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ABSTRACT
Triple stores implementing the RL profile of OWL 2 are
becoming increasingly popular. In contrast to unrestricted
OWL 2, the RL profile is known to enjoy favourable compu-
tational properties for query answering, and state-of-the-art
RL reasoners such as OWLim and Oracle’s native inference
engine of Oracle Spatial and Graph have proved extremely
successful in industry-scale applications. The expressive re-
strictions imposed by OWL 2 RL may, however, be problem-
atical for some applications. In this paper, we propose novel
techniques that allow us (in many cases) to compute exact
query answers using an off-the-shelf RL reasoner, even when
the ontology is outside the RL profile. Furthermore, in the
cases where exact query answers cannot be computed, we
can still compute both lower and upper bounds on the exact
answers. These bounds allow us to estimate the degree of
incompleteness of the RL reasoner on the given query, and
to optimise the computation of exact answers using a fully-
fledged OWL 2 reasoner. A preliminary evaluation using the
RDF Semantic Graph feature in Oracle Database has shown
very promising results with respect to both scalability and
tightness of the bounds.

1. INTRODUCTION
The success of RDF as a language for representing semi-
structured data on the (semantic) Web has led to the pro-
liferation of applications based on large repositories of data
stored in RDF format. In these applications, access to data
relies on queries formulated in the standard query language
SPARQL [29]; additionally, background knowledge required
to unambiguously specify the meaning of the data in the
context of the application may be captured using the stan-
dard ontology language OWL 2 [23].

Efficient management and querying of such large data repos-

itories is a core problem in the development of RDF-based
applications. Significant progress has been made in recent
years in the design and development of efficient RDF data
management systems, and state-of-the-art systems such as
Hexastore [34] and RDF-3X [26] have combined highly op-
timised data structures and query answering algorithms in
order to achieve impressive performance. There have also
been significant advances in clustering and data partition-
ing techniques [30, 13, 16], which allow RDF query engines
to exploit various forms of parallel architecture. As a re-
sult, state-of-the-art RDF management systems are capable
of dealing with very large data sets.

When an ontology is used to augment the semantics of the
RDF data, query answers need to consider additional triples
whose existence is entailed by the combination of the on-
tology and the data. Materialisation-based approaches are
widely used to extend RDF data management systems to
deal with this situation; they work by using forward chaining
rules to materialise the entailed triples, and then evaluating
queries over the resulting extended data set.

The success in practice of materialisation-based systems led
to the development of the RL profile of OWL 2 [22], a large
subset of OWL 2 for which query answering is known to be
both theoretically tractable (in polynomial time w.r.t the
size of the data), and practically realisable via materialisa-
tion. This combination of features has made OWL 2 RL in-
creasingly popular, and state-of-the-art RL reasoners such as
OWLim [1] and Oracle’s RDF Semantic Graph [35] provide
robust and scalable support for SPARQL query answering
over OWL 2 RL ontologies and RDF data sets.

Although OWL 2 RL captures a substantial fragment of
OWL 2, it necessarily restricts expressiveness. OWL 2 RL
cannot, for example, capture disjunctive knowledge such as
that expressed in the following axiom, which states that ev-
ery student is either an undergraduate or a graduate student:

SubClassOf (Student ObjectUnionOf (Grad UnderGrad));

nor can it capture existentially quantified knowledge such as
that expressed in the following axiom, which states that each
research assistant works for some research group:

SubClassOf (RA SomeValuesFrom(works Group)).
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Figure 1: Combination of lower and upper bounds

These restrictions limit the applicability of OWL 2 RL in
practice since disjunctive and existentially quantified state-
ments abound in OWL ontologies. For example, the NCI
Thesaurus contains many disjunctive statements, while on-
tologies such as SNOMED, FMA, and Fly Anatomy1 contain
thousands of existentially quantified statements.

Although the capabilities of RL reasoners are intrinsically
limited, they are flexible enough to process ontologies out-
side OWL 2 RL on a ‘best efforts’ basis, as the materialisa-
tion rules effectively ignore those (parts of) axioms that are
outside the RL profile. In such cases, answers to SPARQL
queries are still guaranteed to be sound (the computed an-
swer set includes only valid answer tuples), but may not be
complete (the computed answer set may not include all valid
answer tuples); thus, the answer set returned by the system
can be thought of as a lower bound on the exact answers.

To ensure the completeness of query answers in such cases,
one could abandon RL reasoners altogether in favour of fully
fledged OWL 2 reasoners, such as HermiT [25], Pellet [32]
and Racer [11]. However, despite intensive efforts at optimi-
sation, the scalability of such systems falls far short of that
exhibited by RL reasoners [20, 12].

In this paper, we propose novel techniques that allow us (in
many cases) to compute sound and complete answers using
off-the-shelf RL reasoners, even when the ontology is outside
OWL 2 RL. Furthermore, in the cases where exact answers
cannot be computed, our techniques allow us to compute an
upper bound on the exact answers. This upper bound is use-
ful in practice for (at least) two reasons. First, as illustrated
in Figure 1(b), it allows us to bound the incompleteness of
the RL reasoner by partitioning tuples into three sets: those
that are definitely in the answer (marked with ‘X’), those
that may be in the answer (marked with ‘?’), and those that
are definitely not in the answer (marked with ‘-’); without
the upper bound no tuples can be ruled out, and the status
of a potentially huge number of tuples is thus left undeter-
mined (as illustrated in Figure 1(a)). Second, it allows us
to optimise the computation of exact answers by checking—
e.g., using a fully-fledged OWL 2 reasoner—only the (typi-
cally small number of) tuples remaining in the gap between
the lower and upper bounds.

Our work is closely related to existing techniques for the-
ory approximation [8, 31], where lower and upper bounds to

1http://obofoundry.org/cgi-bin/detail.cgi?id=fly_
anatomy_xp

query answers are obtained by transforming the knowledge
base (and possibly also the query) into a less expressive lan-
guage. Systems such as those described in [33, 28, 19], all of
which we discuss in detail in Section 6, are able to compute
upper bounds to query answers under certain conditions. To
the best of our knowledge, however, our approach is the only
one that enjoys all of the following desirable properties:

• In contrast to [33] and [28], computation of the upper
bound requires only the ontology to be transformed,
and is independent of both data and query.

• In contrast to [33], [28], and [19], the transformation
increases the size of the ontology only linearly, and can
be computed in linear time.

• In contrast to [28] and [19], which approximate the
ontology into DL-Lite (i.e., OWL 2 QL), our approach
uses OWL 2 RL, which will typically lead to tighter
bounds, and allows us to directly exploit an industrial-
strength OWL 2 RL reasoner as a “black box”.

• In contrast to [33] and [19], our approach is indepen-
dent of the query language, and hence can be applied
not only to SPARQL queries, but also to more general
languages such as (unions of) conjunctive queries.

An evaluation of our approach has been performed using
Oracle’s RDF Semantic Graph, a range of test data includ-
ing both benchmark and realistic ontologies, and a variety
of synthetic and realistic queries. The evaluation suggests
that the gap between the lower and upper bounds is typi-
cally small, indeed often empty, and that the upper bound
is usually tight (i.e., it coincides with the exact answers).
Moreover, although computing the upper bound increased
the cost of materialising the data set, it is still feasible for
large scale data sets, and much more efficient than the com-
putation of exact answers using an OWL 2 reasoner; indeed
we believe that this is the first time that exact answers have
been computed over data sets of this size and w.r.t. an on-
tology outside any of the OWL 2 profiles.

2. PRELIMINARIES
We adopt standard notions from first-order logic (FOL) with
equality, such as variables, constants, terms, atoms, formu-
las, sentences, substitutions, satisfiability, unsatisfiability,
and entailment (written |=). We use the standard nota-
tion t ≈ t′ (an equality atom) to denote equality between
terms and the standard abbreviation t 6≈ t′ for ¬t ≈ t′ (an
inequality atom). The falsum atom, which is evaluated to
false in all interpretations, is denoted here as ⊥, whereas the
dual truth atom is represented as >.

2.1 Ontologies and Data Sets
We assume basic familiarity with the OWL 2 and OWL 2
RL ontology languages [23, 22], as well as with the syntax
and semantics of SROIQ—the description logic (DL) un-
derpinning OWL 2 (see [14] for details).2

In this paper, we exploit the normal form for SROIQ given
in Definition 1. Each SROIQ TBox can be transformed into

2In this paper, we disregard datatypes for simplicity.

http://obofoundry.org/cgi-bin/detail.cgi?id=fly_anatomy_xp
http://obofoundry.org/cgi-bin/detail.cgi?id=fly_anatomy_xp


this normal form by introducing fresh predicates as needed
(see [25] for details on the normalisation algorithm).

Definition 1. A SROIQ-TBox is normalised if it con-
tains only the following kinds of axioms, where R(i) are ei-
ther an atomic role or the inverse of an atomic role:

• Concept inclusion axioms > v
⊔n
i=1 Ci, where each

Ci is of the form B, {c}, ∀R.B, ∃R.Self, ¬∃R.Self,
≥ nR.B, or ≤ nR.B, with B either an atomic concept
or the negation of an atomic concept, c an individual,
and n a nonnegative integer;

• Role axioms R1 v R2, R1 ◦R2 v R3, or R1 uR2 v ⊥.

We deviate slightly from the treatment of ontologies given
in the W3C specification of OWL 2, where there is no ex-
plicit distinction between schema (i.e., TBox) and data (i.e.,
ABox). It is often convenient, however, to think of the ontol-
ogy as a TBox (i.e., as containing only schema axioms), and
to treat the (RDF) data assertions separately; this makes no
difference from a semantic point of view. We will, therefore,
treat an OWL 2 ontologyO as a SROIQ-TBox, and assume
that all assertions are in a separate data set D. W.l.o.g. we
restrict ourselves in this paper to data sets consisting only
of atoms, including inequalities but excluding ⊥ and >.

2.2 Queries
A conjunctive query (CQ), or simply a query, is a first-order
formula of the form Q(~x) = ∃~y.ϕ(~x, ~y), where Q is a dis-
tinguished query predicate and ϕ(~x, ~y) is a conjunction of
atoms different from ⊥ and from an inequality. A tuple of
constants ~a is an answer to Q(~x) w.r.t. a set F of first-order
sentences and a set of ground atoms D if F ∪ D |= Q(~a).
The answer set of Q(~x) w.r.t. F and D, which we often call
the exact answers to the query, is denoted as cert(Q,F , D),
where the free variables of Q(~x) are omitted. SPARQL
queries are semantically equivalent to a restricted class of
CQs with no existential quantifiers.

2.3 Datalog Languages
The design of OWL 2 RL was inspired by Description Logic
Programs [9] — a KR formalism that can be captured using
either datalog [7] or DLs. Therefore, there exists a tight
connection between datalog rules and OWL 2 RL axioms.

The main difference between OWL 2 and its RL profile is the
ability to represent disjunctive and existentially quantified
knowledge. Hence, there is a tight connection between OWL
2 and an extension of datalog, which we call datalog±,∨,
where both existential quantifiers and disjunctions are al-
lowed in the head of rules. The connection between OWL
2 and datalog±,∨ is relevant to us, since our approach uses
datalog±,∨ rules as an intermediate representation of ontol-
ogy axioms. We next define datalog±,∨ and postpone the
description of its relationship with OWL 2 until Section 3.1.

A datalog±,∨ rule r is a first-order sentence of form (1)

∀~x.[B1 ∧ ... ∧Bn]→
m∨
i=1

∃~yi.ϕi(~x, ~yi) (1)

O  ΣO  Ξ(ΣO)  O′ ∪D′O
...

...
...

...
OWL 2 Datalog±,∨ Datalog OWL 2 RL

Figure 2: Transformation steps

where each Bj is an atom that is neither ⊥ nor an inequality
atom and whose free variables are contained in ~x, and either

• m = 1 and ϕ1(~x, ~y1) = ⊥ (we call such r a ⊥-rule), or

• m ≥ 1 and, for each 1 ≤ i ≤ m, the formula ϕi(~x, ~yi)
with free variables in ~x ∪ ~yi is a conjunction of atoms
different from ⊥.

The quantifier ∀~x is left implicit. The body of r is the set
of atoms body(r) = {B1, . . . , Bn}, and the head of r is the
formula head(r) =

∨m
i=1 ∃~yi.ϕ(~x, ~yi). A datalog±,∨ rule r is

a datalog± rule if m = 1 [2], and it is a datalog rule if it is
a datalog± rule and the head does not contain existentially
quantified variables.3

For Σ a set of datalog rules and D a set of ground atoms, the
saturation of Σ w.r.t. D is the set D′ of all ground atoms
entailed by Σ ∪ D, which can be computed by means of
a forward-chaining (aka materialisation-based) algorithm.
The answer set cert(Q,Σ, D) for an arbitrary conjunctive
query Q then coincides with cert(Q, ∅, D′).

3. CORE TECHNICAL APPROACH
Given an OWL 2 ontology O, our goal is to transform O
into an OWL 2 RL ontology O′ and (possibly) a data set
D′O such that, for any data set D and any query Q:

1. cert(Q,O, D) ⊆ cert(Q,O′, D ∪D′O); and

2. cert(Q,O′, D ∪D′O) \ cert(Q,O, D) is “small”.

As we show later on, the data set D′O is only required if O
contains certain kinds of constructs.

There is a tradeoff between the tightness of the upper bound
(the size of cert(Q,O′, D ∪D′O) \ cert(Q,O, D)) and the ef-
ficiency with which cert(Q,O′, D ∪ D′O) can be computed.
In our approach, O′ and D′O are easy to compute (via a
linear-time transformation), and cert(Q,O′, D∪D′O) can be
efficiently computed using an OWL 2 RL reasoner.

To transform the ontology O into O′ and D′O, we proceed
as follows (see Figure 2 for a schematic representation):

1. Transform O into a set ΣO of datalog±,∨ rules such
that cert(Q,O, D) = cert(Q,ΣO, D) for any query Q
(in the vocabulary of O) and any data set D.

3Our definition of datalog allows conjunctions in the head,
which is not allowed in the standard, but the rules can be
equivalently split into multiple rules with atomic heads.



2. Transform ΣO into a set Ξ(ΣO) of datalog rules by
eliminating disjunctions and existential quantifiers, and
such that for every query Q and data set D, we have
cert(Q,ΣO, D) ⊆ cert(Q,Ξ(ΣO), D).

3. Transform Ξ(ΣO) into an OWL 2 RL ontology O′ and
a data setD′O such that, for every queryQ and data set
D, we have cert(Q,Ξ(ΣO), D) ⊆ cert(Q,O′, D ∪D′O).

Step 1 is an answer-preserving transformation from OWL 2
to datalog±,∨ rules, which can then be conveniently over-
approximated in a weaker logic in the crucial second step.
Step 3 is a transformation from datalog to OWL 2 RL which
is answer-preserving in most (but not all) cases.

Given that O′ is an OWL 2 RL ontology, we can use any
reasoner that is sound for OWL 2 and complete for OWL
2 RL to compute a lower bound answer (using O) and an
upper bound answer (using O′ ∪D′O) for any given query Q
and data set D. More precisely, if rl(Q,O, D) is the query
answer computed by such a reasoner, then we have:

rl(Q,O, D) ⊆ cert(Q,O, D) ⊆ rl(Q,O′, D∪D′O) for all Q,D

We next describe the transformations in steps 1–3, and illus-
trate them with the example ontology Oex in Figure 4.

3.1 From OWL 2 to Datalog±,∨
The first step is to transform the OWL 2 ontology O into a
set ΣO of datalog±,∨ rules. For this, we first transform O
into the normal form given in Definition 1. Let ar(R, x, y)
be defined as follows for each role R occurring in O:

ar(R, x, y) =

{
S(y, x) if R inverse of the atomic role S.
R(x, y) if R atomic

Then, ΣO contains the following datalog±,∨ rules for each
axiom in the normalisation of O:

• lhs(C) → rhs(C) for > v C, where lhs(C) and rhs(C)
are as given in Figure 3;

• ar(R, x, y)→ ar(S, x, y) for R v S;

• ar(R, x, y)∧ ar(S, y, z)→ ar(T, x, z) for R ◦S v T ; and

• ar(R, x, y) ∧ ar(S, x, y)→ ⊥ for R u T v ⊥.

The obtained set ΣO of datalog±,∨ rules is equivalent to the
normalisation of O, and hence it is a conservative extension
of O; that is, the models of ΣO are obtained by extending
those of O with the interpretation of any new predicates
introduced during normalisation. Thus, ΣO preserves the
answers to all queries using the vocabulary of O [3]. The
transformation of our example ontology Oex into datalog±,∨

rules ΣOex is also shown in Figure 4. Note that ΣOex is
extended with a new unary predicate Aux.

3.2 From Datalog±,∨ to Datalog
Next, we transform the datalog±,∨ rules ΣO into a set of dat-
alog rules Ξ(ΣO) such that Ξ(ΣO) |= ΣO, and thus for each
queryQ and data setD, cert(Q,ΣO, D) ⊆ cert(Q,Ξ(ΣO), D).
This transformation is performed in two steps:

1) Rewrite each datalog±,∨ rule r into a set of datalog± rules
by transforming disjunctions in the head of r into con-
junctions, and splitting the resulting conjunctions into
multiple datalog± rules. This is a standard “naive” tech-
nique for approximating disjunction, and was used, e.g.,
in the Screech reasoner [33]. More sophisticated strate-
gies will be discussed later on.

2) Transform the resulting datalog± rules into datalog rules
by using fresh individuals to Skolemise existentially quan-
tified variables. Our transformation is based on the trans-
formation from datalog± into datalog used in recent work
for a rather different purpose, namely to check chase ter-
mination when applied to datalog± rules [4].

We next formally define the transformation Ξ(·) for an ar-
bitrary set of datalog±,∨ rules; Figure 5 illustrates the ap-
plication of this transformation to our running example.

Definition 2. For each datalog±,∨ rule r of the form (1)
and each 1 ≤ i ≤ m, let ri be the datalog± rule

ri = B1 ∧ ... ∧Bn → ∃~yiϕi(~x, ~yi)

and let ϕ∧i (~x, ~yi) be defined as the conjunction of all non-
inequality atoms in ϕi(~x, ~yi).4

Finally, for each 1 ≤ i ≤ m and each variable yij ∈ ~yi,
let crij be a fresh individual unique for yij, and let θri be the
substitution mapping each variable yij ∈ ~yi to crij. Then,
Ξ(ri) is the following set of datalog rules:

Ξ(ri) = {B1 ∧ ... ∧Bn → ϕ∧i (~x, θri (~yi))}⋃
{c1 ≈ c2 → ⊥ | c1 6≈ c2 occurs in ϕi(~x, θ

r
i (~yi)) (2)

We finally define Ξ(r) =
⋃m
i=1 Ξ(ri) and Ξ(Σ) = ∪r∈ΣΞ(r)

for Σ a set of datalog±,∨ rules.

Note that Ξ(Σ) does not contain inequality atoms in rule
heads; although such rules are allowed according to our def-
inition of datalog, they cannot (easily) be transformed into
equivalent OWL 2 RL axioms, which is our ultimate goal.
For instance, the datalog±,∨ rule

r = B(x)→ R(x, c1) ∧A(c1) ∧R(x, c2) ∧A(c2) ∧ c1 6≈ c2

is transformed as follows, where c1 ≈ c2 → ⊥ is equivalent
to an OWL 2 (RL) DifferentFrom assertion.

Ξ(r) = {B(x)→ R(x, c1) ∧A(c1) ∧R(x, c2) ∧A(c2),

c1 ≈ c2 → ⊥}

As stated in the following proposition, the proof of which is
given in our Appendix A, the transformation over-approximates
the datalog±,∨ rules.

Proposition 1. Ξ(Σ) |= Σ, for Σ an arbitrary set of
datalog±,∨ rules.

4Inequality atoms only occur in conjunction with other
atoms in ϕi(~x, ~yi), and hence ϕ∧i (~x, ~yi) is well-defined.



C lhs(C) rhs(C)
A A(x)
¬A A(x)
{a} x ≈ a

≥ nR.A ∃y1, . . . , yn
∧

1≤i≤n[ar(R, x, yiC) ∧A(yiC) ∧
∧
i<j≤n y

i
C 6≈ yjC ]

≥ nR.¬A ∃y1, . . . , yn
∧

1≤i≤n[ar(R, x, yiC) ∧ C¬A(yiC) ∧
∧
i<j≤n y

i
C 6≈ yjC ]

∃R.Self ar(R, x, x)
¬∃R.Self ar(R, x, x)
∀R.A ar(R, x, yC) A(yC)
∀R.¬A ar(R, x, yC) ∧A(yC)

≤ nR.A
∧

1≤i≤n+1[ar(R, x, yiC) ∧A(yiC)]
∨

1≤i<j≤n+1 y
i
C ≈ yjC

≤ nR.¬A
∧

1≤i≤n+1 ar(R, x, y
i
C)

∨
1≤i≤n+1[A(yiC) ∨

∨
1≤i<j≤n+1 y

i
C ≈ yjC ]

C1 t . . . t Cn > if lhs(Ci) empty for all 1 ≤ i ≤ n ⊥ if rhs(Ci) empty for all 1 ≤ i ≤ n∧n
i=1 lhs(Ci) otherwise

∨n
i=1 rhs(Ci) otherwise

Note: C¬A is a fresh predicate; A(x) ∧ C¬A(x)→ ⊥ is added to the datalog±,∨ rules in the translation of ≥ nR.¬A

Figure 3: Translation of Normalised Axioms

Axioms in Oex Normalised Axioms Datalog±,∨

Student v Person > v ¬Student t Person Student(x)→ Person(x)
RA v Student > v ¬RA t Student RA(x)→ Student(x)
RA v ∃works.Group > v ¬RA t ∃works.Group RA(x)→ ∃y[works(x, y) ∧ Group(y)]
Group v Org > v ¬Group t Org Group(x)→ Org(x)

Emp ≡ Person u ∃works.Org
> v ¬Emp t Person Emp(x)→ Person(x)
> v ¬Emp t ∃works.Org Emp(x)→ ∃y[works(x, y) ∧ Org(y)]
> v Emp t ¬Person t ∀works.¬Org Person(x) ∧ works(x, y) ∧ Org(y)→ Emp(x)

works v memberOf works v memberOf works(x, y)→ memberOf(x, y)
Student v Grad t UnderGrad > v ¬Student t Grad t UnderGrad Student(x)→ Grad(x) ∨ UnderGrad(x)
func(works) > v≤ 1works.> works(x, y1) ∧ works(x, y2)→ y1 ≈ y2

Fellow v ∃works.∃funded.Council > v ¬Fellow t ∃works.Aux Fellow(x)→ ∃y.[works(x, y) ∧ Aux(y)]
> v ¬Aux t ∃funded.Council Aux(x)→ ∃y[funded(x, y) ∧ Council(y)]

UnderGrad v≥ 3 takes.Course > v ¬UnderGradt ≥ 3 takes.Course
UnderGrad(x)→ ∃y1, y2, y3

∧
i(takes(x, yi)

∧Course(yi) ∧
∧
i<j≤3 yi 6≈ yj)

Figure 4: Transforming Oex into datalog±,∨ rules ΣOex

Proposition 1 immediately implies

cert(Q,ΣO, D) ⊆ cert(Q,Ξ(ΣO), D)

for an arbitrary query Q and data set D, and hence query
answers w.r.t. Ξ(ΣO) are an upper bound to those w.r.t. ΣO.

Note that when Ξ(ΣO) ∪ D is unsatisfiable, the obtained
upper bound is the trivial one for all queries, i.e., all tuples
of individuals with the appropriate arity. For instance, if we
extendOex in Figure 4 with the axiom GraduUnderGrad v ⊥,
we obtain the ⊥-rule Grad(x) ∧ UnderGrad(x) → ⊥ in both
ΣOex and Ξ(ΣOex). For Dex = {RA(a)} we have that Oex∪Dex

is satisfiable, but Ξ(ΣOex) ∪Dex is unsatisfiable. In Section
4.1 we discuss how this issue can be dealt with.

3.3 From Datalog to OWL 2 RL
The last step is to transform Ξ(ΣO) into an OWL 2 RL
ontology O′ and (possibly) a data set D′O.

Rules in Ξ(ΣO) can be of the following types (see Section
3.1, Figure 3 and Definition 2):

R1 Rules originating from (and equivalent to) normalised
role axioms R v S, R ◦ S v T , or R u T v ⊥.

R2 Rules c1 ≈ c2 → ⊥, with c1 and c2 constants.

R3 Rules originating from the transformations applied to
normalised axioms of the form > v C.

Rules of type R1 correspond directly to OWL 2 RL axioms,
which will be included in O′. Rules of type R2 correspond
to ground atoms of the form c1 6≈ c2 (i.e., DifferentFrom
assertions in OWL 2), which will be included in D′O.

Finally, rules of type R3 are of a very specific shape. The
variables in the body are arranged in a tree-shape way, with
a single root variable x, and branch variables y connected to
x by atoms R(x, y) or R(y, x), such that each y occurs in ex-
actly one such atom. Moreover, branch variables only occur
in the rule head in atoms of the form A(y) or y ≈ y′. Rules
of this form can be transformed back into OWL 2 axioms by
means of the well-known rolling-up technique [15]; for exam-
ple, the rule Person(x)∧works(x, y)∧Org(y)→ Emp(x) can
be rolled up into the axiom Personu∃works.Org v Emp. We
formally specify this transformation in the following section.

3.3.1 Rolling up rules into OWL 2 axioms



RA(x)→ ∃y.[works(x, y) ∧ Group(y)]  RA(x)→ works(x, c1) ∧ Group(c1)
Emp(x)→ ∃y.[works(x, y) ∧ Org(y)]  Emp(x)→ works(x, c2) ∧ Org(c2)

Student(x)→ Grad(x) ∨ UnderGrad(x)  Student(x)→ UnderGrad(x) ∧ Grad(x)

UnderGrad(x)→ ∃y1, y2, y3

∧
i(takes(x, yi)  

UnderGrad(x)→
∧5
i=3(takes(x, ci) ∧ Course(ci))

∧
∧
i<j≤3 yi 6≈ yj) ci ≈ cj → ⊥ for different i and j

Note: c1, . . . , c5 are fresh individuals

Figure 5: Transforming ΣOex into Ξ(ΣOex). Only the rules that are changed by the transformation are shown.

Given a rule r of type R3, the variables occurring in r are
divided into the root variable x, and a set of branch variables
y, such that r satisfies the following properties, where A is
a unary predicate, R is a binary predicate, c is a constant,
and y, y′ are branch variables:

• the body is either >, or a conjunction of atoms of the
form A(x), R(x, x), R(x, y), R(y, x), or A(y).

• the head is either ⊥ or a conjunction of atoms of the
formA(x), R(x, x, ), x ≈ c, A(y), A(c), R(x, c), R(c, x),
and y ≈ y′;

• each branch variable y occurs in exactly one body atom
R(x, y) or R(y, x); also, each constant c occurs in at
most one atom R(x, c) or R(c, x); and

• if y ≈ y′ occurs in the head, then y and y′ occur in
body atoms R(x, y) or R(y, x) and R(x, y′) or R(y′, x).

A rule of this form can be transformed into OWL 2 by ex-
ploiting the rolling up technique. There is, however, a tech-
nical issue related to the fresh Skolem constants in Ξ(ΣO).
In particular, the rule RA(x) → works(x, c1) ∧ Group(c1) in
our running example does not directly correspond to an
OWL 2 axiom. This issue can be addressed by introduc-
ing fresh roles; the above rule can be transformed into the
following three OWL 2 axioms, where SGroup

works is a fresh role:

RA v ∃SGroup
works .{c1} ∃(S

Group
works )−.> v Group SGroup

works v works

We are now ready to define the transformation. Note that,
for simplicity, this transformation has been presented in such
a way that the axiom might contain redundancies; in prac-
tice such redundancies would, of course, be eliminated.

Each atom α ∈ body(r) is transformed into a concept Cα as
follows, with x is the root variable of r, and y is a branch
variable:

Cα =



> if α = >;
A if α = A(x);
∃R.Self if α = R(x, x);
∃R.> if α = R(x, y);
∃R−.> if α = R(y, x);
∃R.A if α = A(y) and R(x, y) ∈ body(r);
∃R−.A if α = A(y) and R(y, x) ∈ body(r);

Each atom β ∈ head(r) is transformed into a concept Cβ

as follows, with x the root variable of r, y and y′ branch

variables, c a constant, and SAR , SAR− fresh roles:

Cβ=



⊥ if β = ⊥;
A if β = A(x);
∃R.Self if β = R(x, x);
{c} if β = x ≈ c;
∀R.A if β = A(y) and R(x, y) ∈ body(r);
∀R−.A if β = A(y) and R(y, x) ∈ body(r);
∃SAR .{c} if β = A(c) and R(x, c) ∈ head(r); or

if β = R(x, c) and A(c) ∈ head(r);
∃(SAR−).{c} if β = R(c, x) and A(c) ∈ head(r); or

if β = A(c) and R(c, x) ∈ head(r);
≤ 1R.A if β = y ≈ y′ and R(x, y), A(y) ∈ body(r)
≤ 1R−.A if β = y ≈ y′ and R(y, x), A(y) ∈ body(r)

For simplicity, this transformation has been presented in
such a way that the axiom might contain redundant con-
juncts, e.g., ≤ 1R.A u ≤ 1R.A; in practice such redundan-
cies would, of course, be eliminated.

We can now transform r into an OWL 2 axiom C(r) as
follows:

C(r) =
l

α∈head(r)

Cα v
l

β∈body(r)

Cβ

We thus obtain an ontology O′ with the following axioms.

• Axioms of the form R v S, R ◦ S v T , or R u T v ⊥
obtained from the rules of type R1 in Ξ(O).

• An axiom C(r) for each rule r r of type R3 in Ξ(O)
and axioms SAR v R and ∃(SAR)−.> v A for each fresh
role SAR introduced in C(r), with R either atomic or
an inverse role.

Finally, we obtain a data set D′O containing a ground in-
equality atom for each rule of type R2 in Ξ(O).

Clearly, O′ ∪D′O is a conservative extension of Ξ(ΣO), and
hence query answers are preserved for arbitrary queries and
data sets in the vocabulary of Ξ(ΣO).

3.3.2 Eliminating non-RL axioms
Unfortunately, O′ might not be an OWL 2 RL ontology as
it might contain the following kinds of non-RL axioms: (i)
axioms containing the Self construct; (ii) axioms of the form
C v {a} for {a} a nominal concept; and (iii) axioms having
> as the left-hand-side concept.

These kinds of axiom were excluded from OWL 2 RL due to
specific design choices, rather than to inherent limitations
of materialisation-based reasoning techniques; in fact, the



OWL 2 RL/RDF rules could be trivially extended to deal
with such non-RL axioms. Furthermore, axioms of the kind
above are rare in realistic ontologies, and none of the ontolo-
gies we used in our evaluation contained any such axiom.

If necessary, however, non-RL axioms can be eliminated by
applying to O′ and D′O the transformations described next
in the given order.

1. Replace each occurrence of a concept ∃R.Self on the
l.h.s. of an axiom with ∃R.>; and replace each axiom
of the form C v ∃R.Self with the axioms C v {a} and
C v ∃R.{a} with {a} a fresh individual.

2. Replace each axiom of the form C v {a} with an ax-
iom C v Aa, where Aa is a fresh concept; define a fresh
atomic role Pa as inverse functional and add the ax-
iom Aa v ∃Pa.{a}; and extend D′O with the assertion
Aa(a).

3. Replace each axiom of the form > v C with TOP v C,
where TOP is a fresh atomic concept; add axioms A v
TOP, {a} v TOP, ∃R.> v TOP and ∃R−.> v TOP
for each atomic concept A, nominal {a} and each role
R in the ontology; and if no nominal occurs in the
ontology, add the axiom {c} v TOP, with c a fresh
individual.

These transformations could lead to additional answers to
certain queries and data sets. For example, if we apply them
to O′ = {∃R.Self v A} to obtain O′′ = {∃R.> v A} and
consider D = {A(a), R(a, b)} and Q(x) = A(x), we have
cert(Q,O′, D) = ∅, whereas cert(Q,O′′, D) = {a}.

4. ADDITIONAL CONSIDERATIONS
We next discuss some issues related to the second step in our
approach, namely the transformation Ξ(·) from datalog±,∨

rules into datalog rules.

4.1 Dealing with Unsatisfiability
As mentioned in Section 3.2, the union of a data set D with
the rules in Ξ(ΣO) can be unsatisfiable, even when ΣO ∪D
is satisfiable. This issue can be addressed by removing all
⊥-rules from Ξ(ΣO), which ensures satisfiability for any D.

This is not possible without losing completeness if ΣO∪D is
unsatisfiable. If ΣO∪D is satisfiable, however, ⊥-rules intu-
itively do not matter because Ξ(·) strengthens disjunctions
in ΣO into conjunctions; hence, all ground atoms entailed by
ΣO∪D are also entailed by Ξ(ΣO)∪D even after dispensing
with the ⊥-rules. These intuitions are formalised as follows.

Theorem 1. Let Σ be a set of datalog±,∨ rules, and let
Ξ⊥(Σ) be all the ⊥-rules in Ξ(Σ). Then, the following con-
dition holds for each data set D and each query Q: if Σ∪D
is satisfiable, then cert(Q,Σ, D) ⊆ cert(Q,Ξ(Σ)\Ξ⊥(Σ), D).

The proof of the theorem is rather technical, and is deferred
to our Appendix B. The idea behind the proof is, however,
quite simple, and can be explained with an example.

Example 1. Let Σ and D be as follows:

Σ = {A(x)→ B(x) ∨ C(x), A(x)→ D(x) ∨ E(x),

B(x)→ ⊥, C(x) ∧D(x)→ ⊥}
D = {A(a), C(b)}

Theorem 1 applies because Σ ∪D is satisfiable. Given

Ξ(Σ) \ Ξ⊥(Σ) = {A(x)→ B(x) ∧ C(x),

A(x)→ D(x) ∧ E(x)}

we need to show that cert(Q,Σ, D) ⊆ cert(Q,Ξ(Σ)\Ξ⊥(Σ), D)
for an arbitrary query Q. Because Σ∪D is satisfiable, there
exists a (Herbrand) model J satisfying it, say

J ={A(a), C(a), E(a), C(b), E(b)}

Pick an arbitrary Q (say, Q(x) = E(x)) and an individual
(say b) such that b 6∈ cert(Q,Ξ(Σ) \ Ξ⊥(Σ), D). Then, there
must exist a (Herbrand) interpretation I such that

I |= Ξ(Σ) \ Ξ⊥(Σ) ∪D and I 6|= Q(b)

In our case, such an interpretation I could be

I ={A(a), B(a), C(a), D(a), E(a), C(b)}

Then, we can show that the (Herbrand) interpretation I ∩J
satisfies Σ ∪ D, but it does not satisfy Q(b), which implies
b 6∈ cert(Q,Ξ(Σ) \ Ξ⊥(Σ), D), as required by the theorem.

In practice, checking the satisfiability of O ∪ D, which is
equisatisfiable with ΣO ∪D, is easier than query answering,
and even if it is impractical to check the satisfiability of
O∪D using an OWL 2 reasoner, e.g., if D is very large, we
can still compute an upper bound “modulo satisfiability”.

4.2 Transformation of Disjunctions
If Ξ(ΣO) ∪D is satisfiable for a data set D, we can weaken
Ξ(ΣO) from Definition 2 such that ΣO is still entailed. In
particular, when transforming a rule in ΣO into datalog by
replacing disjunction with conjunction, it suffices to keep
only one of the conjuncts. For example, given the trans-
formation of A(x) → B(x) ∨ C(x) into A(x) → B(x) and
A(x) → C(x), we can discard either of the resulting data-
log rules in Ξ(ΣO). Each choice might result in a different
upper bound. In practice we could use multiple versions of
O′ resulting from different choices to try to obtain a tighter
bound, or we could make a heuristic choice of rules to retain;
e.g., it makes sense to choose the rule with head predicate
that appears least frequently in the bodies of other rules.

Choosing disjuncts instead of taking the conjunction of all
of them is, however, incompatible with removing ⊥-rules,
and hence with Theorem 1. Consider Σ and D in Example
1 and Q(x) = C(x); if A(x) → B(x) ∨ C(x) is approx-
imated to A(x) → B(x), we have a ∈ cert(Q,Σ, D) but
a 6∈ cert(Q,Ξ(Σ) \ Ξ⊥(Σ), D) and query answers are lost.

5. EXPERIMENTS
We have implemented our approach in Java and used Ora-
cle’s native OWL 2 RL reasoner in Oracle Database Release
11.2.0.3 as an OWL 2 RL reasoner. The testing machine has
a dual quad core (Intel Xeon E5620) CPU, 5 SATA disks,
and 40GB RAM with the operating system Linux 2.6.18.



Table 1: Statistics for data sets
Data DL Horn Existential Classes Properties Axioms Individuals Data Set

LUBM(n) SHI Yes 8 43 32 93 1.7× 104n 105n

GEN-UOBM(n) SHIN No 24 113 44 188 2.5× 104n 2× 105n
FLY SRI Yes 8,396 7,533 24 144,407 1,606 6,308

5.1 Test Data
In our experiments, we have used the ontologies and data
sets described next. More detailed statistics are given in
Table 1.

Lehigh University Benchmark. The Leigh University
Benchmark (LUBM) ontology [10] describes the organisa-
tion of universities and academic departments. Although the
LUBM ontology is quite simple, it is not within the OWL 2
RL profile, as it captures existentially quantified knowledge.
LUBM comes with a predefined data set generator, which
can be used to test the ability of systems to handle data
sets of varying size. We denote with LUBM(n) the LUBM
dataset generated for n universities.

University Ontology Benchmark. The University On-
tology Benchmark (UOBM) is an extension of LUBM [21]
with a more complex ontology, which also contains disjunc-
tive axioms and negation. UOBM provides three different
data sets (for one, five and ten universities); in contrast to
LUBM, no generator of data sets of varying size is provided
for UOBM. To provide a more comprehensive evaluation, we
have implemented a data generator for UOBM5 that repli-
cates the design of LUBM’s generator. Data produced by
our generator differs in several ways from the default UOBM
data. This is because the data in UOBM’s default data sets
is skewed in what we believe are rather strange ways; for
example, students in the UOBM data sets are much more
likely to be connected via the isFriendOf relation to faculty
members than to other students. Our generator does not
replicate this skewing, and thus produces what we believe is
more “realistic” data. We denote with GEN-UOBM(n) the
generated UOBM data set for n universities.

Fly Anatomy (FLY).This realistic and complex ontology
describing the anatomy of flies includes a data set with more
than 1, 000 manually created individuals. This ontology is
rich in existentially quantified knowledge and hence contains
a relatively small number of OWL 2 RL axioms.

We have used two kinds of queries in our experiments.

Standard Queries. LUBM and UOBM come with 14
and 15 standard queries, respectively. Since UOBM extends
LUBM, we also adapted the 14 LUBM queries to UOBM.
For FLY, we have used 5 realistic queries provided by the
biologists who are developing the ontology.

Synthetic Queries. We have used the system SyGENiA
[6, 18] to generate synthetic queries for LUBM and UOBM
and obtained 78 queries for LUBM, and 198 for UOBM (the
larger number reflecting its more complex structure).

5http://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/

Table 2: Synthetic LUBM queries with non-
matching bounds. Upper bound is tight in all cases.

Query Q3 Q51 Q67 Q69

Lower Bound 540 0 540 0
Upper Bound 1087 547 1087 547

5.2 Tightness of the Upper Bound
Results for LUBM(1). Lower and upper bounds coincide
for each of the 14 LUBM standard queries and the LUBM(1)
data set. This implies that Oracle’s reasoner is complete
for each of these queries (and the given data set), even if
the ontology contains axioms outside OWL 2 RL. As to the
synthetic queries, lower and upper bounds coincided in all
but 4 cases (see Table 2). For these 4 queries, we used the
OWL 2 reasoner HermiT to compute the exact answers, and
found the upper bound to be tight in all cases.

Results for GEN-UOBM(1). Lower and upper bounds
for the 15 UOBM standard queries and GEN-UOBM(1) are
given in Table 3. We found matching bounds for 4 queries.
For the remaining ones, the upper bound was significantly
smaller than the trivial upper bound; also, by using HermiT,
we determined that the lower bound was tight for 9 queries,
and in the remaining 2 cases neither of the bounds was tight.

Regarding the 14 LUBM modified queries (see Table 4), we
obtained matching bounds for 8 of them. For 5 of the re-
maining 6 queries, the lower bound was tight and the gap
between bounds was typically small. For query Q4, however,
the lower bound is still tight but the gap is much larger.
However, the query has a large number of answer variables,
and hence a huge trivial upper bound, so the upper bound
can still be considered a good approximation.

Finally, concerning the synthetic queries, we obtained match-
ing bounds for 101(51%) of them. Figure 6 illustrates the
typical size of the gap between the lower bound (LB) and
upper bound (UB) answer sets, relative to the size of LB;
it shows the quotient of the number of answer tuples in the
gap between bounds over the number of answer tuples in the

lower bound, i.e., |UB\LB||LB| .6 Quotient values are presented in

intervals on the X axis, and the Y axis represents the num-
ber of queries that fell within each interval; for example, we
can see that for 46 queries, UB\LB contained only 10%–20%
of the number of answer tuples in LB. This suggests the po-
tential of our technique as an optimisation that efficiently
identifies a small number of candidate answer tuples, which
can be checked using an OWL 2 reasoner; even in the worst
case, where the upper bound is almost 13 times larger than
the lower bound, we have ruled out more than 99.9% of the
possible answer tuples compared to the trivial upper bound.

6Excluding three cases where the lower bound is empty and
the upper bound non-empty.

http://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/


Table 3: Standard queries for UOBM
Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Lower Bound 21 2,465 581 292 235 991 0 376 1,298 8 2,416 50 0 6,271 0
Upper Bound 21 2,465 581 603 235 1,008 50 455 2,528 191 8,852 1,027 455 12,782 455
Gap 0 0 0 311 0 17 50 79 1,230 183 6,436 977 455 6,511 455

Exact Answers 21 2,465 581 292 235 991 0 376 1,298 8 2,416 50 416 6,535 0

Table 4: Modified LUBM queries for UOBM with
non-matching bounds. Lower bound is tight.

Query Q1 Q4 Q5 Q9 Q12 Q13

Lower Bound 0 5 648 317 41 991
Upper Bound 1 5,456 687 630 779 1,008

Figure 6: Synthetic UOBM queries. X axis is |UB\LB||LB| ;

Y axis is the number of queries falling in each inter-
val on the X axis.

Results for FLY. The lower and upper bounds for each of
the five realistic queries are presented in Table 5. As can
be seen, the lower and upper bounds coincide in Q3, and
the lower bound answers were empty for the remaining four
cases. This is because the ontology includes many axioms
that are outside the OWL 2 RL profile, and in particular
many existential restrictions. We were able to confirm using
HermiT that the upper bounds are tight for all these queries.

5.3 Scalability Tests
To test the scalability of upper bound computation using Or-
acle’s reasoner, we have conducted experiments using LUBM
and UOBM data sets of increasing size (1, 5, 10, 100 uni-
versities for LUBM and UOBM, and 1,000 universities for
LUBM). We also report computation times for FLY.

Test for LUBM. Results for all the standard queries and
generated queries are summarised in Figure 7(a); in the fig-
ure, materialisation time refers to the total time for com-
puting the saturation for each data set and querying time
refers to the average query answering time for each query.
We can observe that query answering times and scalability
behaviour is very similar for lower and upper bound com-
putation. Fully-fledged OWL 2 reasoners are much slower,
even for the smallest data sets; for LUBM(1), HermiT re-
quired 7,684 seconds to compute the exact answers to one
of the queries with matching lower and upper bounds.

Table 5: Realistic queries for FLY. Upper bound is
tight in all cases.

Query Q1 Q2 Q3 Q4 Q5

Lower Bound 0 0 28 0 0
Upper Bound 803 342 28 25 518

Test for GEN-UOBM. Results for both standard and
generated queries are given in Figure 7(b). In this case,
the materialisation time is higher for the upper bound than
that for the lower bound because of the increased number
of materialised triples. The time to answer queries also in-
creases significantly, but is in line with the increased size
of the answer. For example, the lower bound for generated
Query 195 on UOBM(10) contains 132,411 answer tuples,
whereas the upper bound contains 1,961,095 answer tuples.
Although less efficient than lower bound computation, upper
bound computation significantly outperforms HermiT, and
the lower and upper bounds coincide for 9 out of 14 queries.
Upper bound computation required less than 2 seconds for
all standard queries w.r.t. UOBM(1); HermiT, in compar-
ison, failed to compute the answer to one of the standard
queries (Query 6)7, even when given a 24h timeout. We also
used HermiT to check tuples in the gap between the lower
bound and upper bound for this query, which took only 1
hour. This illustrates the potential of upper and lower bound
answers in optimising the computation of exact answers.

Test for FLY. Oracle’s reasoner required 164s and 493s
respectively to compute the lower and upper bound mate-
rialisation, and to answer all queries. The query answering
time was negligible compared to materialisation time.

6. RELATED WORK
Our work is related to theory approximation, which was first
described in the seminal paper by Kautz and Selman [31].
The idea in theory approximation is to approximate a logical
theory T by two theories Tlb (the model lower bound) and
Tub (the model upper bound) such that Tlb |= T |= Tub,
both Tlb and Tub are in a “more tractable” language than T ,
and Tlb and Tub are “as close as possible” to T . Kautz and
Selman studied this problem for T in propositional logic
and the bounds expressed in its Horn fragment. Del Val
[8] studied the problem for first-order logic. This line of
research has focused mostly on the computation of the“best”
model upper bounds; however, we focus on query answers
rather than models and hence our upper bounds correspond
to model lower bounds, which have received little attention.

The idea of transforming the ontology, data, and/or query
to obtain upper bounds to query answers has been already

7Q(x)← hasAlumnus(Univ0, x) ∧ Person(x)
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Figure 7: Scalability tests

Table 6: Comparison between different systems

System Source Target
Independence

Time Query
Data Query

Screech [33] SHIQ Datalog NO YES exponential SPARQL
Quill [28] OWL DL DL-Lite NO NO exponential CQ

[19] SHI DL-Lite YES YES exponential SPARQL
Ours OWL 2 OWL 2 RL YES YES polynomial CQ

explored in previous work. Table 6 summarises the main
differences between our approach and the systems presented
in [33, 28, 19], which we next explain in more detail.

The Screech system [33] uses KAON2 [17] to transform
an ontology into a disjunctive datalog program such that
answers to SPARQL queries are preserved, and then ap-
proximates the resulting disjunctive program into a data-
log program by transforming disjunctions into conjunctions.
The transformation of the ontology (which is delegated to
KAON2) requires exponential time (and may also be of ex-
ponential size) in the size of the input ontology. This ex-
ponential blow-up means that, in practice, KAON2 may be
unable to process large or complex ontologies; for example,
KAON2 was reported to fail on the DOLCE ontology [24].
Finally, due to the dependency on KAON2, Screech can
only deal with the subset of OWL 2 corresponding to the
SHIQ DL, and is guaranteed to compute an upper bound
only for SPARQL queries; in contrast our approach applies
to all of OWL 2 as well as to more general query languages.

The Quill system transforms both the ontology O and
query Q to compute an upper bound [28]. In this case, the
target language for approximation is DL-Lite (a.k.a. OWL
2 QL), instead of OWL 2 RL. Quill first transforms Q and
adds axioms OQ to O based on this transformation. Then,
Quill computes as an approximation OWL 2 QL axioms
entailed by O ∪ OQ ∪ D, with D the input data set. Each
entailment test requires the use of a fully-fledged OWL rea-
soner, which can be expensive; also, the required entailments
need to be recomputed for each query and each data set.

Kaplunova et al. [19] approximate an ontology O into an
OWL 2 QL ontologyO′ to provide an upper bound to queries
in SPARQL. Each axiom C v D in O is transformed into
an OWL 2 QL axiom C′ v D′, where C is subsumed by C′

and D′ is subsumed by D (w.r.t. O). The transformation
algorithm, however, is non-deterministic and there can be
exponentially many C′ and D′ satisfying the required prop-
erties. Furthermore, as reported in [19], it is often the case
that for a given D such that O∪D is satisfiable, O′∪D is un-
satisfiable, regardless of the choices made when computing
O′. The large degree of non-determinism means that com-
puting O′ can be expensive, even for small ontologies—it is
reported in [19] that “it is very demanding to approximate
a TBox with 499 axioms”, and that they were unable to
compute a coherent approximation “in reasonable time”.

7. DISCUSSION
We have proposed novel techniques that allow us to exploit
industrial-strength triple stores to answer queries over on-
tologies that are outside OWL 2 RL, thus“making the most”
of state-of-the-art triple store technologies. Our techniques
allow us to compute exact answers to queries in many cases.
Otherwise, we can still efficiently compute an upper bound
to the exact answers, which allows us to estimate the incom-
pleteness of the triple store as well as to optimise OWL 2
reasoners by ruling out many candidate answer tuples.

The results obtained so far open many possibilities for fu-
ture work. For example, we plan to develop techniques for
identifying, during upper bound computation, a (hopefully
small) fragment of the ontology and data set that is suffi-
cient for checking whether the answers in the gap between



bounds are indeed answers; this fragment can then be used
instead of the original ontology when checking answers in
the gap using an OWL 2 reasoner.
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APPENDIX
A. PROOF OF PROPOSITION 1
In this section, we prove Proposition 1, namely Ξ(Σ) |= Σ
for Σ a set of datalog±,∨ rules.

The following proposition provides sufficient and necessary
conditions for a datalog±,∨ rule to be entailed by a set of
first-order sentences (the proof is rather straightforward, and
can be found in [5]).

Proposition 2. Let F be a set of first-order sentences
and r be a datalog±,∨ rule of the form (1). Then, for each
substitution σ mapping the free variables of r to distinct in-
dividuals not occurring in F or r, we have F |= r iff

F ∪ {σ(B1), . . . , σ(Bn)} |=
m∨
i=1

∃~yi.ϕi(σ(~x), ~yi)

Proposition 2 can then be used to show that each datalog±,∨

rule r in Σ is entailed by Ξ(r), and hence Ξ(Σ) |= Σ.

Proof of Proposition 1. It suffices to show that, for
each rule r ∈ Σ of the form (1) and each 1 ≤ i ≤ m, we
have Ξ(ri) |= r. Let σ be a substitution mapping the free
variables in r to fresh individuals; by Proposition 2, we have

Ξ(ri) |= r ⇔ Ξ(ri) ∪ {σ(B1), . . . , σ(Bn)} |=
m∨
i=1

∃~yi.ϕi(σ(~x), ~yi)

According to the definition of ϕ∧i , we have

ϕi(σ(~x), θri (~yi)) = ϕ∧i (σ(~x), θri (~yi)) ∧
∧
crij ∧ crij′ (3)

where crij ∧ crij′ occurs in ϕi(σ(~x), θri (~yi)).

Clearly, for each inequality assertion crij ∧ crij′ occurring in
ϕi(σ(~x), θri (~yi)) we have crij ≈ crij′ → ⊥ ∈ Ξ(ri) and hence

Ξ(ri) ∪ {σ(B1), . . . , σ(Bn)} |= crij ∧ crij′ (4)

Moreover, Ξ(ri) contains the ruleB1∧...∧Bn → ϕ∧i (~x, θri (~yi))
and hence

Ξ(ri) ∪ {σ(B1), . . . , σ(Bn)} |= ϕ∧i (σ(~x), θri (~yi)) (5)

Combining condition (3), (4), (5), we have

Ξ(ri) ∪ {σ(B1), . . . , σ(Bn)} |= ϕi(σ(~x), θri (~yi))

Since θri maps variables to constants, the following condi-
tions clearly hold by the semantics of first-order logic:

ϕi(σ(~x), θri (~yi)) |= ∃~yi.ϕi(σ(~x), ~yi)

|=
m∨
i=1

∃~yi.ϕi(σ(~x), ~yi)

As a result, Ξ(ri) |= r.

B. PROOF FOR THEOREM 1
In the proof of Theorem 1, we use standard Skolemisation
[27] to eliminate existential quantifiers. It is well-known that
the Skolemisation preserves satisfiability. We next prove
that the Skolemisation also preserves certain answers for
queries.

Lemma 1. Let F be a set of rectified sentences,8 and let
sk(F) be the formulas obtained by applying standard Skolemi-
sation to F . Then, the following condition holds for each
data set D and each conjunctive query Q:

cert(Q,F , D) = cert(Q, sk(F), D)

Proof of Lemma 1. Recall thatD is a finite set of ground
atoms and that Q is a formula of the form Q(~x) = ∃~y.ϕ(~x, ~y)
where ϕ is a conjunction of atoms. Therefore, we have the
following:

sk(F ∪D ∪ {¬Q(~x)}) = sk(F) ∪D ∪ {¬Q(~x)} (6)

And hence, we also have the following for ~a a tuple of con-
stants:

~a ∈ cert(Q,F , D)

iff F ∪D |= Q(~a)

iff F ∪D ∪ {¬Q(~a)} is unsatisfiable

iff sk(F ∪D ∪ {¬Q(~a)}) is unsatisfiable

iff sk(F) ∪D ∪ {¬Q(~a)} is unsatisfiable[due to (6)]

iff sk(F) ∪D |= Q(~a)

iff ~a ∈ cert(Q, sk(F), D)

In this paper, we have so far used first-order logic with
equality. It is well-known, that equality can be axiomatised
in first-order logic without equality such that entailment of
first-order logic formulas is preserved. In the proof of The-
orem 1, we will exploit Herbrand’s theorem, which does not
hold in the presence of equality; therefore, we use the explicit
axiomatisation of equality, rather than consider equality as
a special predicate with a fixed interpretation. The axioma-
tisation of equality for a first-order signature is the following
set of sentences, where f is a function and P is a predicate
in the relevant signature.

x ≈ x
x ≈ y → y ≈ x

x ≈ y, y ≈ z → x ≈ z
x1 ≈ y1, . . . , xn ≈ yn → f(x1, . . . , xn) ≈ f(y1, . . . , yn)

x1 ≈ y1, . . . , xn ≈ yn, P (x1, . . . , xn)→ P (y1, . . . , yn)

Proof of Theorem 1. Consider the rules in Ξ⊥(Σ). By
the definition of Ξ(·), we observe that each rule in Ξ⊥(Σ)
satisfies one of the following: it is either in Σ, or it is of
the form crij ≈ crij′ → ⊥ and hence it originates from an
inequality assertion in the head of some rule r ∈ Σ. We can
therefore obtain Ξ(Σ) \ Ξ⊥(Σ) in the following steps

8That is, no variable appears quantified more than once.



1. Compute Σ′ = Σ\Σ⊥, where Σ⊥ is the set of all ⊥-rules
in Σ;

2. Replace each rule B1 ∧ . . . ∧ Bn →
∨m
i=1 ϕ(~x, ~yi) in Σ′

with the rule B1 ∧ . . . Bn →
∨m
i=1 ϕ

∧(~x, ~yi) and then
replace disjunctions by conjunctions in all rules; we de-
note with Π(Σ′) the resulting set of rules

Σ′  Π(Σ′)
. . .→

∨
i ∃~yi.ϕi(~x, ~yi) . . .→

∧
i ∃~yi.ϕ

∧
i (~x, ~yi)

3. Replace each existentially quantified variable with a
fresh Skolem constant, thus obtaining Ξ(Σ) \ Ξ⊥(Σ).

Clearly, we have Ξ(Σ) \ Ξ⊥(Σ) |= Π(Σ′); hence, we have
cert(Q,Π(Σ′), D) ⊆ cert(Q,Ξ(Σ) \ Ξ⊥(Σ), D) for each data
set D and each query Q. Consequently, what we need to
prove is that for each D and Q,

Σ ∪D satisfiable⇒ cert(Q,Σ, D) ⊆ cert(Q,Π(Σ′), D) (7)

Consider the standard Skolemisation sk(Σ′) of Σ′. Since Σ⊥
contains no existential quantifier, we have sk(Σ⊥) = Σ⊥;
hence, sk(Σ) = sk(Σ′) ∪ Σ⊥ is a Skolemisation of Σ and

Σ ∪D satisfiable⇔ sk(Σ′) ∪ Σ⊥ ∪D satisfiable (8)

Furthermore, by Lemma 1, we have the following for each
query Q and data set D:

cert(Q, sk(Σ′) ∪ Σ⊥, D) = cert(Q,Σ, D) (9)

Since Σ′ and Π(Σ′) share the same existential quantifiers and
existentially quantified variables, we can reuse the Skolem
function symbols in sk(Σ′) to compute a Skolemisation sk(Π(Σ′))
of Π(Σ′). By Lemma 1, we have the following for each Q
and D:

cert(Q, sk(Π(Σ′)), D) = cert(Q,Π(Σ′), D) (10)

Therefore, it suffices to show the following condition:

sk(Σ′) ∪ Σ⊥ ∪D satisfiable

⇒ cert(Q, sk(Σ′) ∪ Σ⊥, D) ⊆ cert(Q, sk(Π(Σ′)), D) (11)

Indeed, if (11) holds, then (8),(9) and (10) clearly imply (7).

To show (11), it is equivalent to prove the following condition
for each data set D, each query Q and each tuple ~a.

sk(Σ′) ∪ Σ⊥ ∪D satisfiable and sk(Π(Σ′)) ∪D 6|= Q(~a)

⇒ sk(Σ′) ∪ Σ⊥ ∪D 6|= Q(~a)

Let Λ≈ be the axiomatisation of equality for the signature
of sk(Σ′). Let D be an arbitrary data set such that sk(Σ′)∪
Σ⊥ ∪D is satisfiable, let Q be an arbitrary query, and let ~a
be a tuple s.t. sk(Π(Σ′))∪Λ≈∪D 6|= Q(~a). Then sk(Π(Σ′))∪
Λ≈ ∪ D ∪ {¬Q(~a)} is satisfiable. According to Herbrand’s
theorem, there exists a Herbrand interpretation I such that
I |= sk(Π(Σ′)) ∪ Λ≈ ∪D ∪ {¬Q(~a)}. Therefore,

I |= sk(Π(Σ′)) ∪ Λ≈ ∪D, but I 6|= Q(~a).

Moreover, sk(Σ′) ∪ Σ⊥ ∪ Λ≈ ∪D is satisfiable implies there
is an Herbrand interpretation J s.t.

J |= sk(Σ′) ∪ Σ⊥ ∪ Λ≈ ∪D

Because I 6|= Q(~a), I ∩ J ⊆ I and all the atoms in Q are
positive, it is trivial that I ∩ J 6|= Q(~a). We will show that

I ∩ J |= sk(Σ′) ∪ Σ⊥ ∪ Λ≈ ∪ D, which means I ∩ J is a
counter-model of Q(~a) w.r.t. sk(Σ′) ∪ Σ⊥ ∪ Λ≈ ∪D.

Since I∩J ⊆ J and J |= Σ⊥, we have I∩J |= Σ⊥ because
I ∩ J has fewer positive atoms than J . It is also easy to
verify that I ∩ J |= Λ≈. Furthermore, we next show that
I ∩ J |= D. Since I |= D and J |= D, given that any
grounded atom α ∈ D,

• if α is not an inequality atom, then we have α ∈ I and
α ∈ J ; thus I ∩ J |= α;

• if α is an inequality atom of the form c1 6≈ c2, then we
have c1 ≈ c2 6∈ I and c1 ≈ c2 6∈ J ; thus I ∩ J |= α as
well.

So I ∩ J |= D. Consequently, the only remaining task is to
show that I ∩ J |= sk(Σ′).

Assume by contradiction that I ∩ J 6|= sk(Σ′), i.e. there
exists a rule r ∈ sk(Σ′) and a tuple of constants ~c such

that I ∩ J 6|= B1(~c), . . . , Bn(~c) →
∨m
i=1 ϕi(~c,

~fi(~c)). Thus,
{B1(~c), . . . , Bn(~c)} ⊆ I ∩ J .

Since I ∩ J ⊆ I, we have {B1(~c), . . . , Bn(~c)} ⊆ I; further-

more, I |= sk(Π(Σ′) and hence I |= ϕ∧i (~c, ~fi(~c)) for each
1 ≤ i ≤ m. Similarly, since I ∩ J ⊆ J we also have
{B1(~c), . . . , Bn(~c)} ⊆ J and since J |= sk(Σ′) then there

exists k ∈ {1, . . . ,m} such that J |= ϕk(~c, ~fk(~c)).

If ϕk(~c, ~fk(~c)) does not contain inequality assertions, then

I |= ϕk(~c, ~fk(~c)) and hence I ∩ J |= ϕk(~c, ~fk(~c)), which im-

plies I ∩ J |= B1(~c), . . . , Bn(~c) →
∨m
i=1 ϕi(~c,

~fi(~c)) leading
to a contradiction.

If ϕk(~c, ~fk(~c)) contains an inequality assertion, say t1 6≈ t2
for t1 and t2 two terms. Since J |= ϕk(~c, ~fk(~c)), we have
J |= t1 6≈ t2 and thus t1 ≈ t2 6∈ J . As a result, we have
t1 ≈ t2 6∈ I ∩ J and then I ∩ J |= t1 6≈ t2. Further-

more, I |= ϕ∧k (~c, ~fk(~c)), J |= ϕk(~c, ~fk(~c)) and ϕk(~c, ~fk(~c)) |=
ϕ∧k (~c, ~fk(~c)) implies I ∩ J |= ϕ∧k (~c, ~fk(~c)). Therefore, I ∩
J |= ϕk(~c, ~fk(~c)), which implies I∩J |= B1(~c), . . . , Bn(~c)→∨m
i=1 ϕi(~c,

~fi(~c)) - a contradiction.
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