{l} \textbf{Stable model: ascorbicAcid}(a), \ hasAtom(a, a_i^f) \ for \ 1 \leq i \leq 13, \\ \textbf{o}(a_i^f) \ for \ 1 \leq i \leq 6, \ c(a_i^f) \ for \ 7 \leq i \leq 12, \ h(a_{13}^f), \ single(a_8^f, a_3^f), \\ single(a_9^f, a_4^f), \ single(a_{12}^f, a_i^f) \ for \ i \in \{5, 11\}, \ single(a_{11}^f, a_6^f), \\ single(a_{10}^f, a_i^f) \ for \ i \in \{1, 9, 11, 13\}, \ single(a_7^f, a_i^f) \ for \ i \in \{1, 8\}, \\ double(a_2^f, a_7^f), \ double(a_8^f, a_9^f), \ horc(a_i^f) \ for \ 7 \leq i \leq 13, \\ \textbf{polyatomicEntity}(a), \ carboxylicEster(a), \ cyclic(a) \end{array}$

Input fact: ascorbicAcid(a)

 $\begin{array}{l} \textbf{Stable model: ascorbicAcid}(a), \ hasAtom(a, a_i^f) \ for \ 1 \leq i \leq 13, \\ \textbf{o}(a_i^f) \ for \ 1 \leq i \leq 6, \ c(a_i^f) \ for \ 7 \leq i \leq 12, \ h(a_{13}^f), \ single(a_8^f, a_3^f), \\ single(a_9^f, a_4^f), \ single(a_{12}^f, a_i^f) \ for \ i \in \{5, 11\}, \ single(a_{11}^f, a_6^f), \\ single(a_{10}^f, a_i^f) \ for \ i \in \{1, 9, 11, 13\}, \ single(a_7^f, a_i^f) \ for \ i \in \{1, 8\}, \\ double(a_2^f, a_7^f), \ double(a_8^f, a_9^f), \ horc(a_i^f) \ for \ 7 \leq i \leq 13, \\ \textbf{polyatomicEntity}(a), \ carboxylicEster(a), \ cyclic(a) \end{array}$

→ Ascorbic acid is a cyclic polyatomic entity and a carboxylic ester

 Rules with function symbols in the head can axiomatise infinitely large structures

- Rules with function symbols in the head can axiomatise infinitely large structures
- Reasoning with unrestricted DGLP ontologies is undecidable

- Rules with function symbols in the head can axiomatise infinitely large structures
- Reasoning with unrestricted DGLP ontologies is undecidable
- Acyclicity checks are sufficient but *not* necessary conditions for chase termination

- Rules with function symbols in the head can axiomatise infinitely large structures
- Reasoning with unrestricted DGLP ontologies is undecidable
- Acyclicity checks are sufficient but *not* necessary conditions for chase termination
- Model-faithful and model-summarising acyclicity (MFA and MSA): capture as generally as possible class of programs with models of finite size

- Rules with function symbols in the head can axiomatise infinitely large structures
- Reasoning with unrestricted DGLP ontologies is undecidable
- Acyclicity checks are sufficient but *not* necessary conditions for chase termination
- Model-faithful and model-summarising acyclicity (MFA and MSA): capture as generally as possible class of programs with models of finite size

- Rules with function symbols in the head can axiomatise infinitely large structures
- Reasoning with unrestricted DGLP ontologies is undecidable
- Acyclicity checks are sufficient but *not* necessary conditions for chase termination
- Model-faithful and model-summarising acyclicity (MFA and MSA): capture as generally as possible class of programs with models of finite size
- Cost for checking MFA and MSA

- Rules with function symbols in the head can axiomatise infinitely large structures
- Reasoning with unrestricted DGLP ontologies is undecidable
- Acyclicity checks are sufficient but *not* necessary conditions for chase termination
- Model-faithful and model-summarising acyclicity (MFA and MSA): capture as generally as possible class of programs with models of finite size

Cost for checking MFA and MSA

	bounded arity	no restriction
MFA	2EXPTIME-complete	2EXPTIME-complete
MSA	coNP-complete	EXPTIME-complete

- Rules with function symbols in the head can axiomatise infinitely large structures
- Reasoning with unrestricted DGLP ontologies is undecidable
- Acyclicity checks are sufficient but *not* necessary conditions for chase termination
- Model-faithful and model-summarising acyclicity (MFA and MSA): capture as generally as possible class of programs with models of finite size

Cost for checking MFA and MSA

	bounded arity	no restriction
MFA	2EXPTIME-complete	2EXPTIME-complete
MSA	coNP-complete	EXPTIME-complete

Both subsume previously suggested polynomial conditions

Draws upon DLV, a deductive databases engine

Draws upon DLV, a deductive databases engine

Evaluation with data extracted from ChEBI

- Draws upon DLV, a deductive databases engine
- Evaluation with data extracted from ChEBI
- 500 molecules under 51 chemical classes in 40 secs

- Draws upon DLV, a deductive databases engine
- Evaluation with data extracted from ChEBI
- 500 molecules under 51 chemical classes in 40 secs
- Quicker than other approaches:

- Draws upon DLV, a deductive databases engine
- Evaluation with data extracted from ChEBI
- 500 molecules under 51 chemical classes in 40 secs
- Quicker than other approaches:
 - [Hastings et al., 2010] 140 molecules in 4 hours
 - [Magka et al., 2012] 70 molecules in 450 secs

- Draws upon DLV, a deductive databases engine
- Evaluation with data extracted from ChEBI
- 500 molecules under 51 chemical classes in 40 secs
- Quicker than other approaches:
 - [Hastings et al., 2010] 140 molecules in 4 hours
 - [Magka et al., 2012] 70 molecules in 450 secs
- Subsumptions exposed by our prototype:

- Draws upon DLV, a deductive databases engine
- Evaluation with data extracted from ChEBI
- 500 molecules under 51 chemical classes in 40 secs
- Quicker than other approaches:
 - [Hastings et al., 2010] 140 molecules in 4 hours
 - [Magka et al., 2012] 70 molecules in 450 secs
- Subsumptions exposed by our prototype:
 - ascorbic acid is a polyatomic entity, a carboxylic ester and a cyclic molecule
 - missing from the ChEBI OWL ontology

- Draws upon DLV, a deductive databases engine
- Evaluation with data extracted from ChEBI
- 500 molecules under 51 chemical classes in 40 secs
- Quicker than other approaches:
 - [Hastings et al., 2010] 140 molecules in 4 hours
 - [Magka et al., 2012] 70 molecules in 450 secs
- Subsumptions exposed by our prototype:
 - ascorbic acid is a polyatomic entity, a carboxylic ester and a cyclic molecule
 - missing from the ChEBI OWL ontology
- Contradictory subclass relation from ChEBI:

- Draws upon DLV, a deductive databases engine
- Evaluation with data extracted from ChEBI
- 500 molecules under 51 chemical classes in 40 secs
- Quicker than other approaches:
 - [Hastings et al., 2010] 140 molecules in 4 hours
 - [Magka et al., 2012] 70 molecules in 450 secs
- Subsumptions exposed by our prototype:
 - ascorbic acid is a polyatomic entity, a carboxylic ester and a cyclic molecule
 - missing from the ChEBI OWL ontology
- Contradictory subclass relation from ChEBI:
 - Ascorbic acid is asserted to be a carboxylic acid (release 95)
 - Not listed among the subsumptions derived by our prototype

Results

1 Expressive and decidable formalism for structured domains

Results

1 Expressive and decidable formalism for structured domains

2 Novel acyclicity conditions for existential rules

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

・ コット (雪) ・ (目) ・ ヨ)

Language for representing complex objects with a favourable performance/expressivity trade-off

- Future directions
 - SMILES-based surface syntax

8

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

Language for representing complex objects with a favourable performance/expressivity trade-off

- Future directions
 - SMILES-based surface syntax

 $\begin{array}{l} \wedge_{i=1}^{5}hasAtom(x,y_{i}) \wedge c(y_{1}) \wedge o(y_{2}) \wedge o(y_{3}) \wedge c(y_{4}) \wedge \\ double(y_{1},y_{2}) \wedge single(y_{1},y_{3}) \wedge single(y_{3},y_{4}) \wedge single(y_{1},y_{5}) \\ \rightarrow carboxylicEster(x) \end{array}$

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

Language for representing complex objects with a favourable performance/expressivity trade-off

Future directions

SMILES-based surface syntax

define carboxylicEster some hasAtom SMILES(C - O - C(= O) - *) end.

・ロット (四)・(川)・(日)・(日)・(日)・

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

- Future directions
 - SMILES-based surface syntax
 - Detect subsumptions between classes

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

- Future directions
 - SMILES-based surface syntax
 - Detect subsumptions between classes
 - E.g., Carboxylic ester is an organic molecular entity

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

- Future directions
 - SMILES-based surface syntax
 - Detect subsumptions between classes
 - Extensions with numerical datatypes

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

・ロット (雪) (日) (日) (日)

Language for representing complex objects with a favourable performance/expressivity trade-off

- Future directions
 - SMILES-based surface syntax
 - Detect subsumptions between classes
 - Extensions with numerical datatypes
 - Define a mapping of DGLPs to RDF

8

Results

- **1** Expressive and decidable formalism for structured domains
- 2 Novel acyclicity conditions for existential rules
- 3 DLV-based implementation exhibits a significant speedup
- 4 Evaluation over ChEBI ontology revealed modelling errors

- Future directions
 - SMILES-based surface syntax
 - Detect subsumptions between classes
 - Extensions with numerical datatypes
 - Define a mapping of DGLPs to RDF
- Thank you! Questions?!?