
A hybrid formal verification method for novel
architectures

Trinity Term 2023

Word count: 8,075 words (computed with TeXcount)

Hou Chua

Honour School of Computer Science (Part C)

Abstract

There are a myriad of fascinating and extremely valuable ongoing developments in

formally verified systems, such as the CHERI project, and proof automation tools like

Islaris. However, new and exciting platforms and tools also means that tooling is not

yet mature and cannot be used for many important proof goals.

This project presents a flexible, hybrid approach for performing formal verification

on such novel architectures, in a way that makes use of the benefits tooling gives us

even as they are not yet ready, while having the potential for compositional and

incremental replacement with automated tools as they continue to be developed.

We do so by marrying the ease of proof automation and the flexibility of theorem

provers, providing an alternative semantics for Isla traces, and implementing them in

Isabelle together with proof methods and full proof automation for broad classes of

proofs.

With this method, proof goals for novel systems on new platforms can be achieved

now, allowing much more rapid development of formally verified systems alongside,

rather than after, the relevant proof automation tooling.

1

Contents

1 Introduction 3

2 Background 5

2.1 Context and aims . 5

2.1.1 CHERI and CheriOS . 5

2.1.2 seL4 . 6

2.1.3 Our aims . 6

2.2 Proof tooling . 7

3 Our approach 9

4 Determinizing Isla semantics 11

4.1 Isla syntax and semantics . 11

4.2 Deterministic Isla semantics . 14

4.2.1 Correctness . 17

4.3 Inter-trace semantics . 18

4.4 A note on special behaviours . 19

5 Constructing proofs 20

5.1 Isla traces in Isabelle . 20

5.2 Properties of Isla traces . 24

5.3 Constructing proofs about code . 26

6 Analysis 31

7 Conclusion and prospects 33

7.1 Future work . 33

2

Chapter 1. Introduction

In the modern world, it is difficult to overstate the importance of the correctness and

security of computers and the code that runs on them. With a vast array of systems critical

to society, daily life, physical safety, and more, simple mistakes can lead to disastrous and

far-reaching consequences [1]–[4].

Despite this, it is notoriously difficult to get both the design and implementation of

systems to be correct, especially with ever-increasing complexity of both hardware and

software [5], [6]. Two main methods are used to help create correct systems—testing and

verification. Testing is the easier of the two, but can only show the presence of bugs. On

the other hand, with formal verification, mathematical proofs can be written to show that

systems satisfy certain desired properties [4], [5].

However, formal verification is a costly and difficult process, requiring a large amount

of specialized expert work [7]. This has led to interest in systems comprising a small and

formally verified trusted computing base, which maintains security guarantees even with

the bulk of the system being comprised of untrusted components. A famous example is

the seL4 microkernel [8], [9], which has formally verified correctness guarantees that allow

users to piece together untrusted and unverified components without compromising basic

guarantees [10], [11].

Also notable is the Digital Security by Design (DSbD) initiative and the Capability

Hardware Enhanced RISC Instructions (CHERI) project [12], [13], which provides archi-

tecture extensions giving hardware-level memory protection and compartmentalization,

eliminating whole classes of memory safety bugs. This also depends on formal verification

to prove the correctness of these guarantees [14].

3

There are two primary approaches to performing such formal verification—one method

is theorem proving using proof assistants. This is the approach taken for seL4 using the

Isabelle proof assistant. This method requires huge amounts of work and care from spe-

cialized experts—the seL4 microkernel has code on the order of 10,000 SLOC (source lines

of code), with 480,000 SLOC (!) of Isabelle proofs and specifications, with an estimated

effort for the correctness proof of about 20 person-years [9].

The other approach is with full proof automation—an example is Isla and Islaris [15],

which uses hardware models [16] and symbolic execution to automate proofs on machine

code [17]. This method requires less work to prove properties of specific programs, but

requires development of these complex tools in the first place. Applying them to a new

platform, such as the myriad arising as a result of the CHERI project requires a significant

research effort.

Our approach is the “middle ground” between the two. To do so, we take the simplified

traces produced by Isla to its best effort, and fill in the gaps by allowing users to hand-

write semantics/proofs for what is not yet supported by Isla/Islaris. We can then take

advantage of existing automation while still being afforded the flexibility of hand-writing

proofs.

Not only does this approach provide additional flexibility on top of convenient au-

tomation, it also allows compositional replacement of components as the automated tools

are developed further and less hand-written stopgaps are required. In addition, it al-

lows chaining with hardware models that is much more difficult to accomplish with only

hand-written proofs.

4

Chapter 2. Background

2.1 Context and aims

We begin by examining the context within which this project was carried out—namely,

we look at CHERI, CheriOS and seL4.

2.1.1 CHERI and CheriOS

The CHERI project extends existing conventional architectures such as MIPS, RISC-V

and Armv8-A by means of instruction set extensions, introducing architectural capabil-

ities implemented at a hardware level [12]. This helps eliminate important classes of

memory bugs, while being a hybrid architecture, hence supporting incremental migration

of existing systems that would not be possible with only a pure capability architecture

[13]. This is supported with extensive ongoing work in formal verification, ranging from

correctness of hardware/instruction-set architecture (ISA) specifications, to correctness of

implementations and more [14], [18].

However, even with such capabilities, more work is still required to implement secure

functionality such as isolation and least privilege, due to architectural capabilities being

too coarse-grained. A notable solution presented to this comes in the form of the CheriOS

microkernel and nanokernel [19].

In the CheriOS approach [19], the microkernel is not considered part of the trusted

computing base, instead being treated as untrusted alongside services and userspace pro-

grams. The trusted computing base comprises only the underlying CHERI hardware and

a “security hypervisor” referred to as the nanokernel. The nanokernel is written as a set of

small assembly routines for CHERI MIPS and CHERI RISC-V (totalling approximately

5

3,300 SLOC) that implement higher level primitives for use with memory management,

capability signing and isolation. In doing so, a small amount of code can give isolation/-

correctness guarantees even when a (larger) operating system is unverified—for example,

the Reservation primitive for memory management guarantees privacy of allocated mem-

ory even with an untrusted allocator. However, correctness of the nanokernel is yet to be

formally verified.

This approach shows the value in incrementally providing higher-level guarantees.

Rather than proving correctness of an entire operating system at once, we can begin

with formally verified hardware and its guarantees, and use them as building blocks for

a formally verified nanokernel. The nanokernel’s guarantees can then be used to build

higher levels of abstraction with increasing levels of guarantees, and proofs can be chained

all the way down to the hardware level.

2.1.2 seL4

A different approach is taken by the seL4 microkernel. The entirety of the seL4 microkernel

is formally verified, with capabilities (distinct from CHERI capabilities) implemented as

a kernel level object in software, and manipulated with system calls [9]. The correctness

of the microkernel is proven by formal proofs first on the C implementation [8], and then

also at the binary level [20].

The isolation guarantees provided by seL4 capabilities and virtualization allow systems

to be built incrementally, including by gradual retrofitting of existing systems by isolating

components over time. A famous example is the Boeing ULB autonomous helicopter,

where components were pulled out of the trusted computing base in multiple steps [10].

2.1.3 Our aims

With these two examples, it is clear that there is great benefit in proving the correctness

of small, trusted layers of abstraction. By doing so, even large systems can benefit from

6

verification without having to directly perform verification at an impractical scale.

In this context, it is desirable to be able to verify the correctness of the CheriOS

nanokernel, or similar implementations that provide higher-level primitives that need to

be correct. Hence, this project aims to establish a proof method that can be applied to

such proofs, filling in the gap between existing tooling. With that in mind, we next look

at existing proof tooling that would be suitable for such verification tasks.

2.2 Proof tooling

Of great interest are the symbolic execution engine Isla [15], verification system Islaris

[17] and the Sail ISA definition language [16], [21]. The combination of these tools allows

automated verification of programs in the form of machine code, which is done against

formal hardware models in Sail.

Firstly, the Sail language is used to specify the semantics of ISAs, which has tooling to

produce emulators, run tests, perform symbolic evaluation, produce definitions for provers

and so on. Notably, it is used by Isla to perform symbolic execution by producing traces

from machine code, which are sequences of events like memory and register accesses. These

traces and their semantics are then used by Islaris to perform reasoning and verification

against a Coq spec [17].

This is much preferable compared to hand-writing ISA semantics, as typically such

hand-written semantics cover a small subset of the ISA with simplifications that are based

on human ideas of what instructions should do [17], [22], [23]. On the other hand, this

approach chains directly to the ISA specification, so there is no gap between the semantics

and hardware implementations (provided the implementation fulfills the specification, of

course).

Sail ISA specifications are, however, huge and unwieldy for direct use in formal verifica-

tion, which is where Isla comes in. By performing symbolic execution using the Sail model

7

to produce traces, which are then simplified automatically and used in Islaris, performing

verification using the ISA specification becomes practical.

At a higher level than writing proofs about instructions, there are tools such as Auto-

Corres that allow verification of C code [24]. However, as we wish to also be able to verify

programs like the CheriOS nanokernel written entirely in assembly, we cannot use such

tools oriented for higher-level languages.

Unfortunately, we also cannot use Isla and Islaris directly at present. This is because

Isla and Islaris currently support AArch64 and RISC-V, with ongoing work on CHERI

Morello, meaning it cannot yet be used for verifying CHERI MIPS or CHERI RISC-V

assembly.

8

Chapter 3. Our approach

In such a context, our new approach provides a hybrid method for constructing proofs to

formally verify programs that are written for platforms that are currently not yet (or not

yet fully) supported by Isla. This is done by combining Isla traces with the more flexible

proving approach of hand-written proofs using the Isabelle proof assistant.

An overview of the approach is given in figure 3.1. Beginning with the verification

target in the form of assembly instructions, these instructions are put through Isla to

produce Isla traces. However, since we are working on platforms not (fully) supported

by Isla, we write the traces for instructions that Isla cannot produce traces for by hand.

Although Isla traces generated by Isla are large and contain many assumptions/assertions

based on the hardware specification, we can include only as much detail as we need for

the proofs we are writing.

With the program now represented in Isla traces, these can then be represented natively

within the Isabelle proof assistant, which can then be combined with semantics defined in

Isabelle to write proofs about the program.

Of course, writing such traces by hand loses us the advantages we get from using Isla

Figure 3.1: Overview of our approach. Greyed boxes are the contributions of this project.

9

and Sail specifications compared to hand-writing ISA semantics, but the key point is that

these are merely temporary stopgaps. By writing these semantics as Isla traces, when

it becomes that Isla now supports the platform we are writing proofs on, we can then

replace these hand-written traces with Isla-generated ones based on the Sail specification,

with little to no change required in the Isabelle proofs. This allows us to write proofs

now and incrementally replace the stopgaps as and when possible thanks to further Isla

development.

In order to achieve this, we first give an alternative deterministic semantics derived

from the hugely non-deterministic Isla semantics with justifications for equivalence in

chapter 4.

These semantics are then implemented in Isabelle, and proof methods and automation

were developed for broad, common classes of proofs in chapter 5.

The full Isabelle theories for the implementation are provided in the appendix.

10

Chapter 4. Determinizing Isla semantics

4.1 Isla syntax and semantics

The Isla trace syntax used is given in figure 4.1 as presented in [17]. Traces correspond to

individual instructions—sequences between instructions are not represented by sequential

concatenation of traces, but rather the updating of the program counter (PC) register.

The simplest form of a trace is simply a sequence of events, concatenated by the ::

operator. These events effectively happen in sequence, and correspond to register/mem-

ory read/writes, declaration and definition of constants, and assertions/assumptions. The

events ReadReg(r , v) and WriteReg(r , v) correspond to reading/writing the value v from/to

the register r respectively. ReadMem(b, a, n) and WriteMem(a, b, n) correspond to read-

ing/writing the memory range from a to a + n to/from the value b. DeclareConst(x , τ)

simply declares the constant x to be of type τ , while DefineConst(x , e) gives the constant

x the value of the SMT expression e. Lastly, Assert(e) and Assume(e) simply assert that

the SMT expression e evaluates to the Boolean value true, and AssumeReg(r , v) asserts

that register r has value v .Islaris: Verification of Machine Code Against Authoritative ISA Semantics PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

𝑒 ::= v | not(𝑒) | bvadd(𝑒1, 𝑒2) | . . . (SMT-Expr)
v ::= 𝑏 | true | false | 𝑥 | . . . (Val)
𝑟 ::= 𝜌 | 𝜌.𝑓 (Reg)
𝜏 ::= BitVec(𝑛) | Boolean | . . . (Type)
𝑗 ::= ReadReg(𝑟,v) | WriteReg(𝑟,v) (Event)

| ReadMem(v𝑑 ,v𝑎, 𝑛) | WriteMem(v𝑎,v𝑑 , 𝑛)
| AssumeReg(𝑟,v) | DeclareConst(𝑥, 𝜏)
| DefineConst(𝑥, 𝑒) | Assert(𝑒) | Assume(𝑒)

𝑡 ::= [] | 𝑗 :: 𝑡 | Cases(𝑡1, . . . , 𝑡𝑛) (Trace)

Figure 4. Syntax of the Isla trace language (ITL).

is used. Isla can exploit this knowledge to simplify the trace
by adding constraints to the symbolic execution. Concretely,
the trace in Fig. 3 was generated with the constraints EL=2

and SP=1 (for code running at exception level 2 with multiple
stack pointers enabled). As a consequence, the trace directly
uses the stack pointer of exception level 2, SP_EL2, and the
reads of SP and EL on lines 4-5 have been simplified to specify
their concrete known values. Without these constraints, the
trace distinguishes five cases (via the mechanism described
in ğ2.4): one for SP=0, and one for each of the four exception
levels when SP=1. The assumptions used by Isla are recorded
in the trace via assume-reg on lines 2-3. These become proof
obligations during verification, so one has to prove that SP
and EL have their assumed values.

Isla trace language. The Sail ISA definition language is
designed to be as simple as possible while still supporting
readable definitions of full-scale ISAs, but it is still relatively
complex, with a rich type structure (including lightweight
dependent types for bitvector lengths) and complex control
flow (first-order functions, pattern matching, and loops). In
contrast, the Isla trace language, with syntax in Fig. 4 (as
adapted for Islaris, and typeset in the mathematical form we
use later), is simple: traces 𝑡 are trees of events 𝑗Ðregister
and memory accesses, augmented by declarations and defi-
nitions of SMT constants, and assertions, assumptions, and
a Cases() construct for branching (explained in ğ2.4). We
have already seen most of the trace language in Fig. 3. For ex-
ample, ReadReg(R0,v) corresponds to (read-reg |R0| nil v),
and DefineConst(𝑥, 𝑒) to (define-const x e). Events rely on
SMT-lib expressions 𝑒 , values v containing bitvectors 𝑏 and
booleans, register names 𝑟 , and value types 𝜏 .

2.2 Our Contribution: Islaris
After seeing how Isla can generate specialised traces for
single instructions, we now describe how we use that in
modular verification for machine code. ğ2.3 describes the
Islaris separation logic for reasoning about Isla traces; ğ2.4
shows how Islaris handles branching; ğ2.5 discusses how

complete functions are verified, with a simple memcpy exam-
ple; ğ2.6 explains how Islaris can reason equally well about
systems code, e.g., installing and calling an Armv8-A excep-
tion vector table; and ğ2.7 demonstrates that Islaris is not
specific to Armv8-A but can also be used for RISC-V.

2.3 Islaris Separation Logic
The core of Islaris is the Islaris separation logic for reasoning
about Isla traces. We present the logic using a Hoare double
{𝑃} 𝑡 , which asserts that the Isla trace 𝑡 is safe assuming
the precondition 𝑃 (technically, Islaris proves more than
safety; see ğ4.2). Hoare doubles are commonly used in Hoare
logics for assembly languages [13, 31], as the postconditions
of Hoare triples are difficult to interpret with assembly’s
unstructured indirect jumps.

We now explain how we verify the addition to the SP_EL2

register on lines 6-10 of Fig. 3Ðthe following implication,
where 𝑡𝑆𝑃 comprises those four Isla trace events:

{SP_EL2 ↦→𝑅 (𝑏 + 64)} 𝑡 ⇒ {SP_EL2 ↦→𝑅 𝑏} 𝑡𝑆𝑃 ++ 𝑡

Intuitively, assuming that SP_EL2 initially contains the 64-
bit bitvector 𝑏, we have to show that after those four trace
events, SP_EL2 contains 𝑏 + 64, where (+) is 64-bit bitvector
addition (observe how the precondition on the left of the
implication acts like a postcondition). Note that, similar to
Myreen and Gordon [46], the Islaris separation logic uses
a points-to predicate 𝑟 ↦→𝑅 v for asserting that register 𝑟
contains the value v. This is useful for dealing with the large
number of registers in the full Armv8-A model, as irrelevant
registers can easily be framed away.
To prove this implication, we first verify the read of the

SP_EL2 register in two steps. First, the declaration of the v38

variable on line 6 is handled by hoare-declare-const (Fig. 5),
which non-deterministically chooses a bitvector value v to
substitute for v38. This rule uses v ∈ 𝜏 to assert that the
value v has type 𝜏 (here, that v is a 64-bit bitvector). Then,
hoare-read-reg uses SP_EL2 ↦→𝑅 𝑏 to determine that v must
be equal to 𝑏, i.e., it provides v = 𝑏 as an assumption for the
following proof.
In contrast, in hoare-assume-reg, v = v ′ is an obligation.

This use of łassumež might seem counter-intuitive, but it
makes sense from the perspective of Isla: AssumeReg is an
assumption used by Isla’s symbolic execution. The same ap-
plies to the names of Assert and Assume discussed later.
The rest of the verification is straightforward: on line 8,

define-const is handled by hoare-define-const which com-
putes 𝑏 + 64 and, after some simplification, substitutes it for
v61. Finally, the write of this value to SP_EL2 is verified using
hoare-write-reg.

Islaris proof automation. Applying these proof steps
by hand quickly becomes quite tedious, especially for more
complex instructions with many events. Islaris thus provides

829

Figure 4.1: Isla trace language syntax, directly reproduced from figure 4 of [17].

11

Branching within a trace happens using the Cases(t1, ... , tn) construct. Execution non-

deterministically splits between each of the traces t1, ... , tn, but the events’ assertions

narrow down which branch is taken to only one. For example, a trace that would do t1 if

e was true and t2 otherwise would be represented as Cases(Assert(e) :: t1, Assert(¬e) :: t2).

As an example, a simplified trace of instruction add x1, x2, x3 would look like

DeclareConst(v1, BitVec64) :: DeclareConst(v2, BitVec64) :: DeclareConst(v3, BitVec64)

:: ReadReg(x2, v1) :: ReadReg(x3, v2) :: DefineConst(v4, v1 + v2)

:: WriteReg(x1, v4) :: ReadReg(PC, v3) :: DefineConst(v5, v3 + 64)

:: WriteReg(PC, v5)

which does the following in sequence: declares constants with names v1, v2, v3 of the type

of 64-bit bit vectors; reads the values of registers x2 and x3 into v1 and v2 respectively;

computes the (64-bit bit vector) sum into v4 and writes it to x1; reads the value of PC

into v3, increments it by 64 into v5, and writes it back to PC.

By reducing every instruction to this small set of events in the Isla trace syntax, it then

becomes far more practical to write semantics and hence proofs about these constructs

rather than directly for each and every instruction in huge ISAs.

The operational semantics as given in [17] are reproduced here in figure 4.2. The state

is represented by triple Σ = (R, I ,M), where R maps registers to values, I maps addresses

(64-bit bit vectors) to the traces of the corresponding instructions, and M maps addresses

to bytes of memory. Each map is finite and partial.

Note the explosively non-deterministic approach taken by these semantics—as an ex-

ample, the semantics for DeclareConst allows the constant to take every possible value of

the type, which is restricted by other events. In the example of add x1, x2, x3 given

above, the event DeclareConst(v1, BitVec64) would non-deterministically allow v1 to take

every possible 64-bit value, but ReadReg(x2, v1) makes it such that every value that does

12

Islaris: Verification of Machine Code Against Authoritative ISA Semantics PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

step-read-reg-eq
Σ[𝑟] = v

⟨ReadReg(𝑟,v) :: 𝑡, Σ⟩ −→⟨𝑡, Σ⟩

step-read-reg-neq
Σ[𝑟] ≠ v

⟨ReadReg(𝑟,v) :: 𝑡, Σ⟩ −→⊤
step-write-reg
⟨WriteReg(𝑟,v) :: 𝑡, Σ⟩ −→⟨𝑡, Σ[𝑟 ↦→ v]⟩

step-read-mem-eq
|𝑏 | = 𝑛 Σ[𝑎..𝑎+𝑛] = enc(𝑏)

⟨ReadMem(𝑏, 𝑎, 𝑛) :: 𝑡, Σ⟩ −→⟨𝑡, Σ⟩

step-read-mem-event
|𝑏 | = 𝑛 Σ[𝑎..𝑎+𝑛] = ⊥ 𝜅 = R(𝑎, 𝑏)

⟨ReadMem(𝑏, 𝑎, 𝑛) :: 𝑡, Σ⟩ 𝜅−→⟨𝑡, Σ⟩
step-read-mem-neq
|𝑏 | = 𝑛 Σ[𝑎..𝑎+𝑛] ≠ ⊥ Σ[𝑎..𝑎+𝑛] ≠ enc(𝑏)

⟨ReadMem(𝑏, 𝑎, 𝑛) :: 𝑡, Σ⟩ −→⊤

step-write-mem
|𝑏 | = 𝑛 Σ[𝑎..𝑎+𝑛] ≠ ⊥

⟨WriteMem(𝑎, 𝑏, 𝑛) :: 𝑡, Σ⟩ −→⟨𝑡, Σ[𝑎..𝑎+𝑛 ↦→ enc(𝑏)]⟩
step-write-mem-event
|𝑏 | = 𝑛 Σ[𝑎..𝑎+𝑛] = ⊥ 𝜅 = W(𝑎, 𝑏)

⟨WriteMem(𝑎, 𝑏, 𝑛) :: 𝑡, Σ⟩ 𝜅−→⟨𝑡, Σ⟩

step-declare-const
v ∈ 𝜏

⟨DeclareConst(𝑥, 𝜏) :: 𝑡, Σ⟩ −→⟨𝑡 [v/𝑥], Σ⟩
step-define-const

𝑒 ↓ v
⟨DefineConst(𝑥, 𝑒) :: 𝑡, Σ⟩ −→⟨𝑡 [v/𝑥], Σ⟩

step-assert-true
𝑒 ↓ true

⟨Assert(𝑒) :: 𝑡, Σ⟩ −→⟨𝑡, Σ⟩

step-assert-false
𝑒 ↓ false

⟨Assert(𝑒) :: 𝑡, Σ⟩ −→⊤
step-assume-true

𝑒 ↓ true

⟨Assume(𝑒) :: 𝑡, Σ⟩ −→⟨𝑡, Σ⟩

step-assume-reg-true
𝑅 [𝑟] = v

⟨AssumeReg(𝑟,v) :: 𝑡, Σ⟩ −→⟨𝑡, Σ⟩

step-cases
1 ≤ 𝑖 ≤ 𝑛

⟨Cases(𝑡1, . . . , 𝑡𝑛), Σ⟩ −→⟨𝑡𝑖 , Σ⟩
step-nil
Σ[PC] = 𝑎 Σ[𝑎] = 𝑡

⟨[], Σ⟩ −→⟨𝑡, Σ⟩

step-nil-end
Σ[PC] = 𝑎 Σ[𝑎] = ⊥ 𝜅 = E(𝑎)

⟨[], Σ⟩ 𝜅−→⊤

step-fail
No other rule reduces ⟨𝑡, Σ⟩

⟨𝑡, Σ⟩ −→⊥

Figure 10. Operational semantics of the Isla trace language.

Most reduction rules inspect and/or modify the machine
state Σ, which is a triple (𝑅, 𝐼, 𝑀) of finite partial maps.
𝑅 : Reg ⇀ Val 𝐼 : Addr ⇀ Trace 𝑀 : Addr ⇀ Byte

The register map 𝑅 associates registers with their value (e.g.,
a bitvector), the instruction map 𝐼 associates addresses (i.e.,
64-bit bitvectors) to Isla traces (i.e., the trace for the instruc-
tion stored at the address), and the memory map 𝑀 asso-
ciates addresses to bytes (i.e., 8-bit bitvectors). Assuming
Σ = (𝑅, 𝐼, 𝑀), we write Σ[𝑟] for 𝑅 [𝑟] and Σ[𝑟 ↦→ v] for
(𝑅 [𝑟 ↦→ v], 𝐼 , 𝑀), and similarly for 𝐼 and𝑀 .

Non-determinism. The operational semantics of ITL are
non-standard, because ITL is based on SMT constraints,
not designed as a programming language. One therefore
first introduces new (symbolic) variables via declare-const,
which are then restricted by later constructs like read-reg

or assert, as seen e.g., in Fig. 3 (in a more standard
programming language, the read would return a value).
To model this, the operational semantics of ITL makes
heavy use of non-determinism: the operational semantics of
DeclareConst(𝑥, 𝜏) :: 𝑡 (given by step-declare-const) non-
deterministically picks a value v of type 𝜏 and substitute it
for 𝑥 in 𝑡 . This non-determinism is then restricted by events
later in the trace. For example, the operational semantics
of ReadReg(𝑟,v) compares v with the value stored in 𝑟 , and

only allows further execution if the two values coincide
(step-read-reg-eq). Otherwise, execution terminates in the
state⊤ (step-read-reg-neq), and thus these executions do not
have to be considered further during verification. Overall,
this leads to the proof rule hoare-read-reg in Fig. 5. Note
that the use of ⊤ instead of ⊥ is crucial here, as otherwise
it would be trivial to reach ⊥ by picking a wrong value in
step-declare-const.

Non-determinism is also used for branching, as explained
in ğ2.4. Traces of instructions with branching (e.g., condi-
tional jumps) typically contain a Cases(𝑡1, 𝑡2) that splits the
trace into multiple subtraces. The operational semantics non-
deterministically picks one of these subtraces (step-cases),
but this non-determinism is then restricted by Assert events
on each subtrace. An Assert(𝑒) ensures that one only has
to consider this subtrace if 𝑒 evaluates to true (step-assert-
true, using a standard big-step semantics of SMT expressions
𝑒 ↓ v). Otherwise, execution terminates with ⊤, and this sub-
trace can be ignored (step-assert-false). So, intuitively, an
Assert can be seen as an assertion proven by Isla during sym-
bolic execution and assumed by verification.

The dual of these assertions are assumptions used by Isla
to simplify the trace. These are encoded using Assume and
AssumeReg, which behave like Assert and ReadReg, except

833

Figure 4.2: Original operational semantics of Isla trace language, directly reproduced from
figure 10 of [17].

13

not correspond to the value of register x2 leads to the failure state ⊤. This form of

non-deterministic branching and restriction is also what allows the Cases construct to

work.

The reason the semantics are given as such is because the Isla trace language is effec-

tively a set of SMT constraints, which works well with the proof methodology used by

Isla and Islaris. However, this presents unnecessary challenges in writing human-written

proofs in Isabelle, as sets of possible executions have to be generated and discarded as

they reach failure, as opposed to being able to reason about a deterministic execution in

a step-wise manner.

4.2 Deterministic Isla semantics

This is why we use an alternate deterministic semantics for the Isla trace language, pre-

sented in this section. These deterministic semantics are much easier to reason about as

we only need to worry about the state evolving in a single way at each step.

The reason we can do so is because generated Isla traces have some additional proper-

ties that restrict the kinds of traces that we see, meaning that not all syntactically possible

traces need to be considered.

Firstly, type correctness is always preserved. For example, a constant will never be de-

clared as a type in DeclareConst(x , τ1) before being used as a different type in ReadReg(x , v)

where v ∈ τ2 ̸= τ1. This means that we can completely ignore DeclareConst events in

traces.

In addition, expressions are always “fully evaluated” before usage. What this means is

that an expression that has yet to be calculated, with uninstantiated constants in it, will

have all such constants be substituted by events preceding it. For example, consider the

trace

ReadReg(PC, v1) :: DefineConst(v2, v1 + 64)

14

In this trace, the expression v1+64 has the uninstantiated constant v1, but when the prior

event is evaluated, the value of the PC will be substituted into v1 and the expression can

be fully evaluated before we evaluate the DefineConst. What this means is that we can

evaluate events from beginning to end, substituting constants as they are instantiated,

without having to worry about later events affecting the values of constants in earlier

events—traces such as the following never occur:

DefineConst(v2, v1 + 64) :: ReadReg(PC, v1)

Generated Isla traces also have that Cases constructs will never have multiple branches

that evaluate without failure. The restriction of branches by events such as Assume,

AssumeReg and so on will always ensure that only a single branch will remain viable.

Thanks to this, instead of non-deterministically choosing which branch to evaluate, we

can simply evaluate each branch in turn and choose the single branch that does not lead to

the failure state ⊤. In most cases, branches can be pruned very early in the trace as each

branch’s first event is typically an Assume, which helps make such computation relatively

inexpensive.

Additionally, valid traces will never make undefined references. If a valid trace contains

a read from a register, it is guaranteed that the register is defined in the machine state Σ.

Likewise, the PC will never be undefined.

From here on, we refer to traces that fulfill these properties as “valid”.

With these properties in mind, the alternate deterministic semantics are given in

figure 4.3. These semantics are a big-step semantics → for the entirety of a trace (a single

instruction), and evolve the tuple ⟨t, Σ⟩ where t is the trace and Σ is the state to the

resulting state Σ′.

Non-branching events are simply evaluated from left to right, with the rest of the trace

being updated as constants are instantiated and substituted, and the state Σ is updated

15

Σ[r] = v ⟨t[v/n], Σ⟩ → Σ′

⟨ReadReg(r , n) :: t, Σ⟩ → Σ′
Σ[r] = ⊤

⟨ReadReg(r , n) :: t, Σ⟩ → ⊤

⟨t, Σ[r 7→ v]⟩ → Σ′

⟨WriteReg(r , v) :: t, Σ⟩ → Σ′
⟨t[v/x], Σ⟩ → Σ′

⟨DefineConst(n, v) :: t, Σ⟩ → Σ′

⟨t, Σ⟩ → Σ′

⟨Assert(true) :: t, Σ⟩ → Σ′ ⟨Assert(false) :: t, Σ⟩ → ⊤

Σ[r] = v ⟨t, Σ⟩ → Σ′

⟨AssumeReg(r , v) :: t, Σ⟩ → Σ′
(Σ[r] ̸= v) ∨ (Σ[r] = ⊤)

⟨AssumeReg(r , v) :: t, Σ⟩ → ⊤

⟨ti , Σ⟩ → Σ′ ∀j ̸= i . ⟨tj , Σ⟩ → ⊤
⟨Cases(t1, ... , tn), Σ⟩ → Σ′

∄i . previous condition holds
⟨Cases(t1, ... , tn), Σ⟩ → ⊤ ⟨[], Σ⟩ → Σ

Figure 4.3: Alternative, big-step deterministic intra-trace semantics for Isla trace language.
Σ[·] = ⊤ is used to represent a lookup failing, and ⟨t, Σ⟩ → ⊤ represents termination in
failure while ⟨t, Σ⟩ → Σ′ represents successful termination in state Σ′.

as writes are performed that modify registers in R or memory in M.

Reads from registers and memory are done by performing the relevant lookups on R or

M, and then substituting the found value for the constant in the rest of the trace. Since

these maps are partial, if the lookups fail, the evaluation of the trace also fails ⟨t, Σ⟩ → ⊤.

However, any valid trace—state combination should not lead to this failure, as the state

should have instantiated all registers/memory used by the trace.

Writes are performed by simply updating Σ with the relevant value.

We note that the semantics of memory events have been excluded, as within the scope

of this project, we represented any memory accesses in terms of register accesses.

Defines are handled by substituting all later occurrences of the constant with the given

value, much like how reads are handled.

Asserts are handled by evaluating the given value and proceeding if it evaluates to true,

terminating in failure otherwise. AssumeReg in particular does the same, but reading from

R as ReadReg does, failing if the lookup fails or if the lookup returns false. This class of

16

events should only fail within a Cases construct if the trace is valid.

Lastly, the branching Cases construct simply takes the semantics of the first branch

in the list that does not fail—remember that our additional properties above say that we

will have exactly one such branch.

4.2.1 Correctness

In this section, we will reason about the correctness of the deterministic semantics by jus-

tifying correspondence between the original semantics in 4.2 and our alternative semantics

in 4.3 in the case of “valid” traces.

Firstly, for ReadReg, due to valid traces having type correctness and never having

invalid references, there is never any worry for ReadReg having multiple possible values

it can take. Σ will always contain the value for the desired register, so the rule going to

⊤ is really only useful for detecting an invalid trace. Due to this, our rules for ReadReg

correspond to step-read-reg-eq, and step-read-reg-neq need never be considered.

Our alternate semantics for WriteReg are exactly the same as step-write-reg, except

written as big-step instead of small-step.

The original semantics’ step-declare-const only performs restriction of constant

names to specific types, but due to type correctness of valid traces, they become noops

and can be excluded from our syntax and semantics—when parsing Isla traces into Isabelle,

we can simply remove all occurrences of DeclareConst.

The same justification for ReadReg also applies to AssumeReg—we need not worry

about multiple possible values nor an undefined register in Σ.

With that assumption in place, we can see that our semantics for AssumeReg are

fundamentally the same as Assert. These constructs only make sense in valid traces when

they are in a Cases construct—if they are outside of one, they must evaluate to true or

the trace becomes invalid. Hence, for the case that they are outside a Cases construct,

17

our presented rule of moving to ⊤ when they are false is sufficient by saying the trace is

invalid.

Finally, we look at the Cases construct. In the original semantics, it simply non-

deterministically branches to each of its branches. For valid traces, however, we have that

one and only one branch will not lead to ⊤, hence our given semantics correspond well.

In the implementation, we evaluate each branch in turn until we find one that terminates

successfully, which is sufficient due to, once again, the fact that one and only one branch

will do so for valid traces.

The remaining rule ⟨[], Σ⟩ is trivial, and the corresponding rules in the original se-

mantics are covered in the next section.

4.3 Inter-trace semantics

The above has been concerned with intra-trace semantics, but to reason about programs

with > 1 instruction, we also need to consider inter-trace semantics. As shown in figure 4.2,

the inter-trace semantics are relatively simple—when a trace is evaluated until it is empty,

meaning we have reached ⟨[], Σ⟩, the instruction located at the address pointed to by the

PC is loaded as the next trace.

In the original semantics given in [17], the rule step-nil-end defines what happens

when there is no instruction located at the PC. In our interpretation, we consider this

as “successful termination”, to better suit our purposes of writing proofs about small

subroutines. In other words, we interpret a program by running the intra-trace semantics

on the instruction located at the address given by PC, then continue with the trace located

at the address given by PC after the current trace has evaluated, and repeat until we reach

a state where the PC points at no instruction.

18

4.4 A note on special behaviours

There are some registers that behave differently from other registers on specific architec-

tures. For example, on RISC-V, the x0 register is constantly zero, so writes to it should

not change its value from 0.

There are no mechanisms in the Isla trace semantics, or our alternative semantics, to

handle such special behaviour—rather, there is no need for such mechanisms. The reason

is that this kind of behaviour is captured in the generation of traces rather than the

execution of traces. All manners of special behaviours like the above are written in the

Sail hardware model, and Isla will generate traces accordingly. In the example of writing

to x0, Isla will simply not generate an event like WriteReg(x0, v) thanks to the Sail model.

This is where we can see the strength of writing for Isla instead of hand-writing ISA

semantics—we only need to consider the semantics of Isla traces and everything else is

covered by trace generation using the Sail model. Of course, when hand-writing Isla traces,

we will need to hand-write such considerations ourselves.

19

Chapter 5. Constructing proofs

With the syntax and semantics of Isla defined in the previous section, we now need to cast

them into the Isabelle proof assistant [25] in order to construct proofs. Isabelle allows us

to define sum and product datatypes similar to in ML, as well as total functions, inductive

definitions and proof methods. It supports proofs in the form of “apply-scripts”, where

sequences of proof methods/tactics can be specified to be applied, as well as structured

proofs similar to human proofs, with steps and justifications for each step. Lemmas and

theorems can also be defined and reused.

In this section, excerpts from the Isabelle theory files have been typeset where they are

illustrative, and the appendix contains the theory files in their entirety. These excerpts

and the appendix are typeset using Isabelle’s document preparation system, so although

they appear to be in pretty LATEX maths notation, they correspond exactly to the actual

code. For example, the code

datatype trace =
EmptyTrace

| Seq event trace (infixr ":::" 100)
| Cases "trace list"

is typeset as

datatype trace =

EmptyTrace
| Seq event trace (infixr ":::" 100)
| Cases "trace list"

5.1 Isla traces in Isabelle

We begin by examining how traces are represented in Isabelle.

20

An event is represented by the following datatype.

datatype event =

ReadReg reg name — name must be of type bv64 val.
| WriteReg reg "bv64 val"
| ReadMem name "bv64 val" nat — Value to read to, source address, size to read.
| WriteMem "bv64 val" "bv64 val" nat — Value to write, destination address, size to write.
| Assert "bool val" — Subsumes Assume events.
| AssumeReg reg "bv64 val"
| DefineConstBV64 name "bv64 val"
| DefineConstBool name "bool val"
| DefineConstBoolFromBV64 name "bv64 val"

As an aside, note the distinction between Isabelle syntax where we have oblique iden-

tifiers with space-separated, curried parameters such as ReadReg r n, as opposed to math-

ematical, “human” syntax as in the previous sections, like ReadReg(r , n).

Notably, we assume that all registers are 64-bit bit vectors, and have different variants

of DefineConst for defining constants that are bit vectors and Booleans. We also add a

variant for converting a bit vector to a Boolean. These variants are necessary due to our

usage of strongly-typed values.

We also roll Assert and Assume into a single Assert event, as they behave the same in

our deterministic semantics.

Within events, values are defined with the following datatype.

datatype ′a val =
Val ′a — Instantiated.

| Name name
| Monop " ′a ⇒ ′a" " ′a val"
| Binop " ′a ⇒ ′a ⇒ ′a" " ′a val" " ′a val"

A value is strongly-typed, and can either be a full-instantiated, shallowly-embedded value

(e.g. Val 3), or an expression that is either a single name of a constant (e.g. v1) or a

shallowly-embedded operator and recursive value operands.

21

With events defined, we represent traces as below. Sequential composition of events ::

and the empty trace [] are represented by ::: and EmptyTrace, while the Cases construct

contains a list of traces t1, ... , tn.

datatype trace =

EmptyTrace
| Seq event trace (infixr ":::" 100)
| Cases "trace list"

Next, we define the machine state Σ = (R, I ,M) in Isabelle using the in-built Isabelle

map datatype HOL.HOL.Map.map [26] for each of R, I and M.

With the Isabelle representation of traces and state done, we next define the intra-

trace semantics. We do so by defining the total function step, of which an excerpt is given

below.

function step :: "trace ∗ state ⇒ state option" where
"step (ReadReg r n ::: t, (stR, stI , stM))

= (case stR r of Some x ⇒ step (substValueBV64 n x t, (stR, stI , stM)) | - ⇒ None)"
| "step (WriteReg r v ::: t, (stR, stI , stM))

= step (t, (stR(r 7→ v), stI , stM))"
| "step (DefineConstBV64 n v ::: t, st)

= step (substValueBV64 n v t, st)"
| "step (Assert (Val True) ::: t, st) = step (t, st)"
| "step (Assert (Val False) ::: t, st) = None"
| "step (AssumeReg r (Val v) ::: t, (stR, stI , stM))

= (case stR r of
Some (Val v ′) ⇒ if v = v ′ then step (t, (stR, stI , stM)) else None

| - ⇒ None)"
| "step (Cases (c#cs), st)

= (case step (c , st) of None ⇒ step (Cases cs, st) | res ⇒ res)"
| "step (Cases [], st) = None"
| "step (EmptyTrace, st) = Some st"
| . . .
by pat-completeness auto — Proves totality of this function (other than termination).

Note that the function takes a tuple of a trace and a state, and optionally returns a

state. It returns a state if it successfully executes the entirety of the trace, and returns

22

None if it fails for any of the reasons described in the previous section.

There are helper functions substValueBool and substValueBV64 that perform the sub-

stitution t[v/x] for the correct types. They do so by stepping through the remainder of the

trace, replacing all occurrences of the constant x (technically, the name of the constant)

with the value v .

Recalling the property of valid traces that expressions are always “fully evaluated”

before usage, we defer evaluation of expressions to these helper functions—when they

substitute a constant name for a value, if that expression subtree is now fully instantiated,

it recursively instantiates up the expression tree until it meets an uninstantiated value.

For example, when substituting the value 10 for v3 in v4 + (v3 × 3), the helper function

does (v4 + (v3 × 3))[10/v3] = v4 + (10× 3) = v4 + 30.

The effect of this is that when step reaches an event that uses a value, such as De-

fineConst, if the trace is valid then the expression will always be fully evaluated and in the

form Val v. We can see that in the cases of step where it is not fully evaluated, None is

returned and evaluation fails due to the trace being invalid.

Lastly, we define the inter-state semantics. We begin by lifting the machine state triple

to the following datatype

datatype multitraceState = Running state | Err | Ok state

where successful termination and failure are represented as Ok and Err respectively. Suc-

cessful termination is reached when a trace successfully terminates with the PC pointing

at no further instruction. Failure is reached when the PC is undefined, or if a trace

fails—neither will happen with valid traces.

We then define the (inductive) “evolve” relation that goes from multitraceState to

multitraceState, represented by the operator −−−−→. It is a right-unique relation due to

execution being deterministic, and we are mainly interested in its reflexive transitive

23

closure written as −−−−→∗. We first define −−−−→ as evolve as follows:

fun runInstr :: "state ⇒ multitraceState" where
"runInstr (stR, stI , stM) = (case stR ′′PC ′′ of None ⇒ Err |

Some (Val pc) ⇒ (case stI pc of None ⇒ Ok (stR, stI , stM) |
Some t ⇒ (case step (t, (stR, stI , stM)) of None ⇒ Err |

Some st ′ ⇒ Running st ′)))"
inductive evolve :: "multitraceState ⇒ multitraceState ⇒ bool" (infix "−−−−→" 55) where

"runInstr st = mtst =⇒ Running st −−−−→ mtst"

To define −−−−→∗, we then define −−−−→|n| as n steps of −−−−→, then declare −−−−→∗ as

syntactic sugar as follows:

abbreviation evolveStar :: "multitraceState ⇒ multitraceState ⇒ bool"
(infix "−−−−→∗" 55) where

"mtst −−−−→∗ mtst ′ ≡ ∃ n. mtst −−−−→|n| mtst ′"

Implementation details of all of the above and more can be found in the full theory

files in the appendix.

5.2 Properties of Isla traces

Due to Isabelle’s logic being based on HOL, which is a logic of total functions, when

defining this function we have to prove totality and termination. For most functions, such

as the helper value substitution functions, Isabelle can do this automatically, but due to

the step function’s more involved recursion, we need to provide a termination proof.

To do so, we define a measure on traces

measureTrace([]) = 0

measureTrace(e :: t) = 1 + measureTrace(t)

measureTrace(Cases(t1, ... , tn)) = 1 + n +
n∑

i=1

measureTrace(ti)

and can prove that the helper functions do not increase the measure of the trace, while

every recursive call to step strictly decreases the measure—hence step is total and always

24

terminates. This also leads to the nice, sensible result that our semantics for single traces

always terminates.

The details of the termination proof can be located in the appendix.

In addition, we also prove many other useful lemmas and theorems about the inter-

trace execution semantics. Notably, we prove that −−−−→∗ is reflexive and transitive, and

is deterministic in reaching a terminating state (if it does); i.e. if it reaches successful

termination or failure, there is no other terminating state it can reach. The former is a

sanity check for our definition in terms of −−−−→|n|, showing that we have indeed defined

the reflexive transitive closure.

The latter is especially useful when constructing proofs. Due to the inductive definition

of −−−−→∗, it is not a total function like step was—and it shouldn’t be; there are clearly

programs that do not terminate, and −−−−→∗ should loop infinitely for those. With the

fact that it is deterministic in reaching a terminating state, we know that if we can prove

that a program reaches successful termination, that is the only termination result it can

possibly reach.

Phrased differently in a proof-oriented way, this means that if wish to prove properties

about the state a program reaches upon termination, finding a terminating state that

it can reach and proving that this existential witness fulfills the properties is sufficient.

(This is true because −−−−→ is right-unique.) This lemma is cast and proven in Isabelle as

lemma evolveStarOkWitnessEnough:
"(∃ st ′. mtst −−−−→∗ Ok st ′ ∧ P(st ′)) =⇒ (mtst −−−−→∗ Ok st ′ −→ P(st ′))"

using evolveStarDetermOk by blast

Details of proofs, as well as the remaining proven lemmas can be found in the appendix.

These lemmas can be invoked in proofs as necessary.

25

5.3 Constructing proofs about code

We are now ready to see concrete proofs about traces generated from code. Firstly, we

look at the simplified trace for the instruction add x1, x1, x2 which places the sum of

registers x1 and x2 in x1.

abbreviation addAABTrace :: trace where
"addAABTrace ≡

ReadReg ′′x1 ′′ 1
::: ReadReg ′′x2 ′′ 2
::: DefineConstBV64 3 (Binop (+) (Name 1) (Name 2))
::: ReadReg ′′PC ′′ 4
::: DefineConstBV64 5 (Binop (+) (Name 4) (Val 64))
::: WriteReg ′′x1 ′′ (Name 3)
::: WriteReg ′′PC ′′ (Name 5)
::: EmptyTrace"

Since step is a total function, we can use Isabelle’s value command to evaluate what

this trace does on a simple state.

value "step (addAABTrace, (Map.empty
(′′x1 ′′ 7→ Val x1
, ′′x2 ′′ 7→ Val x2
, ′′PC ′′ 7→ Val pc
), Map.empty , Map.empty))"

which gives us the value

Some (λu. if u = ′′PC ′′ then Some (Val (pc + 64)) else if u = ′′x1 ′′ then Some (Val (x1 +

x2)) else if u = ′′PC ′′ then Some (Val pc) else if u = ′′x2 ′′ then Some (Val x2) else if u =
′′x1 ′′ then Some (Val x1) else None, Map.empty , Map.empty)

Note that none of the registers are initialized to concrete values, but are variables in

Isabelle—this shows us that symbolic execution of traces works as expected. We also see

that x1’s value is set to x1+ x2 as expected.

More interestingly, we can write a theorem statement that says: given a machine state

26

where registers x1, x2 and PC are defined, stepping through the trace for add x1, x1, x2

will always result in a state where x1 is set to x1+x2. Isabelle can prove this automatically

using the auto method.

theorem
"[[stR ′′x1 ′′ = Some (Val x1); stR ′′x2 ′′ = Some (Val x2); stR ′′PC ′′ = Some (Val pc)
; step (addAABTrace, (stR, stI , stM)) = Some (stR ′, stI ′, stM ′)

]] =⇒ stR ′ ′′x1 ′′ = Some (Val (x1 + x2))" by auto

Next, we examine the same single instruction, but now using the inter-trace semantics

−−−−→∗. We can write a theorem statement saying: given a machine state where the same

registers are defined, the PC is set to 64, the instruction at address 64 is add x1, x1, x2,

and there is no instruction at address 128, if the machine state reaches a terminating state

successfully, that terminating state will have that x1 is set to x1+ x2 (henceforth referred

to as property Q).

theorem
"stR ′′x1 ′′ = Some (Val x1) ∧ stR ′′x2 ′′ = Some (Val x2) ∧ stR ′′PC ′′ = Some (Val 64)

∧ stI 64 = Some addAABTrace ∧ stI 128 = None
=⇒ Running (stR, stI , stM) −−−−→∗ Ok st ′

=⇒ (fst st ′) ′′x1 ′′ = Some (Val (x1 + x2))"
(is "?assms =⇒ ?mtst −−−−→∗ Ok ?st ′ =⇒ ?Q(?st ′)")

This proof is a bit more involved as we need to explicitly appeal to the determinism

of −−−−→∗ in reaching successful termination.

Since Isabelle’s default automated methods do not know that expanding it with exis-

tential quantification is the correct way to use determinism to construct the proof, we use

the structured Isar proof functionality to explicitly tell Isabelle the steps we wish to take.

Using pattern matching, we first prove the lemma that there exists a successful ter-

mination state that is reached, and that that state fulfills Q.

27

proof −
let "?P(st ′)" = "?mtst −−−−→∗ Ok st ′"
have "?assms =⇒ ∃ st ′. ?P(st ′) ∧ ?Q(st ′)"
by (rule exI , auto, (rule evolveStarStepLeft, rule evolve.intros, auto)+)

Then, appealing to determinism, with the lemma we proved earlier from the previous

section, evolveStarOkWitnessEnough, we can prove that for any successful termination state

that can be reached, that state fulfills predicate Q. We can then finally prove the original

theorem statement using the blast method, which is a capable first-order logic reasoning

method—just what we need.

then have "?assms =⇒ ∀ st ′. ?P(st ′) −→ ?Q(st ′)" using evolveStarDetermOk by blast
then show "?assms =⇒ ?P(?st ′) =⇒ ?Q(?st ′)" by blast

qed

We now move to a multiple instruction program, corresponding to

128: add x1, x1, x2
192: mov x1, x2
256: add x1, x1, x2
320:

We want to prove that after successful termination, x1 is set to 2 × x1 + 2 × x2 and

x2 is set to x1+ x2. This theorem’s proof can be completed in the exact same way as the

previous theorem’s, so we present the theorem statement but leave the proof text to the

appendix—thanks to pattern matching, “the exact same way” is no exaggeration.

theorem
"stR ′′x1 ′′ = Some (Val x1) ∧ stR ′′x2 ′′ = Some (Val x2) ∧ stR ′′PC ′′ = Some (Val 128)

∧ stI 128 = Some addAABTrace ∧ stI 192 = Some movABTrace
∧ stI 256 = Some addAABTrace ∧ stI 320 = None

=⇒ Running (stR, stI , stM) −−−−→∗ Ok st ′

=⇒ (fst st ′) ′′x1 ′′ = Some (Val (2 ∗ x1 + 2 ∗ x2))
∧ (fst st ′) ′′x2 ′′ = Some (Val (x1 + x2))"

28

We begin to see a pattern that statements of the form

assms =⇒ Running mtst −−−−→∗ Ok st ′ =⇒ Q(st ′)

can be proved using this same strategy. This form is extremely useful—it encapsulates

theorem statements that say “given some assumptions, if the program terminates, it ends

up in a state that fulfills some conditions Q”.

Refactoring the structured Isar proof as an apply script by reversing the proof process

and nudging the solver gently in the right direction, we obtain a proof automation method

as given by

method step-evolve = (rule evolveStarStepLeft, rule evolve.intros, auto)
method prove-exists = (rule exI , auto, step-evolve+)

method proof-automation =

(unfold atomize-imp, rule impI , rule evolveStarOkWitnessEnough, prove-exists)

which unfolds the second meta implication =⇒ into logical implication −→, uses determin-

ism to convert the goal into an existential statement, then steps through −−−−→∗repeatedly.

We can test this proof method on the following program that squares x1 in place

assuming x2 and x3 are zeroed.

addi x2, x1, 0
addi x3, x1, -1

loop:
beq x0, x3, end
add x1, x1, x2
addi x3, x3, -1
beq x0, x0, loop

end:

Indeed, the proof automation method we derived works perfectly:

29

theorem
"x1 = Val 3
=⇒ Running (initState x1) −−−−→∗ Ok st ′

=⇒ (fst st ′) ′′x1 ′′ = Some (Val 9)"
by proof-automation

We can expect that a great number of such proofs can be completed using just the

proof-automation method, but having cast it in Isabelle together with a large selection of

helpful auxiliary lemmas means that more complicated proofs can be constructed flexibly,

while using the proof methods as sub-components.

All the definitions and proofs in this section can be found in full in the appendix.

30

Chapter 6. Analysis

This approach has proved to be useful on small, “provable” procedures—if a hand-written

proof was possible for the program in the first place, it can be done now using this method

while utilizing Isabelle to make sure the proofs are correct. In addition, instead of leaving

instruction semantics up to humans, we can rely on Isla and Sail where possible, and

hand-write traces as and when necessary.

This stopgap hand-writing can be incrementally and compositionally phased out as

Isla and Sail model development begin adding support for instructions/architectures that

our proofs use, with minimal change to the proofs’ overall structure.

This combination of Isla-generated and hand-written traces allows easy expansion to

unsupported instructions and platforms, which is especially important given the benefits

that small, incremental formal verification on top of CHERI architectures can give us, and

the relative immaturity of tooling for new CHERI architectures compared to conventional,

decades-old architectures like x86. For completely unsupported platforms, using Isla to

generate traces for analogous instructions in a supported platform can also be a good

starting point for hand-writing traces.

There are also disadvantages to this method—it is not fully automated and requires

manual work. When proofs need to be written in forms not supported by the proof

automation method, it once again becomes necessary to write Isabelle proofs by hand,

which has a steep learning curve. Even when proof automation works, hand-writing Isla

traces is still a significant task, which does not scale that well to larger procedures. At

the same time, this effort is unlikely to be significantly higher than hand-writing ISA

semantics, which also loses the advantages of chaining with Isla and Sail models.

31

Another disadvantage is the fact that we have used an alternate Isla semantics. We

reasoned about the correctness of the alternate semantics by appealing to their equivalence

to the original semantics under the properties of “valid” traces, but these are hand-written

paper proofs that are not formally done with a proof assistant or equivalent.

Despite these disadvantages, this approach is still valuable for bridging the gap between

proof automation and manual proofs for small programs on new architectures, which the

author believes is of significant value, especially in the CHERI scene where incremental

guarantees are extremely useful and new platforms are aplenty.

32

Chapter 7. Conclusion and prospects

In summary, given the practical usefulness of formally verifying incrementally higher-level

guarantees on top of platforms like CHERI, as well as the relative immaturity of proof

tooling on these new platforms, this project has presented a valuable middle ground by

adding flexibility, alternate semantics, and proof automation, enabling proofs to be written

about critical programs that can be chained with tooling as it matures.

7.1 Future work

Firstly, there are opportunities for automation to be added to the proof process. The

translation from Isla traces to their Isabelle embeddings are currently done by hand, even

for those that are generated by the Isla tool—there is potential for scripts to automate

the parsing of these traces, and perhaps even parsing of Isla hardware configuration files

to initialize machine states.

It would also be extremely useful for the proofs of correctness of the alternate semantics

to be cast in a proof assistant to be machine-checked, as it would greatly increase the

confidence in the correctness of proofs written using the alternate semantics. This would

require embedding the original semantics in Isabelle, writing a predicate on validity of

traces, and then proving equivalence under that predicate.

Now that the proof methodology and automation has been completed, it would defi-

nitely be interesting for future work to be done in applying it to verification of the CheriOS

nanokernel, or other such small assembly programs for which correctness is critical. The

semantics for memory, and assumptions like size of registers and semantics of bit vector

arithmetic can be easily modified as required for these applications.

33

References

[1] D. Price, “Pentium FDIV flaw-lessons learned,” IEEE Micro, vol. 15, no. 2, pp. 86–
88, Apr. 1995, issn: 02721732. doi: 10.1109/40.372360. [Online]. Available: http:
//ieeexplore.ieee.org/document/372360/ (visited on 04/29/2023).

[2] N. Leveson and C. Turner, “An investigation of the Therac-25 accidents,” Com-
puter, vol. 26, no. 7, pp. 18–41, Jul. 1993, issn: 0018-9162. doi: 10.1109/MC.1993.
274940. [Online]. Available: http://ieeexplore.ieee.org/document/274940/ (visited
on 04/29/2023).

[3] G. Le Lann, “An analysis of the Ariane 5 flight 501 failure-a system engineering
perspective,” in Proceedings International Conference and Workshop on Engi-
neering of Computer-Based Systems, Monterey, CA, USA: IEEE Computer. Soc.
Press, 1997, pp. 339–346, isbn: 978-0-8186-7889-9. doi: 10.1109/ECBS.1997.581900.
[Online]. Available: http : / / ieeexplore . ieee . org / document / 581900/ (visited on
04/29/2023).

[4] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, Mass: The
MIT Press, 2008, 975 pp., isbn: 978-0-262-02649-9.

[5] V. D’Silva, D. Kroening, and G. Weissenbacher, “A Survey of Automated Techniques
for Formal Software Verification,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1165–1178, Jul. 2008, issn:
0278-0070. doi: 10.1109/TCAD.2008.923410. [Online]. Available: http://ieeexplore.
ieee.org/document/4544862/ (visited on 04/29/2023).

[6] C. Kern and M. R. Greenstreet, “Formal verification in hardware design: A survey,”
ACM Transactions on Design Automation of Electronic Systems, vol. 4, no. 2,
pp. 123–193, Apr. 1999, issn: 1084-4309, 1557-7309. doi: 10.1145/307988.307989.
[Online]. Available: https://dl .acm.org/doi/10.1145/307988.307989 (visited on
04/29/2023).

[7] H. Amjad, “Combining model checking and theorem proving,” University of Cam-
bridge, UCAM-CL-TR-601, Sep. 2004.

[8] G. Klein, K. Elphinstone, G. Heiser, et al., “seL4: Formal verification of an OS
kernel,” in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, Big Sky Montana USA: ACM, Oct. 11, 2009, pp. 207–220,
isbn: 978-1-60558-752-3. doi: 10.1145/1629575.1629596. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1629575.1629596 (visited on 11/04/2022).

34

https://doi.org/10.1109/40.372360
http://ieeexplore.ieee.org/document/372360/
http://ieeexplore.ieee.org/document/372360/
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/MC.1993.274940
http://ieeexplore.ieee.org/document/274940/
https://doi.org/10.1109/ECBS.1997.581900
http://ieeexplore.ieee.org/document/581900/
https://doi.org/10.1109/TCAD.2008.923410
http://ieeexplore.ieee.org/document/4544862/
http://ieeexplore.ieee.org/document/4544862/
https://doi.org/10.1145/307988.307989
https://dl.acm.org/doi/10.1145/307988.307989
https://doi.org/10.1145/1629575.1629596
https://dl.acm.org/doi/10.1145/1629575.1629596
https://dl.acm.org/doi/10.1145/1629575.1629596

[9] G. Klein, J. Andronick, K. Elphinstone, et al., “Comprehensive formal verification
of an OS microkernel,” ACM Transactions on Computer Systems, vol. 32, no. 1,
pp. 1–70, Feb. 2014, issn: 0734-2071, 1557-7333. doi: 10.1145/2560537. [Online].
Available: https://dl.acm.org/doi/10.1145/2560537 (visited on 11/04/2022).

[10] D. Cofer, A. Gacek, J. Backes, et al., “A Formal Approach to Constructing Secure
Air Vehicle Software,” Computer, vol. 51, no. 11, pp. 14–23, Nov. 2018, issn: 0018-
9162, 1558-0814. doi: 10 . 1109/MC.2018 . 2876051. [Online]. Available: https : / /
ieeexplore.ieee.org/document/8625938/ (visited on 11/12/2022).

[11] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “CAmkES: A component model for secure
microkernel-based embedded systems,” Journal of Systems and Software, vol. 80,
no. 5, pp. 687–699, May 2007, issn: 01641212. doi: 10.1016/j.jss.2006.08.039. [On-
line]. Available: https://linkinghub.elsevier.com/retrieve/pii/S016412120600224X
(visited on 11/12/2022).

[12] J. Woodruff, R. N. Watson, D. Chisnall, et al., “The CHERI capability model:
Revisiting RISC in an age of risk,” ACM SIGARCH Computer Architecture News,
vol. 42, no. 3, pp. 457–468, Oct. 16, 2014, issn: 0163-5964. doi: 10.1145/2678373.
2665740. [Online]. Available: https://dl.acm.org/doi/10.1145/2678373.2665740
(visited on 10/10/2022).

[13] R. N. Watson, J. Woodruff, P. G. Neumann, et al., “CHERI: A Hybrid Capability-
System Architecture for Scalable Software Compartmentalization,” in 2015 IEEE
Symposium on Security and Privacy, San Jose, CA: IEEE, May 2015, pp. 20–
37, isbn: 978-1-4673-6949-7. doi: 10 .1109/SP.2015.9. [Online]. Available: https :
//ieeexplore.ieee.org/document/7163016/ (visited on 10/10/2022).

[14] K. Nienhuis, A. Joannou, T. Bauereiss, et al., “Rigorous engineering for hardware
security: Formal modelling and proof in the CHERI design and implementation
process,” in 2020 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA: IEEE, May 2020, pp. 1003–1020, isbn: 978-1-72813-497-0. doi: 10.1109/
SP40000.2020.00055. [Online]. Available: https://ieeexplore.ieee.org/document/
9152777/ (visited on 10/10/2022).

[15] A. Armstrong, B. Campbell, B. Simner, C. Pulte, and P. Sewell, “Isla: Integrating
Full-Scale ISA Semantics and Axiomatic Concurrency Models,” in Computer Aided
Verification, A. Silva and K. R. M. Leino, Eds., vol. 12759, Cham: Springer Inter-
national Publishing, 2021, pp. 303–316, isbn: 978-3-030-81684-1 978-3-030-81685-8.
doi: 10.1007/978-3-030-81685-8_14. [Online]. Available: https://link.springer.com/
10.1007/978-3-030-81685-8_14 (visited on 04/25/2023).

[16] A. Armstrong, T. Bauereiss, B. Campbell, et al., “ISA semantics for ARMv8-a,
RISC-v, and CHERI-MIPS,” Proceedings of the ACM on Programming Lan-
guages, vol. 3, pp. 1–31, POPL Jan. 2, 2019, issn: 2475-1421. doi: 10 . 1145 /
3290384. [Online]. Available: https ://dl .acm.org/doi/10 .1145/3290384 (visited
on 05/29/2023).

35

https://doi.org/10.1145/2560537
https://dl.acm.org/doi/10.1145/2560537
https://doi.org/10.1109/MC.2018.2876051
https://ieeexplore.ieee.org/document/8625938/
https://ieeexplore.ieee.org/document/8625938/
https://doi.org/10.1016/j.jss.2006.08.039
https://linkinghub.elsevier.com/retrieve/pii/S016412120600224X
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1145/2678373.2665740
https://dl.acm.org/doi/10.1145/2678373.2665740
https://doi.org/10.1109/SP.2015.9
https://ieeexplore.ieee.org/document/7163016/
https://ieeexplore.ieee.org/document/7163016/
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1109/SP40000.2020.00055
https://ieeexplore.ieee.org/document/9152777/
https://ieeexplore.ieee.org/document/9152777/
https://doi.org/10.1007/978-3-030-81685-8_14
https://link.springer.com/10.1007/978-3-030-81685-8_14
https://link.springer.com/10.1007/978-3-030-81685-8_14
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://dl.acm.org/doi/10.1145/3290384

[17] M. Sammler, A. Hammond, R. Lepigre, et al., “Islaris: Verification of machine code
against authoritative ISA semantics,” in Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementa-
tion, San Diego CA USA: ACM, Jun. 9, 2022, pp. 825–840, isbn: 978-1-4503-9265-5.
doi: 10.1145/3519939.3523434. [Online]. Available: https://dl.acm.org/doi/10.
1145/3519939.3523434 (visited on 01/02/2023).

[18] T. Bauereiss, B. Campbell, T. Sewell, et al., “Verified Security for the Morello
Capability-enhanced Prototype Arm Architecture,” in Programming Languages
and Systems, I. Sergey, Ed., vol. 13240, Cham: Springer International Publishing,
2022, pp. 174–203, isbn: 978-3-030-99335-1 978-3-030-99336-8. doi: 10.1007/978-3-
030-99336-8_7. [Online]. Available: https://link.springer.com/10.1007/978-3-030-
99336-8_7 (visited on 05/02/2023).

[19] L. Esswood, “CheriOS: Designing an untrusted single-address-space capability op-
erating system utilising capability hardware and a minimal hypervisor,” University
of Cambridge, Jul. 2020.

[20] T. A. L. Sewell, M. O. Myreen, and G. Klein, “Translation validation for a verified
OS kernel,” ACM SIGPLAN Notices, vol. 48, no. 6, pp. 471–482, Jun. 23, 2013,
issn: 0362-1340, 1558-1160. doi: 10 . 1145 / 2499370 . 2462183. [Online]. Available:
https://dl.acm.org/doi/10.1145/2499370.2462183 (visited on 05/25/2023).

[21] K. E. Gray, G. Kerneis, D. Mulligan, C. Pulte, S. Sarkar, and P. Sewell, “An inte-
grated concurrency and core-ISA architectural envelope definition, and test oracle,
for IBM POWER multiprocessors,” in Proceedings of the 48th International Sym-
posium on Microarchitecture, Waikiki Hawaii: ACM, Dec. 5, 2015, pp. 635–646,
isbn: 978-1-4503-4034-2. doi: 10.1145/2830772.2830775. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2830772.2830775 (visited on 05/29/2023).

[22] S. Flur, K. E. Gray, C. Pulte, et al., “Modelling the ARMv8 architecture, op-
erationally: Concurrency and ISA,” in Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, St.
Petersburg FL USA: ACM, Jan. 11, 2016, pp. 608–621, isbn: 978-1-4503-3549-2. doi:
10.1145/2837614.2837615. [Online]. Available: https://dl.acm.org/doi/10.1145/
2837614.2837615 (visited on 05/24/2023).

[23] A. Fox and M. O. Myreen, “A Trustworthy Monadic Formalization of the ARMv7
Instruction Set Architecture,” in Interactive Theorem Proving, M. Kaufmann and
L. C. Paulson, Eds., red. by D. Hutchison, T. Kanade, J. Kittler, et al., vol. 6172,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 243–258, isbn: 978-3-642-
14051-8 978-3-642-14052-5. doi: 10.1007/978-3-642-14052-5_18. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-14052-5_18 (visited on 05/29/2023).

[24] D. Greenaway, J. Andronick, and G. Klein, “Bridging the Gap: Automatic Verified
Abstraction of C,” in Interactive Theorem Proving, L. Beringer and A. Felty, Eds.,
red. by D. Hutchison, T. Kanade, J. Kittler, et al., vol. 7406, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 99–115, isbn: 978-3-642-32346-1 978-3-642-

36

https://doi.org/10.1145/3519939.3523434
https://dl.acm.org/doi/10.1145/3519939.3523434
https://dl.acm.org/doi/10.1145/3519939.3523434
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.1007/978-3-030-99336-8_7
https://link.springer.com/10.1007/978-3-030-99336-8_7
https://link.springer.com/10.1007/978-3-030-99336-8_7
https://doi.org/10.1145/2499370.2462183
https://dl.acm.org/doi/10.1145/2499370.2462183
https://doi.org/10.1145/2830772.2830775
https://dl.acm.org/doi/10.1145/2830772.2830775
https://dl.acm.org/doi/10.1145/2830772.2830775
https://doi.org/10.1145/2837614.2837615
https://dl.acm.org/doi/10.1145/2837614.2837615
https://dl.acm.org/doi/10.1145/2837614.2837615
https://doi.org/10.1007/978-3-642-14052-5_18
http://link.springer.com/10.1007/978-3-642-14052-5_18

32347-8. doi: 10 .1007/978- 3 - 642- 32347- 8_8. [Online]. Available: http :// link .
springer.com/10.1007/978-3-642-32347-8_8 (visited on 01/19/2023).

[25] T. Nipkow, M. Wenzel, and L. C. Paulson, Eds., Isabelle/HOL (Lecture Notes in
Computer Science), red. by G. Goos, J. Hartmanis, and J. Van Leeuwen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, vol. 2283, isbn: 978-3-540-43376-7
978-3-540-45949-1. doi: 10.1007/3-540-45949-9. [Online]. Available: http://link.
springer.com/10.1007/3-540-45949-9 (visited on 12/15/2022).

[26] T. Nipkow. “Theory Map.” (1997–2003), [Online]. Available: https://isabelle.in.tum.
de/library/HOL/HOL/Map.html (visited on 12/15/2022).

37

https://doi.org/10.1007/978-3-642-32347-8_8
http://link.springer.com/10.1007/978-3-642-32347-8_8
http://link.springer.com/10.1007/978-3-642-32347-8_8
https://doi.org/10.1007/3-540-45949-9
http://link.springer.com/10.1007/3-540-45949-9
http://link.springer.com/10.1007/3-540-45949-9
https://isabelle.in.tum.de/library/HOL/HOL/Map.html
https://isabelle.in.tum.de/library/HOL/HOL/Map.html

Appendix A. Full Isabelle theories

In this Appendix, the document preparation feature of Isabelle is used to typeset the

entirety of the Isabelle theories written for the project.

The contents of the theories correspond exactly to the code in the theory files, and

the order of sections in this appendix are based on the order that these theories must be

loaded and evaluated. The ROOT file that defines the entire session is as follows:

session proj4isabelle = HOL +

options [document = pdf, document_output = "output"]

sessions

"HOL-Eisbach"

theories [document = false]

"HOL-Eisbach.Eisbach"

theories

Syntax

State

Semantics

Multitrace

Automation

Examples

document_files

"root.tex"

A note on word count. Although the appendix appears to be full of natural language,
they are comments within program text, and hence have not been included in the word
count. The author considered the entirety of the appendix, other than this preamble, to
be part of the allowed 40 additional pages of material.

38

A.1 Syntax definitions in Syntax.thy

theory Syntax
imports Main

begin

In this theory, we define the syntax of Isla traces trace and events event, with relevant

helper datatypes. There are a number of assumptions/approximations made as well that

are outlined in this theory that can be edited as necessary for the proof goals at the time.

Registers are referred to by their names as strings. For example, register x1 would be

represented by the string ′′x1 ′′, and the program counter (PC) as ′′PC ′′.

type-alias reg = string

Next, we define values/constants that are strongly typed. The “type” of the value is a

type parameter to the datatype, so constants that are 64-bit bit vectors would be bv64 val

while those that are Booleans would be bool val.

Names for values (constants) are represented just by the corresponding number, for ex-

ample, v38 is represented simply by 38::nat.

type-alias name = nat

Values themselves can already be instantiated with a shallowly-embedded value in Val

′a, or can be an expression to be calculated. In the latter case, they are either a single

named constant Name name, or an expression tree with non-leaf nodes as unary operators

(Monop op operand) or binary operators (Binop op operand1 operand2). The operators op

are shallowly embedded as Isabelle operators, and operands are values.

datatype ′a val =
Val ′a — Instantiated.
| Name name
| Monop " ′a ⇒ ′a" " ′a val"
| Binop " ′a ⇒ ′a ⇒ ′a" " ′a val" " ′a val"

For this project, we only have to consider values that are either booleans, or bit vectors

39

of 64-bit length. We represent 64-bit bitvectors simply as ints for now, but this type can

be swapped out as necessary for proofs involving e.g. signed/unsigned arithmetic.

type-alias bv64 = int

Next is the type of Isla trace events. We make the assumption here that all registers take

values of type bv64. Notably, due to our use of strongly-typed values as opposed to the

original syntax, we have to distinguish between DefineConst events of differing types, with

DefineConstBV64, DefineConstBool and DefineConstBoolFromBV64. The last case takes a

bv64 val and puts it in a name of type bool val, which is necessary for marshalling from

comparisons to Boolean cases.

datatype event =

ReadReg reg name — name must be of type bv64 val.
| WriteReg reg "bv64 val"
| ReadMem name "bv64 val" nat — Value to read to, source address, size to read.
|WriteMem "bv64 val" "bv64 val" nat — Value to write, destination address, size to write.
| Assert "bool val" — Subsumes Assume events.
| AssumeReg reg "bv64 val"
| DefineConstBV64 name "bv64 val"
| DefineConstBool name "bool val"
| DefineConstBoolFromBV64 name "bv64 val"

Lastly, we define the type of traces. Sequencing is done in the usual functional list way,

with the empty list EmptyTrace and cons operator Seq, with syntactic sugar :::. The

syntactic sugar allows us to write e :: t in mathematical notation as e ::: t in Isabelle. We

use a triple colon instead of the original double colon as :: is used in Isabelle as the “type

of” operator.

The Cases(t1, ... , tn) construct is represented with Cases, which takes t1, ... , tn as an Isabelle

list. With “valid” traces, only one branch should successfully terminate.

datatype trace =

EmptyTrace
| Seq event trace (infixr ":::" 100)
| Cases "trace list"

end

40

A.2 Machine state definition in State.thy

theory State
imports Main Syntax

begin

This short theory simply defines the types of machine states we use. States are of type

state, which is a tuple Σ = (R, I ,M):

• R, a register state mapping register names to their corresponding values,

• I , an instruction store mapping addresses to traces of instructions,

• and M, a memory state mapping addresses to bytes.

Each of the three maps are implemented as maps, which are simply partial functions with

the type synonym given by (reproduced from inbuilt theory HOL.Map)

type-synonym (′a, ′b) "map" = " ′a ⇒ ′b option" (infixr "⇀" 0)

The definitions of the three maps are respectively as follows:

type-synonym regState = "(reg , bv64 val) map"
type-synonym instrs = "(bv64, trace) map"

type-synonym byte = char — Helper type synonym.
type-synonym memState = "(bv64 val , byte) map"

which finally gives us the machine state type definition:

type-synonym state = "regState ∗ instrs ∗ memState"

end

41

A.3 Deterministic semantics in Semantics.thy

theory Semantics
imports Main Syntax State

begin

This theory is concerned with defining the deterministic semantics for Isla traces that we

introduced in the main text. We first begin with defining several helper functions before

the main step function which corresponds to the actual big-step intra-trace semantics.

A.3.1 Value substitution

This subsection defines helper functions for evaluating value substitution for the rest of

the trace; namely, it defines t[v/x] for value v , constant name x and trace t.

This function substValue n v e performs the substitution e[v/n] on value e. It evaluates

subexpressions as and when all operands are fully instantiated, so that in valid traces,

values are always fully instantiated before they are reached in the trace evaluation. It can

do so for any type of value.

fun substValue :: "name ⇒ ′a val ⇒ ′a val ⇒ ′a val" where
"substValue n v (Name n ′) = (if n = n ′ then v else Name n ′)"
| "substValue n v (Val v ′) = Val v ′"
| "substValue n v (Monop op v1) = (case substValue n v v1 of

Val v1 ′⇒ Val (op v1 ′) | v1 ′⇒ Monop op v1 ′)"
| "substValue n v (Binop op v1 v2) = (case (substValue n v v1, substValue n v v2) of

(Val v1 ′, Val v2 ′) ⇒ Val (op v1 ′ v2 ′) | (v1 ′, v2 ′) ⇒ Binop op v1 ′ v2 ′)"

This function substValueBV64 n v t performs the substitution t[v/n] on trace t, where the

value in question is a 64-bit bit vector :: bv64.

fun substValueBV64 :: "name ⇒ bv64 val ⇒ trace ⇒ trace" where
"substValueBV64 - - EmptyTrace = EmptyTrace"
| "substValueBV64 n v (WriteReg r v ′ ::: t) =

WriteReg r (substValue n v v ′) ::: substValueBV64 n v t"
| "substValueBV64 n v (ReadMem n ′ v ′ s ::: t) =

ReadMem n ′ (substValue n v v ′) s ::: substValueBV64 n v t"

42

| "substValueBV64 n v (WriteMem v1 v2 s ::: t) =
WriteMem (substValue n v v1) (substValue n v v2) s ::: substValueBV64 n v t"

| "substValueBV64 n v (AssumeReg r v ′ ::: t) =
AssumeReg r (substValue n v v ′) ::: substValueBV64 n v t"

| "substValueBV64 n v (DefineConstBV64 n ′ v ′ ::: t) =
DefineConstBV64 n ′ (substValue n v v ′) ::: substValueBV64 n v t"

| "substValueBV64 n v (DefineConstBoolFromBV64 n ′ v ′ ::: t) =
DefineConstBoolFromBV64 n ′ (substValue n v v ′) ::: substValueBV64 n v t"

| "substValueBV64 n v (e ::: t) = e ::: substValueBV64 n v t"
| "substValueBV64 n v (Cases cs) = Cases (map (substValueBV64 n v) cs)"

This next function performs the same, but for Booleans instead.

fun substValueBool :: "name ⇒ bool val ⇒ trace ⇒ trace" where
"substValueBool - - EmptyTrace = EmptyTrace"
| "substValueBool n v (Assert v ′ ::: t) =

Assert (substValue n v v ′) ::: substValueBool n v t"
| "substValueBool n v (DefineConstBool n ′ v ′ ::: t) =

DefineConstBool n ′ (substValue n v v ′) ::: substValueBool n v t"
| "substValueBool n v (e ::: t) = e ::: substValueBool n v t"
| "substValueBool n v (Cases cs) = Cases (map (substValueBool n v) cs)"

A.3.2 Big-step semantics

Now, we define the big-step deterministic semantics for Isla traces, which takes a tuple

of a trace and a machine state (t, st) and “executes” the entirety of t. If it successfully

terminates, it returns the resulting state Some st ′, and returns None if the execution failed.

We assume that all traces being processed are “valid”, meaning that Cases will only have

exactly one trace that terminates successfully, and that all types are consistent, and that

all values are instantiated by prior substitutions before they are used.

Thanks to the assumption on Cases, we can evaluate it by simply evaluating each branch

until we find one that terminates successfully, then use that branch’s result.

43

function step :: "trace ∗ state ⇒ state option" where
"step (ReadReg r n ::: t, (stR, stI, stM))

= (case stR r of Some x ⇒ step (substValueBV64 n x t, (stR, stI, stM)) | - ⇒ None)"
| "step (WriteReg r v ::: t, (stR, stI, stM))

= step (t, (stR(r 7→ v), stI, stM))"
| "step (DefineConstBV64 n v ::: t, st)

= step (substValueBV64 n v t, st)"
| "step (DefineConstBool n v ::: t, st)

= step (substValueBool n v t, st)"
| "step (DefineConstBoolFromBV64 n (Val bv) ::: t, st)

= step (substValueBool n (Val (if bv = 0 then True else False)) t, st)"
| "step (DefineConstBoolFromBV64 n (Name n ′) ::: t, st) = None"
| "step (DefineConstBoolFromBV64 n (Monop op v) ::: t, st) = None"
| "step (DefineConstBoolFromBV64 n (Binop op v1 v2) ::: t, st) = None"
| "step (Assert (Val True) ::: t, st) = step (t, st)"
| "step (Assert (Val False) ::: t, st) = None"
| "step (Assert (Name n) ::: t, st) = None"
| "step (Assert (Monop op v) ::: t, st) = None"
| "step (Assert (Binop op v1 v2) ::: t, st) = None"
| "step (AssumeReg r (Val v) ::: t, (stR, stI, stM))

= (case stR r of
Some (Val v ′) ⇒ if v = v ′ then step (t, (stR, stI, stM)) else None
| - ⇒ None)"

| "step (AssumeReg r (Name n) ::: t, st) = None"
| "step (AssumeReg r (Monop op v) ::: t, st) = None"
| "step (AssumeReg r (Binop op v1 v2) ::: t, st) = None"
| "step (Cases (c#cs), st)

= (case step (c, st) of None ⇒ step (Cases cs, st) | res ⇒ res)"
| "step (Cases [], st) = None"
| "step (EmptyTrace, st) = Some st"

— Memory semantics not yet implemented.
| "step (ReadMem - - - ::: -, -) = None"
| "step (WriteMem - - - ::: -, -) = None"

by pat-completeness auto — Proves totality of this function (other than termination).

A.3.3 Totality and termination of semantics

Finally, in this section, we prove that step is a total terminating function. We begin by

defining a measure on trace sizes, that should be strictly decreased with each recursive

call of step.

44

fun measureTrace :: "trace ⇒ nat" where
"measureTrace EmptyTrace = 0"
| "measureTrace (e ::: t) = 1 + measureTrace t"
| "measureTrace (Cases []) = 1"
| "measureTrace (Cases (c#cs)) = 1 + measureTrace c + measureTrace (Cases cs)"

We then prove the following lemmas that say that the functions substValueBool and sub-

stValueBV64 do not change the measure of the trace when performing the substitution.

In other words, we prove that measureTrace(t[v/n]) = measureTrace(t).

lemma substMeasureBoolEqualCons [simp]:
"measureTrace (substValueBool n v (e ::: t))

= 1 + measureTrace (substValueBool n v t)"
by (induction e) auto

lemma substMeasureBoolEqualCases [simp]:
"(
∧

c. c ∈ set cs −→ measureTrace (substValueBool n v c) = measureTrace c)
=⇒ measureTrace (Cases (map (substValueBool n v) cs)) = measureTrace (Cases cs)"

by (induction cs) auto

lemma substMeasureBoolEqual [simp]:
"measureTrace (substValueBool n v t) = measureTrace t"

by induction auto

lemma substMeasureBV64EqualCons [simp]:
"measureTrace (substValueBV64 n v (e ::: t))

= 1 + measureTrace (substValueBV64 n v t)"
by (induction e) auto

lemma substMeasureBV64EqualCases [simp]:
"(
∧

c. c ∈ set cs −→ measureTrace (substValueBV64 n v c) = measureTrace c)
=⇒ measureTrace (Cases (map (substValueBV64 n v) cs)) = measureTrace (Cases cs)"

by (induction cs) auto

lemma substMeasureBV64Equal [simp]: "measureTrace (substValueBV64 n v t) = measure-
Trace t"

by induction auto

45

With these lemmas proved, we can finally use measureTrace as the measure function to

prove termination of step.

termination step
by (relation "measure (λ(t, -). measureTrace t)") auto

end

46

A.4 Inter-trace semantics in Multitrace.thy

theory Multitrace
imports Main Semantics "HOL−Eisbach.Eisbach"

begin

This theory is now concerned with defining the inter-trace semantics to allow proofs about

programs with more than 1 instruction.

A.4.1 Defining −−−→

We begin by lifting the machine state datatype state to an extended state datatype that

supports failure (Err) and successful termination (Ok state). Successful termination is

defined as finishing a trace with the PC pointing a no further trace. The Running st case

is the final case where execution is still ongoing.

datatype multitraceState = Running state | Err | Ok state

We can then define the total function that takes a state and runs the trace pointed to

by the PC, returning a multitraceState with several cases. If the PC points at no further

trace, it successfully terminates with Ok. If the PC is undefined, it fails with Err. If the

trace execution by step fails, it also fails with Err. Lastly, if step succeeds and returns a

new state st ′, it returns Running st ′.

fun runInstr :: "state ⇒ multitraceState" where
"runInstr (stR, stI, stM) = (case stR ′′PC ′′ of None ⇒ Err |

Some (Val pc) ⇒ (case stI pc of None ⇒ Ok (stR, stI, stM) |
Some t ⇒ (case step (t, (stR, stI, stM)) of None ⇒ Err |

Some st ′⇒ Running st ′)))"
declare runInstr .cases[simp]

The inter-trace semantics are then given inductively as evolve, or −−−−→, which takes

multitraceStates that are Running to the next multitraceState. This is an inductive relation

and not a total function as it does not take Ok or Err to any other state.

inductive evolve :: "multitraceState ⇒ multitraceState ⇒ bool" (infix "−−−−→" 55) where

47

"runInstr st = mtst =⇒ Running st −−−−→ mtst"

We can then easily prove that −−−−→ is deterministic. In other words, it is a right-unique

relation.

theorem evolveDeterm: "[[mtst −−−−→ mtst ′; mtst −−−−→ mtst ′′]] =⇒ mtst ′ = mtst ′′"
using evolve.simps by fastforce

A.4.2 Multiple steps of −−−→

We can then define −−−−→|n| as performing −−−−→ n times.

inductive evolveN :: "multitraceState ⇒ nat ⇒ multitraceState ⇒ bool"
("- −−−−→|-| -" [100, 55, 100] 55) where

evolveN0Def :"mtst −−−−→|0| mtst"
| evolveNStepRight:"[[mtst −−−−→|n| mtst ′; mtst ′ −−−−→ st ′′]] =⇒ mtst −−−−→|n+1| st ′′"

The following trivial lemmas can then be shown where n = 0 or 1.

lemma evolveN0 [simp]: "mtst −−−−→|0| mtst ′←→ mtst = mtst ′"
using evolveN.cases evolveN.intros(1) by auto

lemma evolveN1 [simp]: "mtst −−−−→|1| mtst ′←→ mtst −−−−→ mtst ′"
using evolveN.cases evolveN.intros(2) by fastforce

Since our inductive definition was given by performing each additional −−−−→ on the right,

we now show that it’s equivalent to if we defined it as additional −−−−→s on the left.

lemma evolveNStepLeft [intro]:
"[[mtst −−−−→ mtst ′; mtst ′ −−−−→|n| st ′′]] =⇒ mtst −−−−→|n+1| st ′′"

proof (induction n arbitrary : mtst mtst ′ st ′′)

case 0 then show ?case using evolveN0 evolveN1 by auto
next

case (Suc n)
obtain mtst3 where "mtst ′ −−−−→|n| mtst3 ∧ mtst3 −−−−→ st ′′"

by (metis Suc .prems(2) Suc-neq-Zero add-diff-cancel-right ′ diff-Suc-1 evolveN.cases)
moreover hence "mtst −−−−→|n+1| mtst3"

using Suc.IH Suc .prems(1) by blast
then show ?case using Suc-eq-plus1 calculation evolveN.intros(2) by presburger

qed

This also means that we can unpack −−−−→s from the left of −−−−→|n| when n > 0.

48

lemma evolveNUnstepLeft:
"mtst −−−−→|Suc n| mtst ′ =⇒ ∃ st ′′. (mtst −−−−→ st ′′ ∧ st ′′ −−−−→|n| mtst ′)"

proof (induction n arbitrary : mtst mtst ′)

case 0 then show ?case using evolveN0 evolveN1 by auto
next

case (Suc n)
then show ?case by (metis Suc-eq-plus1 Zero-not-Suc add-right-imp-eq evolveN.simps)

qed

Multiple −−−−→|n|s can also be chained together, or split apart.

lemma evolveNChain:
"[[mtst −−−−→|m| mtst ′; mtst ′ −−−−→|n| st ′′]] =⇒ mtst −−−−→|m+n| st ′′"

proof (induction n arbitrary : m mtst mtst ′ st ′′)

case 0
then have "mtst ′ = st ′′" by simp
then show ?case using "0.prems" by force

next
case (Suc n)
obtain mtst3 where "mtst ′ −−−−→ mtst3"

using Suc.prems(2) evolveNUnstepLeft by blast
then show ?case

by (metis Suc .IH Suc.prems(1) Suc.prems(2) Suc-eq-plus1 add-Suc-shift
evolveNStepRight evolveNUnstepLeft)

qed

lemma evolveNSplit:
"mtst −−−−→|n| mtst ′ =⇒ ∀m ≤ n. ∃ st ′′. mtst −−−−→|m| st ′′ ∧ st ′′ −−−−→|n−m| mtst ′"

proof (induction n arbitrary : mtst mtst ′)

case 0 then show ?case by simp
next

case (Suc n)
show ?case (is "∀m. ?P(m)")
proof

fix m
show "?P(m)"
proof (induction m)

case 0 then show ?case by (simp add : Suc.prems)
next

case (Suc m) then show ?case
by (metis Suc-diff-le Suc-eq-plus1 Suc-le-mono diff-Suc-Suc

evolveNStepRight evolveNUnstepLeft le-SucI)
qed

qed

49

qed

For a fixed n, we can show that −−−−→|n| is deterministic/right-unique just like −−−−→ is.

lemma evolveNDeterm: "[[mtst −−−−→|n| mtst ′; mtst −−−−→|n| mtst ′′]] =⇒ mtst ′ = mtst ′′"
apply (induction n arbitrary : mtst mtst ′ mtst ′′)

apply simp
apply (metis evolveDeterm evolveNUnstepLeft)
done

A.4.3 Reflexive transitive closure −−−→∗

We can then define the reflexive transitive closure −−−−→∗ in terms of −−−−→|n|.

abbreviation evolveStar :: "multitraceState ⇒ multitraceState ⇒ bool"
(infix "−−−−→∗" 55) where

"mtst −−−−→∗ mtst ′ ≡ ∃ n. mtst −−−−→|n| mtst ′"

For terminated multitraceStates, the only multitraceState they can go to is the very same

state.

lemma noEvolveOk: "Ok st −−−−→∗ mtst =⇒ mtst = Ok st"
by (metis evolve.cases evolveN.cases evolveN1 evolveNSplit le-add2 multitraceState.simps(6))

lemma noEvolveErr : "Err −−−−→∗ mtst =⇒ mtst = Err"
by (metis evolve.cases evolveN.cases evolveN1 evolveNSplit le-add2 multitraceState.simps(4))

Now, we show that if a multitraceState evolves into successful termination, this is necessar-

ily done with a fixed number of steps, and the terminating state it reaches is deterministic.

lemma evolveNFixedOk: "[[mtst −−−−→|m| Ok st; mtst −−−−→|n| Ok st ′]] =⇒ m = n ∧ st
= st ′"
proof(rule conjI)

assume assms: "mtst −−−−→|m| Ok st"
"mtst −−−−→|n| Ok st ′"

show m-eq-n: "m = n"
proof (rule ccontr)

assume contrAssm: "m 6= n"
then show False
proof cases

assume lt: "m < n"
then obtain mtst ′′ where mtst ′′: "mtst −−−−→|m| mtst ′′ ∧ mtst ′′ −−−−→|n−m| Ok st ′"

50

using evolveNSplit assms(2) by fastforce
then have "mtst ′′ = Ok st" using assms(1) evolveNDeterm by blast
then have "¬(mtst ′′ −−−−→|n−m| Ok st ′)"

by (metis lt diff-is-0-eq evolve.cases evolveN.cases linorder-not-less
multitraceState.simps(6) noEvolveOk)

then show ?thesis using mtst ′′ by blast
next

assume "¬(m < n)"
then have gt: "m > n" using contrAssm by auto
then obtain mtst ′′ where mtst ′′: "mtst −−−−→|n| mtst ′′ ∧ mtst ′′ −−−−→|m−n| Ok st"

using evolveNSplit assms(1) by fastforce
then have "mtst ′′ = Ok st ′" using assms(2) evolveNDeterm by blast
then have "¬(mtst ′′ −−−−→|m−n| Ok st)"

by (metis gt diff-is-0-eq evolve.cases evolveN.cases linorder-not-less
multitraceState.simps(5) noEvolveOk)

then show ?thesis using mtst ′′ by blast
qed

qed
show "st = st ′" using assms m-eq-n evolveNDeterm by blast

qed

We can then show that −−−−→∗ is deterministic/right-unique as long as it reaches a ter-

minating state.

lemma evolveStarDetermOk: "[[mtst −−−−→∗ Ok st; mtst −−−−→∗ Ok st ′]] =⇒ st = st ′"
using evolveNFixedOk by blast

lemma evolveStarOkNoErr : "mtst −−−−→∗ Ok st =⇒ ¬(mtst −−−−→∗ Err)"
proof

assume assms: "mtst −−−−→∗ Ok st"
"mtst −−−−→∗ Err"

obtain n where evolveNErr : "mtst −−−−→|n| Err" using assms(2) by blast
then have "∀m < n. ¬(mtst −−−−→|m| Ok st)"

by (metis evolveNDeterm evolveNSplit less-or-eq-imp-le
multitraceState.distinct(5) noEvolveOk)

moreover then have "∀m ≥ n. mtst −−−−→|m| mtst ′ =⇒ mtst ′ = Err"
using evolveNDeterm evolveNErr by auto

then have "∀m. ¬(mtst −−−−→|m| Ok st)"
by (metis calculation evolveNDeterm evolveNErr evolveNSplit

linorder-not-le multitraceState.distinct(5) noEvolveErr)
then have "¬(mtst −−−−→∗ Ok st)" by auto
then show False using assms(1) by blast

qed

51

lemma evolveStarErrNoOk: "mtst −−−−→∗ Err =⇒ ¬(mtst −−−−→∗ Ok st)"
using evolveStarOkNoErr by blast

theorem evolveStarDeterm:

"[[mtst −−−−→∗ mtst; mtst −−−−→∗ mtst ′

; ∀ st. mtst 6= Running st; ∀ st. mtst ′ 6= Running st
]] =⇒ mtst = mtst ′"

by (metis multitraceState.exhaust noEvolveOk noEvolveErr)

As a sanity check, we ensure that our definition of −−−−→∗ is indeed reflexive and transitive.

lemma evolveStarRefl [simp, intro]: "mtst −−−−→∗ mtst"
using evolveN0Def by blast

lemma evolveStarTrans [simp, intro]:
"[[mtst1 −−−−→∗ mtst2; mtst2 −−−−→∗ mtst3]] =⇒ mtst1 −−−−→∗ mtst3"

using evolveNChain by blast

Finally, we prove that it is the closure of −−−−→ by showing it can be achieved by adding

−−−−→ on the left and right.

lemma evolveStarStepLeft [simp, intro]:
"[[mtst1 −−−−→ mtst2; mtst2 −−−−→∗ mtst3]] =⇒ mtst1 −−−−→∗ mtst3"

by blast

lemma evolveStarStepRight:
"[[mtst1 −−−−→∗ mtst2; mtst2 −−−−→ mtst3]] =⇒ mtst1 −−−−→∗ mtst3"

using evolveNStepRight by blast

end

52

A.5 Proof automation and methods in Automation.thy

theory Automation
imports Multitrace "HOL−Eisbach.Eisbach"

begin

This theory provides the proof automation methods for our semantics.

These are common, reusable methods. The first performs a single step of −−−−→ on the

left side of −−−−→∗, and the latter helps with proving statements of the form:

∃ st ′. mtst −−−−→∗ Ok st ′ ∧ P st ′

method step-evolve = (rule evolveStarStepLeft, rule evolve.intros, auto)
method prove-exists = (rule exI, auto, step-evolve+)

We then prove the following lemma in order to achieve full proof automation for specific

classes of proofs. This lemma says that, to prove that any terminating state reached from

our current state fulfills some property P, it suffices to prove that there exists a state that

can be reached from our current state, and that that state fulfills P. This is true due to

−−−−→∗ being deterministic for terminating states.

lemma evolveStarOkWitnessEnough:
"(∃ st ′. mtst −−−−→∗ Ok st ′ ∧ P(st ′)) =⇒ (mtst −−−−→∗ Ok st ′ −→ P(st ′))"

using evolveStarDetermOk by blast

We can then achieve proof automation for statements of the form:

[[assms; mtst −−−−→∗ Ok st ′]] =⇒ P st ′

by using the above lemma and proof methods.

method proof-automation =

(unfold atomize-imp, rule impI, rule evolveStarOkWitnessEnough, prove-exists)

end

53

A.6 Examples in Examples.thy

theory Examples
imports Automation

begin

This theory contains the example programs and proofs that were presented in the main

body, illustrating the defined semantics, proof methods, and automation..

This trace corresponds to add x1, x1, x2.

abbreviation addAABTrace :: trace where
"addAABTrace ≡

ReadReg ′′x1 ′′ 1
::: ReadReg ′′x2 ′′ 2
::: DefineConstBV64 3 (Binop (+) (Name 1) (Name 2))
::: ReadReg ′′PC ′′ 4
::: DefineConstBV64 5 (Binop (+) (Name 4) (Val 64))
::: WriteReg ′′x1 ′′ (Name 3)
::: WriteReg ′′PC ′′ (Name 5)
::: EmptyTrace"

We can show the effect of step on the above trace using the following command

value "step (addAABTrace, (Map.empty
(′′x1 ′′ 7→ Val x1
, ′′x2 ′′ 7→ Val x2
, ′′PC ′′ 7→ Val pc
), Map.empty , Map.empty))"

which gives us the value

Some (λu. if u = ′′PC ′′ then Some (Val (pc + 64)) else if u = ′′x1 ′′ then Some (Val (x1 +

x2)) else if u = ′′PC ′′ then Some (Val pc) else if u = ′′x2 ′′ then Some (Val x2) else if u =
′′x1 ′′ then Some (Val x1) else None, Map.empty , Map.empty)

showing it has correctly updated x1 to x1 + x2, and incremented the PC by 64.

54

Since step is total, Isabelle has no difficulty proving that x1 is set correctly by addAAB-

Trace, which is specified by the following theorem.

theorem
"[[stR ′′x1 ′′ = Some (Val x1); stR ′′x2 ′′ = Some (Val x2); stR ′′PC ′′ = Some (Val pc)
; step (addAABTrace, (stR, stI, stM)) = Some (stR ′, stI ′, stM ′)

]] =⇒ stR ′ ′′x1 ′′ = Some (Val (x1 + x2))" by auto

Writing (effectively) the same proof, but involving inter-trace semantics is more involved.

The theorem statement now uses −−−−→∗, and makes the statement about any state st ′

that is reached with successful termination from the initial state.

theorem
"stR ′′x1 ′′ = Some (Val x1) ∧ stR ′′x2 ′′ = Some (Val x2) ∧ stR ′′PC ′′ = Some (Val 64)
∧ stI 64 = Some addAABTrace ∧ stI 128 = None

=⇒ Running (stR, stI, stM) −−−−→∗ Ok st ′

=⇒ (fst st ′) ′′x1 ′′ = Some (Val (x1 + x2))"
(is "?assms =⇒ ?mtst −−−−→∗ Ok ?st ′ =⇒ ?Q(?st ′)")

proof −
let "?P(st ′)" = "?mtst −−−−→∗ Ok st ′"

— First, we find an existential witness of such a terminating state.
have "?assms =⇒ ∃ st ′. ?P(st ′) ∧ ?Q(st ′)"

by (rule exI, auto, (rule evolveStarStepLeft, rule evolve.intros, auto)+)

— We can then generalize to all possible terminating states using the determinism
— of −−−−→∗ on terminating states.
then have "?assms =⇒ ∀ st ′. ?P(st ′) −→ ?Q(st ′)" using evolveStarDetermOk by blast

— Lastly, we can prove the theorem statement.
then show "?assms =⇒ ?P(?st ′) =⇒ ?Q(?st ′)" by blast

qed

55

This is another trace, which corresponds to mov x1, x2.

abbreviation movABTrace :: trace where
"movABTrace ≡

ReadReg ′′x1 ′′ 1
::: WriteReg ′′x2 ′′ (Name 1)
::: ReadReg ′′PC ′′ 2
::: DefineConstBV64 3 (Binop (+) (Name 2) (Val 64))
::: WriteReg ′′PC ′′ (Name 3)
::: EmptyTrace"

We can then write a theorem about a two-instruction program involving the two traces

we’ve defined. This theorem specifies exactly what the final state should be, so a simple

apply script is sufficient to prove its correctness.

theorem
"stR ′′x1 ′′ = Some (Val x1) ∧ stR ′′x2 ′′ = Some (Val x2) ∧ stR ′′PC ′′ = Some (Val 128)
∧ stI 128 = Some addAABTrace ∧ stI 192 = Some movABTrace
∧ stI 256 = Some addAABTrace ∧ stI 320 = None

=⇒ Running (stR, stI, stM) −−−−→∗ Ok (stR(
′′x1 ′′ 7→ Val (2 ∗ x1 + 2 ∗ x2),
′′x2 ′′ 7→ Val (x1 + x2),
′′PC ′′ 7→ Val 320), stI, stM)"

apply (auto)
apply (rule evolveStarStepLeft, rule evolve.intros, auto)+
apply (simp add : fun-upd-twist)
done

As before with the single-instruction proof, we can use the same proof strategy to prove

a more general statement about terminating states reached without necessarily specifying

the entire resulting state. This theorem statement asserts that x1 and x2 are set correctly,

without making any statements about the rest of the state.

theorem
"stR ′′x1 ′′ = Some (Val x1) ∧ stR ′′x2 ′′ = Some (Val x2) ∧ stR ′′PC ′′ = Some (Val 128)
∧ stI 128 = Some addAABTrace ∧ stI 192 = Some movABTrace
∧ stI 256 = Some addAABTrace ∧ stI 320 = None

=⇒ Running (stR, stI, stM) −−−−→∗ Ok st ′

=⇒ (fst st ′) ′′x1 ′′ = Some (Val (2 ∗ x1 + 2 ∗ x2))
∧ (fst st ′) ′′x2 ′′ = Some (Val (x1 + x2))"

(is "?assms =⇒ ?mtst −−−−→∗ Ok ?st ′ =⇒ ?Q(?st ′)")

56

proof −
let "?P(st ′)" = "?mtst −−−−→∗ Ok st ′"
have "?assms =⇒ ∃ st ′. ?P(st ′) ∧ ?Q(st ′)"

by (rule exI, auto, (rule evolveStarStepLeft, rule evolve.intros, auto)+)

then have "?assms =⇒ ∀ st ′. ?P(st ′) −→ ?Q(st ′)" using evolveStarDetermOk by blast
then show "?assms =⇒ ?P(?st ′) =⇒ ?Q(?st ′)" by blast

qed

This shared proof method applies to a wide variety of statements, as long as they are of

the same form. This form is in fact the one we defined earlier in Automation, so we can

apply proof-automation to perform a push-button automated proof of the same statement.

theorem
"stR ′′x1 ′′ = Some (Val x1) ∧ stR ′′x2 ′′ = Some (Val x2) ∧ stR ′′PC ′′ = Some (Val 128)
∧ stI 128 = Some addAABTrace ∧ stI 192 = Some movABTrace
∧ stI 256 = Some addAABTrace ∧ stI 320 = None

=⇒ Running (stR, stI, stM) −−−−→∗ Ok st ′

=⇒ (fst st ′) ′′x1 ′′ = Some (Val (2 ∗ x1 + 2 ∗ x2))
∧ (fst st ′) ′′x2 ′′ = Some (Val (x1 + x2))"

by proof-automation

57

Our next example deals with the multiple instruction program including branching that

corresponds to the following program:

addi x2, x1, 0
addi x3, x1, -1

loop:
beq x0, x3, end
add x1, x1, x2
addi x3, x3, -1
beq x0, x0, loop

end:

It squares x1 assuming that x2 and x3 are initially zeroed.

We begin by defining general traces for addi, beq and add instructions.

abbreviation addiTrace :: "reg ⇒ reg ⇒ bv64 ⇒ trace" where
"addiTrace rd rs imm ≡

ReadReg rd 0
::: ReadReg rs 1
::: DefineConstBV64 2 (Val imm)

::: DefineConstBV64 3 (Binop (+) (Name 1) (Name 2))
::: WriteReg rd (Name 3)
::: ReadReg ′′PC ′′ 4
::: DefineConstBV64 5 (Binop (+) (Name 4) (Val 64))
::: WriteReg ′′PC ′′ (Name 5)
::: EmptyTrace"

abbreviation beqTrace :: "reg ⇒ reg ⇒ bv64 ⇒ trace" where
"beqTrace rs1 rs2 addr ≡

ReadReg rs1 0
::: ReadReg rs2 1
::: DefineConstBV64 2 (Binop (λx y . (if x = y then 0 else 1)) (Name 0) (Name 1))
::: DefineConstBoolFromBV64 3 (Name 2)
::: Cases [Assert (Name 3)

::: WriteReg ′′PC ′′ (Val addr)
::: EmptyTrace

, DefineConstBool 4 (Monop (λx . ¬x) (Name 3))
::: Assert (Name 4)
::: ReadReg ′′PC ′′ 5
::: DefineConstBV64 6 (Binop (+) (Name 5) (Val 64))
::: WriteReg ′′PC ′′ (Name 6)
::: EmptyTrace

58

]"

abbreviation addTrace :: "reg ⇒ reg ⇒ reg ⇒ trace" where
"addTrace rd rs1 rs2 ≡

ReadReg rd 0
::: ReadReg rs1 1
::: ReadReg rs2 2
::: DefineConstBV64 3 (Binop (+) (Name 1) (Name 2))
::: WriteReg rd (Name 3)
::: ReadReg ′′PC ′′ 4
::: DefineConstBV64 5 (Binop (+) (Name 4) (Val 64))
::: WriteReg ′′PC ′′ (Name 5)
::: EmptyTrace"

We can then define the instruction store instrs that corresponds to the program beginning

at address 0, noting the addresses carefully written to correspond to the labels.

abbreviation programInstructions :: instrs where
"programInstructions ≡ Map.empty
(0 7→ addiTrace ′′x2 ′′ ′′x1 ′′ 0
, 64 7→ addiTrace ′′x3 ′′ ′′x1 ′′ (−1)
, 128 7→ beqTrace ′′x0 ′′ ′′x3 ′′ 384
, 192 7→ addTrace ′′x1 ′′ ′′x1 ′′ ′′x2 ′′

, 256 7→ addiTrace ′′x3 ′′ ′′x3 ′′ (−1)
, 320 7→ beqTrace ′′x0 ′′ ′′x0 ′′ 128
)"

We then define the initial register values with x1 taking an arbitrary value, the PC starting

at address 0, and x2 and x3 set to 0. Of course, x0 is also set to 0, as it is permanently

zero on RISC-V.

abbreviation regInits :: "bv64 val ⇒ regState" where
"regInits x1 ≡ Map.empty
(′′x0 ′′ 7→ Val 0
, ′′x1 ′′ 7→ x1
, ′′x2 ′′ 7→ Val 0
, ′′x3 ′′ 7→ Val 0
, ′′PC ′′ 7→ Val 0
)"

59

Our proof automation is then enough to prove this program is correct for specific initial

values of x1—i.e. we show that it terminates and squares x1.

abbreviation initState :: "bv64 val ⇒ state" where
"initState x1 ≡ (regInits x1, programInstructions, Map.empty)"

theorem
"x1 = Val 3
=⇒ Running (initState x1) −−−−→∗ Ok st ′

=⇒ (fst st ′) ′′x1 ′′ = Some (Val 9)"
by proof-automation

end

60

	Introduction
	Background
	Context and aims
	CHERI and CheriOS
	seL4
	Our aims

	Proof tooling

	Our approach
	Determinizing Isla semantics
	Isla syntax and semantics
	Deterministic Isla semantics
	Correctness

	Inter-trace semantics
	A note on special behaviours

	Constructing proofs
	Isla traces in Isabelle
	Properties of Isla traces
	Constructing proofs about code

	Analysis
	Conclusion and prospects
	Future work

	Full Isabelle theories
	Syntax definitions in Syntax.thy
	Machine state definition in State.thy
	Deterministic semantics in Semantics.thy
	Value substitution
	Big-step semantics
	Totality and termination of semantics

	Inter-trace semantics in Multitrace.thy
	Defining 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Multiple steps of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Reflexive transitive closure 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 *

	Proof automation and methods in Automation.thy
	Examples in Examples.thy

