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Abstract

Weighted orbit-finite automata provide a linear generalisation to register automata

where the alphabet A is only required to be finite modulo symmetries. To adapt

Schützenberger’s algorithm for zeroness checking to the orbit-finite setting, we study

chains V1 ⊊ V2 ⊊ · · · ⊊ Vl of equivariant subspaces in LinA(k) — the complex vector

space whose basis comprises k-tuples of distinct elements of A — which are closed

under both linear combinations and permutations. The existence of a maximum

length l guarantees termination of the algorithm, and furthermore gives an upper

bound on its complexity.

For the equality atoms A = (N,=), we have LinA(k) =
⋃

n Lin [n](k) where each

Lin [n](k) is an Sn-representation with well understood substructures. Through rudi-

mentary calculations, we find all the equivariant subspaces of LinA and LinA(2), in

turn determining length(LinA) and length(LinA(2)). Also of interest is the existence

of infinitely many such subspaces in LinA(2) (even though there are only finitely

many isomorphism classes). More generally, we deduce from the stabilisation of the

sequence
(
length(Lin [n](k))

)
n≥2k

that length(LinA(k)) ≤ length(Lin [2k](k)) for all

k ≥ 0; the latter coincides with the recursively defined OEIS sequence A005425(k),

which refines a previous upper bound obtained by Bojańczyk, Klin, and Moerman.

Finally, we give evidence that our bound is tight.
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1 Introduction

Finite-state automata have proven to be a ubiquitous model of computation with

numerous generalisations. The formalism is by itself simplistic: we consider an

abstract machine with a finite set of states Q whose configuration evolves as an input

word over a finite alphabet Σ is processed one letter at a time; after all letters are

read, an output is then produced from the final configuration. For a deterministic

finite automaton (DFA; see, e.g., [RS59, Definition 1]) with initial state q0 ∈ Q,

transition function

δ : Q× Σ→ Q,

and final states QF ⊆ Q, an input word a1a2 . . . an ∈ Σ∗ gives rise to a unique run

q0
a1−→ q1

a2−→ · · · an−→ qn: the states q1, . . . , qn ∈ Q are given by δ(qi−1, ai) = qi for

1 ≤ i ≤ n; the output is just a boolean value determined by whether qn ∈ QF .

Since a configuration is simply a state in Q, we say that the DFA has state space Q.

A non-deterministic finite automaton (NFA; see, e.g., [RS59, Definitions 9–10]), in

comparison, comes with a transition function

δ : Q× Σ→ P(Q)

so that an input word may have zero or more than one run. The output then

indicates whether any of the runs finishes in a final state. Correspondingly, the

state space becomes the power set P(Q) of Q. A weighted automaton [Sch61, §I.6]

takes a step further:

δ : Q× Σ→ Lin(Q)
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Chapter 1. Introduction

assigns to each (q, a) ∈ Q×Σ a linear combination of the states in Q over a field F.

Given a run q0
a1−→ q1

a2−→ · · · an−→ qn, its weight is given by I(q0) ·c1 · · · cn ·F (qn) where

I : Q→ F is the initial weight, ci ∈ F is the coefficient of qi in the vector δ(qi−1, ai)

for 1 ≤ i ≤ n, and F : Q → F is the final weight. The output associated with a

word a1a2 . . . an ∈ Σ∗ is then obtained by summing the weights across all such runs.

As the state space here is the free F-vector space Lin(Q) on the set of states Q,

standard results from linear algebra come in handy. Schützenberger’s algorithm for

equivalence checking∗ relies heavily on the dimension theory of finite-dimensional

vector spaces in particular.

But these finite-state automata face an intrinsic limitation: the alphabet is finite

(and typically very small), severely impeding applications in XML and verification

amongst other concerns. As a recourse, Kaminski and Francez introduced finite-

memory automata in [KF94, Definition 1] to handle infinite alphabets by allowing

an NFA to store previously processed letters in a bounded number of registers. Input

letters can only be compared for equality; when Σ = N, if q 1−→ q′
2−→ q′′ is a run,

then so must be q m−→ q′
n−→ q′′ given any distinct m,n ∈ N for example. This

is enforced by syntactic guards on the transition function. Inspired by the work of

Gabbay and Pitts [GP02], Bojańczyk et al. describe an equivalent model in [BKL14,

Definition 3.1 and Theorem 6.4] availing of sets with group actions. Here Q and Σ

need only be orbit-finite: for instance, {qn | n ∈ N} ∪ {q′n | n ∈ N} ∪ {q′′n | n ∈ N}

contains infinitely many elements but only 3 orbits under the bijective renamings of

N; that the graph of

δ : Q× Σ→ P(Q)

is equivariant — i.e., the set is closed under group actions — then semantically

ensures that letters are only tested for equality. We refer readers to [Boj19, §1.1]

for a more gentle introduction.

Weighted orbit-finite automata [BKM21, Definition III.1] unify these two lines
∗For a modern treatment, see [DK21, §8]; we also offer a detailed account in Section 2.3.
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of generalisation with an equivariant transition function

δ : Q× Σ→ Lin(Q).

The state space Lin(Q) is orbit-finite-dimensional: it has an orbit-finite basis Q. As

a vector space with actions from the automorphism group G of N, its substructures

are equivariant subspaces — subsets that are closed under both linear combinations

and G-actions; mathematically, one speaks of a G-representation or a module over

the group ring F[G]. To show that Schützenberger’s algorithm can be adapted

to the orbit-finite setting, a length theory of orbit-finite-dimensional vector spaces

needs to be developed analogously to the dimension theory of finite-dimensional

vector spaces for weighted finite automata. Bojańczyk et al. mention this algebraic

connection before Lemma 4.2 in their work but do not pursue it further.

In this paper, we chase the representation-theoretic aspect fully. The archetypical

orbit-finite set we study is N(k), the k-tuples of distinct natural numbers endowed

with the natural actions from the bijections of N. As portended by the stability

phenomena investigated in [BVO14], [SS15], and [OZ21], we find that the structure

theory of Lin(N(k)) is closely related to that of Lin({1, . . . , n}(k)) for large n’s; this

allows us to draw upon classical results for finite symmetric groups, notably from

[Sag01, §2–3] and [FH04, §4]. Our contributions are as follows.

• In Chapter 2, we provide a self-contained exposition of weighted orbit-finite

automata and Schützenberger’s equivalence algorithm.

• We lay out an elementary argument leading up to the internal direct sum

(3.21) which appears to be original, even though explicit projection maps

onto isomorphic copies have been determined in [CM11, §5].

• We establish the full structure theory of LinN(2) as depicted by Figure B, which

in particular exposes an infinite family of distinct equivariant subspaces.

• In Corollary 4.4 we exhibit the [OEIS] sequence A005425(k) as an upper bound

for length(N(k)), improving [BKM21, Lemma IV.9] by a large margin.
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2 Atoms and automata

2.1 Atoms

The key motif in the computation theory with atoms† consists of replacing finite

structures with infinite but highly symmetric ones. We begin by recalling the un-

derlying formalism; we will closely follow a combination of [Boj19, §3] and [BKL14,

§4].

2.1.1 Aut(A)-sets

Let A be a countable relational structure in the model-theoretical sense; that is, A =

(A, {Ri}i∈I) where the universe A is countable, and Ri ⊆ Aki are ki-ary relations.

It is easy to see that the set of structure-preserving bijections

Aut(A) := {π : A→ A bijective | ∀i : a ∈ Ri ⇐⇒ π(a) ∈ Ri}

forms a group under function composition — the identity function idA lies in Aut(A),

and for π, π′ ∈ Aut(A) we have π ◦ π′ ∈ Aut(A) as well as π−1 ∈ Aut(A). We call

Aut(A) the automorphism group of A. When the context is clear, by abuse of

notation we will use A and A interchangeably.

Example 2.1. We will focus exclusively on

• the infinite equality atoms (N,=), and
†The nomenclature stems from the Fraenkel–Mostowski permutation model of set theory with

atoms in the 1930s. Under the guise of nominal sets, the theory has recently been rediscovered as
an elegant model of name binding [GP02].
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2.1. Atoms

• the finite equality atoms ([n],=), where we write [n] for {1, . . . , n}.

Here Aut(N) is the full symmetric group of N, whereas Aut([n]) is the finite sym-

metric group Sn.

Two remarks are in order. First, the natural numbers regrettably start at 1 in

this work. Second, finite symmetry groups are unusual in the nominal literature;

we only intend to use ([n],=) as an auxiliary tool to study vector spaces with the

infinite equality atoms later. ■

Recall that an Aut(A)-set is a set X equipped with a group homomorphism

π 7→ (π · −) between Aut(A) and the bijections of X. By uncurrying, we see this

amounts to a group action −·− : Aut(A)×X → X satisfying (π ◦π′) ·x = π · (π′ ·x)

and idA ·x = x for all π, π′ ∈ Aut(A) and x ∈ X.

A is canonically an Aut(A)-set with π · a := π(a). On the other hand, any set

Z constructed without using A can also be viewed as an Aut(A)-set if we endow it

with the trivial action π · z := z for all π and z. Now let X,Y be two Aut(A)-sets.

We can check that the following are also Aut(A)-sets naturally:

• the cartesian product X × Y where π · (x, y) := (π · x, π · y);

in particular, it follows that Ak is an Aut(A)-set with the diagonal action;

• the disjoint union X t Y where π · − is defined by case analysis;

• the set XY of all functions from X to Y , where given f : X → Y we define

π · f : X → Y pointwise via

(π · f)(x) := π · f(π−1 · x)

so that π · x is mapped to π · f(x) for all x ∈ X;

• the power set P(X) where

π · P := {π · x | x ∈ P}

for all P ⊆ X.
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Chapter 2. Atoms and automata

2.1.2 Equivariance

Definition 2.2. Let X be an Aut(A)-set. We say that x ∈ X is supported by S ⊆ A

if π · x = x whenever π ∈ Aut(A) satisfies π|S = idS. In particular, we say that x is

equivariant if it is supported by ∅.

Remark. By definition, a subset P ⊆ X is equivariant iff π · x ∈ P for every

π ∈ Aut(A) and x ∈ P . In that case, any action π · − : X → X restricts to

(π · −)|P : P → P , and thus P itself is an Aut(A)-set. For instance, we see that

A(k) := {(a1, . . . , ak) ∈ Ak | ai 6= aj whenever i 6= j}

is an equivariant subset of Ak for k ≥ 0 with A(0) = {()}, and thus inherits the

structure of an Aut(A)-set with the diagonal action π·(a1, . . . , ak) = (π·a1, . . . , π·ak).

Also, a function f : X → Y is equivariant iff f(π · x) = π · f(x) for every

π ∈ Aut(A) and x ∈ X. ■

Example 2.3. If X and Y are Aut(A)-sets with trivial actions, then any function

f : X → Y is equivariant: we have f(π · x) = f(x) = π · f(x). ■

2.1.3 Orbit-finiteness

The notion of Aut(A)-sets is rather abstract. In contrast, one would expect a model

of computation to have components which admit concrete descriptions that are

amenable to algorithms. We will therefore restrict our attention to Aut(A)-sets

with the properties that we define next.

Definition 2.4. An Aut(A)-set X is nominal if every x ∈ X is supported by some

S ⊆ A which is finite.

Remark. Clearly A is nominal: each a ∈ A is supported by the singleton {a}. In fact,

it is straightforward to show that nominal sets are closed under cartesian products,

equivariant subsets, and disjoint unions. It follows that Ak, A(k), and A∗ = tk≥0Ak
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2.1. Atoms

are all nominal. Also, if X is an Aut(A)-set with a trivial action then X is obviously

nominal, as each x ∈ X is by definition equivariant.

Nonetheless, P(A) is not nominal when we work with the equality atoms A =

(N,=). To see this, consider the odd numbers O := {1, 3, 5, . . . } ⊆ A, and suppose

to the contrary that we had a finite support S ⊆ A. As both O and A \ O are

infinite, clearly we can find x ∈ O \ S and y ∈ (A \ O) \ S. Now the transposition

(x y) acts trivially on S, yet y ∈ (x y) ·O so (x y) ·O 6= O. ■

Definition 2.5. A nominal set X is orbit-finite if we can find x1, . . . , xn ∈ X with

X = Aut(A) · x1 t · · · t Aut(A) · xn,

where Aut(A) · xi := {π · xi | π ∈ Aut(A)} is called the orbit of xi.

Example 2.6. If X is an Aut(A)-set with a trivial action, then Aut(A) ·x = {x} for

x ∈ X. Hence the notions of orbit-finiteness and finiteness coincide for such X. ■

The upshot is that orbit-finite nominal sets can be represented by finite means;

checking membership, equality and forming products, disjoint unions, etc. are all

computable. We refer the interested readers to [BKL14] and [Boj19, §4.1] for the

theory and to [BBKL12] for a concrete implementation. Here, we will be content

with knowing that orbit-finite sets can be used as inputs to algorithms and continue

to work at an abstract level.

Proposition 2.7 (Equality atoms are oligomorphic [Boj19, Definition 3.9]).

Suppose A = (N,=) or A = ([n],=) with n ≥ k. Then A, Ak, and A(k) are all orbit-

finite, but A∗ is not.

Proof. We shall show A(k) = Aut(A) ·(1, . . . , k). For k = 0, this is trivial: both sides

are the singleton {()}. Thus let (a1, . . . , ak) ∈ A(k) be arbitrary for k ≥ 1, and put

t := maxi ai so that ai ∈ [t] for all i. Then k ≤ t, and f : i 7→ ai defines an injection

[k]→ [t]. But the finite sets [t]\[k] and [t]\f([k]) have the same number of elements,

so f extends to a bijection [t] → [t]. Finally, by setting x 7→ x for x ∈ A \ [t] we
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Chapter 2. Atoms and automata

obtain an element of Aut(A) whose action sends (1, . . . , k) to (a1, . . . , ak). Therefore

A(k) has a single orbit, and so does A since A = A(1).

Now consider (a1, . . . , ak) ∈ Ak. By above, we see that its orbit is determined

by its equality type, i.e., the partition [k]/∼ where i ∼ j iff ai = aj. Furthermore, if

there are t equivalence classes, then by removing repetitions we obtain an equivariant

bijection Aut(A)·(a1, . . . , ak) ' A(t). Overall, the orbits give an equivariant bijection

Ak '
k⊔

t=0

S(k,t)⊔
i=1

A(t) (2.8)

where S(k, t) is the second Stirling number counting the number of ways to partition

[k] into t equivalence classes. In particular Ak has
∑k

t=0 S(k, t) orbits, whereas A∗

contains all these Ak’s in a disjoint union and thus has infinitely many orbits.

It turns out that, akin to (2.8), any orbit-finite set is related to the A(t)’s.

Lemma 2.9 (Variant of [Boj19, Lemma 3.20]). Let X be an orbit-finite set.

Then there exists an equivariant surjection f : tk
i=1A(ti) → X.

Proof. Suppose that X = tki=1 Aut(A) · xi. As X is nominal, xi is supported by

some finite set Si ⊆ A whose elements we can enumerate as (a1, . . . , ati) ∈ A(ti).

Now observe that

{(π · (a1, . . . , ati), π · xi) | π ∈ Aut(A)}

is the graph of an equivariant surjection fi : A(ti) → Aut(A) · xi. Indeed, if we have

π · (a1, . . . , ati) = π′ · (a1, . . . , ati) then π−1 ◦ π′ is the identity on Si = {a1, . . . , ati},

so xi = (π−1 ◦ π′) · xi by assumption and thus π · xi = π′ · xi; it is then easy to see

that the function fi is equivariant and surjective. By combining all the fi’s, we can

thus define an equivariant surjection f : tki=1A(ti) → X by cases.

We shall expand our arsenal of orbit-finite sets.

Corollary 2.10 (Closure properties [Boj19, Lemma 3.24]). With A = (N,=),

orbit-finite sets are closed under equivariant subsets, disjoint unions, and cartesian

products.
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2.2. Weighted automata

Proof. Recall that these constructions preserve nominal sets as we observed after

Definition 2.4, so we only need to count the number of orbits.

Suppose that X =
⊔

i∈I Aut(A) ·xi is orbit-finite, and let P ⊆ X be equivariant.

Then each p ∈ P lies in the orbit of some xip , so we have P ⊆
⊔

i∈I′ Aut(A) · xi

where I ′ := {ip | p ∈ P} ⊆ I is necessarily finite. But as the reverse containment

also holds by the equivariance of P , we conclude that P is orbit-finite.

Now let Y =
⊔

j∈J Aut(A) · yj also be orbit-finite. Clearly X t Y is orbit-finite:

it has orbits Aut(A) · xi,Aut(A) · yj. But X × Y = ti,j(Aut(A) · xi)× (Aut(A) · yj),

so it suffices to prove that (Aut(A) · xi) × (Aut(A) · yj) is orbit-finite for each i, j.

Consider the equivariant surjections f : A(m) → Aut(A)·xi and g : A(n) → Aut(A)·yj

that we constructed in the proof of Lemma 2.9. Define

h : A(m) × A(n) → (Aut(A) · xi)× (Aut(A) · yj)

(a, b) 7→ (f(a), g(b))

which is easily seen to be an equivariant surjection. Since A(m)×A(n) is an equivari-

ant subset of Am+n which is orbit-finite by Proposition 2.7, by above A(m)×A(n) too

is orbit-finite; say A(m)×A(n) =
⊔

k∈K Aut(A) ·zk. Finally note that Aut(A) ·h(zk) =

h(Aut(A) · zk) as h is equivariant, and thus by its surjectivity we have

(Aut(A) · xi)× (Aut(A) · yj) = h(
⊔
k∈K

Aut(A) · zk)

=
⋃
k∈K

h(Aut(A) · zk) =
⋃
k∈K

Aut(A) · h(zk).

This establishes the desired orbit-finiteness after we remove repeated orbits.

2.2 Weighted automata

We are now ready to introduce the weighted orbit-finite automata with atoms from

[BKM21].
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Chapter 2. Atoms and automata

2.2.1 Definition

Consider henceforth the infinite equality atoms A = (N,=), and view the field of

complex numbers C as a nominal Aut(A)-set endowed with the trivial action.

Definition 2.11. A weighted orbit-finite automaton A = (Q,Σ, I, δ, F ) consists of

• an Aut(A)-set of states Q,

• an Aut(A)-set Σ (called the alphabet),

• initial weights I : Q→ C,

• transition weights δ : Q× Σ×Q→ C, and

• final weights F : Q→ C

where Q,Σ are orbit-finite and I, δ, F are equivariant.Moreover, we require I and

δ(q, a,−) to be zero on all but finitely many states — this is called the non-guessing

condition — so that given any a1 . . . an ∈ Σ∗ the sum of weights

LA(a1 . . . an) :=
∑

(q0,q1,...,qn)∈Qn+1

I(q0)
( ∏
1≤i≤n

δ(qi−1, ai, qi)
)
F (qn) (2.12)

across all runs q0
a1−→ q1 · · ·

an−→ qn is well-defined. We say that A recognises the

weighted language LA : Σ∗ → C.

Remark. Any equivariant function f : X → C is constant on each orbit in X: we

have f(π · x) = π · f(x) = f(x) for x ∈ X, π ∈ Aut(A). Therefore f amounts

to finitely many values of C provided that X is moreover orbit-finite, and it can

certainly be represented by finite means.

As Q and Σ are orbit-finite, so is Q × Σ × Q by Corollary 2.10. It follows

that I, δ, F are all determined by their values on the finitely many orbits of their

respective domains.

Consider the case Q,Σ = A. We see by (2.8) that Q×Σ×Q = A3 has 5 orbits,

but due to the non-guessing condition δ cannot take a non-zero value at (a, a, b)

or (a, b, c) where a, b, c ∈ A are distinct. The remaining 3 orbits are generated by

(a, a, a), (a, b, a), and (a, b, b) respectively. Operationally, the transition (a0, a1, a2)

14



2.2. Weighted automata

can be interpreted as follows: “the automaton begins with a0 stored in a ‘register’;

when it reads the letter a1, it updates the register with a2.” Then the equivariance

of δ ensures that the letters ai are only compared for equality, and the non-guessing

condition prohibits the automaton from using a necessarily divined letter a2 ∈ A \

{a0, a1}. ■

Example 2.13. In view of Examples 2.3 and 2.6, if Q and Σ are Aut(A)-sets with

trivial actions then we recover the classical definition of a weighted finite automaton

[DK21, Definitions 2.1 and 2.3] over the field C. In this light, if N = (Q,Σ, I, δ, F )

is an NFA, then by putting

I ′(q) =


1 if q ∈ I,

0 otherwise,
δ′(p, a, q) =


1 if q ∈ δ(p, a),

0 otherwise,
F ′(q) =


1 if q ∈ F,

0 otherwise

we get a weighted automaton A = (Q,Σ, I ′, δ′, F ′) whose language LA(a1 . . . an)

counts the number of accepting runs q0
a1−→ q1 · · ·

an−→ qn in N — observe that each

such run is assigned a weight of 1 in A. ■

2.2.2 Equivalence and zeroness

Recall that the equivalence problem for DFAs can be reduced to the emptiness

problem: A1 and A2 recognise the same language iff (LA1 \ LA2) ∪ (LA2 \ LA1) is

empty, and we can build a new DFA from A1,A2 to recognise this latter language.

An analogue holds for weighted orbit-finite automata: A1 and A2 recognise the same

language iff LA1−LA2 is the zero function Σ∗ → C. To recognise this latter language,

we can construct a new weighted automaton from Ai = (Qi,Σ, Ii, δi, Fi), i ∈ {1, 2}

as follows. Let A∆ := (Q1 tQ2,Σ, I, δ, F ), where

I(q) :=


I1(q) if q ∈ Q1,

I2(q) if q ∈ Q2,

F (q) :=


F1(q) if q ∈ Q1,

−F2(q) if q ∈ Q2,
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Chapter 2. Atoms and automata

δ(p, a, q) :=


δ1(p, a, q) if p, q ∈ Q1,

δ2(p, a, q) if p, q ∈ Q2,

0 otherwise.

We then see from (2.12) that LA∆
(w) = LA1(w)−LA2(w) for all w ∈ Σ∗ as desired.

2.2.3 The state space LinQ

Before proceeding to address the zeroness problem, we take a detour to introduce

an algebraic counterpart to the operational definition that we gave above. Given

q ∈ Q, write Cq for the 1-dimensional vector space {cq | c ∈ C} so that we can tell

q ∈ LinQ apart from q ∈ Q; we then define LinQ to be the direct sum
⊕

q∈Q Cq. A

typical element of LinQ is a formal sum
∑

q∈Q cqq where cq ∈ C is zero for all but

finitely many states q ∈ Q. Notice that permutations from Aut(A) act naturally on

LinQ via

π · (
∑
q∈Q

cqq) :=
∑
q∈Q

cqπ · q (2.14)

in a way that is compatible with the vector space structure of LinQ. We capture

this structure as follows.

Definition 2.15. The group ring C[AutA] is the vector space Lin(AutA) equipped

with a ring structure by extending the multiplication π ∗ π′ := π ◦ π′ bilinearly.

A C[AutA]-module M is an abelian group M together with a binary operation

− · − : C[AutA]×M →M satisfying

φ · (m+m′) = φ ·m+ φ ·m′

(φ+ φ′) ·m = φ ·m+ φ′ ·m

(φ ∗ φ′) ·m = φ · (φ′ ·m)

idA ·m = m

for all φ, φ′ ∈ C[AutA] and m,m′ ∈M .
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2.2. Weighted automata

A C[AutA]-submodule is a subset N ⊆M with 0, n+n′, φ·n ∈ N for all n, n′ ∈ N

and φ ∈ C[AutA], so that N is itself a C[AutA]-module with the restricted actions.

A C[AutA]-module homomorphism between two C[AutA]-modules M,M ′ is a

function f :M →M ′ such that f(m+m′) = f(m) + f(m′) and f(φ ·m) = φ · f(m)

for all m,m′ ∈M and φ ∈ C[AutA].

One may wish to read up on the relevant module theory in [EH18, §1.1.2 and

Chapter 2], but all we really need is the following.

Example 2.16. Let Q be an Aut(A)-set. Define − ·− : C[AutA]× LinQ→ LinQ

by extending the group action − · − : Aut(A) × LinQ → LinQ in (2.14) linearly,

i.e., by putting ( ∑
π∈Aut(A)

dππ
)
· v :=

∑
π∈Aut(A)

dπ(π · v)

for every
∑

π∈Aut(A) dππ ∈ C[AutA] and v ∈ LinQ. It is easy to check by linearity

that − · − satisfies the C[AutA]-module laws.

In particular, we have cidA ·v = cv and π ·v = π ·v for all c ∈ C, π ∈ Aut(A), and

v ∈ LinQ. Using linearity, it is straightforward to see that a C[AutA]-submodule

of LinQ is precisely an equivariant subspace, whereas a C[AutA]-module homomor-

phism f : LinQ→ LinQ′ is precisely an equivariant linear map. ■

Now, given a weighted orbit-finite automaton A = (Q,Σ, I, δ, F ), we see that

ι :=
∑
q∈Q

I(q)q, (2.17)

is a well-defined vector in LinQ by the non-guessing condition. Similarly,

Da : LinQ→ LinQ (2.18)

p 7→
∑
q∈Q

δ(p, a, q)q

is a well-defined linear map for any a ∈ Σ. Also,

φ(
∑
q∈Q

cqq) :=
∑
q∈Q

cqF (q) (2.19)
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Chapter 2. Atoms and automata

defines a linear functional φ : LinQ→ C.

An interesting but rather well-known property of the adjacency matrix A with

entries in {0, 1} arising from a finite directed graph G is that the (v0, vn) entry in

An counts the number of walks (v0, v1, . . . , vn) in G. We give a generalisation for

the weighted sum over labelled walks (2.12) that defines LA.

Proposition 2.20. For any w = a1 . . . an ∈ Σ∗, we have

LA(w) = (φ ◦Dan ◦ · · · ◦Da1)(ι).

Proof. The assumptions can in fact be relaxed to allow automata whose initial

weights are non-equivariant. We shall proceed by induction on the length of w for

every automaton A at once. The base case is immediate: by (2.12), we have

LA(ε) =
∑
q0∈Q

I(q0) · F (q0) = φ(ι).

Now assume the result for a1 . . . an, and let a0 ∈ Σ be arbitrary. Given an

automaton A = (Q,Σ, I, δ, F ), notice how

LA(a0a1 . . . an) =
∑

(q−1,q0,...,qn)∈Qn+2

I(q−1)
∏

0≤i≤n

δ(qi−1, ai, qi)F (qn)

=
∑

q−1∈Q

∑
(q0,...,qn)∈Qn+1

(
I(q−1)δ(q−1, a0, q0)

) ∏
1≤i≤n

δ(qi−1, ai, qi)F (qn)

=
∑

(q0,...,qn)∈Qn+1

( ∑
q−1∈Q

I(q−1)δ(q−1, a0, q0)
) ∏

1≤i≤n

δ(qi−1, ai, qi)F (qn)

= LA′(a1 . . . an)

where A′ := (Q,Σ, I ′, δ, F ) with I ′(q) :=
∑

q−1∈Q I(q−1)δ(q−1, a0, q). Note that A′

is a well-defined automaton: as I, δ satisfy the non-guessing condition, so does I ′

because the set of states
⋃

q−1∈Q,I(q−1) ̸=0{q ∈ Q | δ(q−1, a0, q) 6= 0} remains finite.

By the inductive hypothesis, it follows that LA′(a1 . . . an) = (φ ◦Dan ◦ · · · ◦Da1)(ι
′)

with ι′ :=
∑

q∈Q I
′(q)q =

∑
q−1∈Q I(q−1)

∑
q∈Q δ(q−1, a0, q)q = Da0(ι).

18



2.3. Zeroness checking

2.3 Zeroness checking

We finally return to solving the zeroness problem for weighted orbit-finite automata.

Given an automaton A, we define ι, (Da)a∈Σ, and φ as in (2.17)–(2.19).

2.3.1 Configuration spaces

Definition 2.21. We call (Dam ◦ · · · ◦Da1)(ι) ∈ LinQ the configuration of the word

a1 . . . am ∈ Σ∗. The nth configuration space Vn is the subspace of LinQ spanned by

{(Dam ◦ · · · ◦Da1)(ι) | a1 . . . am ∈ Σm, 0 ≤ m ≤ n}.

Proposition 2.22. LA : Σn → C is the zero function iff φ(Vm) = {0} for all m ≤ n.

Proof. Suppose that LA(w) = 0 for all w ∈ Σn. By Proposition 2.20, we see that φ

is zero at each configuration. As φ is linear, we conclude that φ(Vm) = {0} for all

m ≤ n.

Conversely, suppose that LA(w) 6= 0 for some a1 . . . am ∈ Σ∗ with 0 ≤ m ≤ n.

Then, again by Proposition 2.20, it is clear that φ is non-zero at the configuration

of a1 . . . am, and hence φ(Vm) 6= {0}.

We thus need to understand the Vn’s.

Proposition 2.23. The subspace Vn ⊆ LinQ is equivariant for all n.

Proof. Let π ∈ Aut(A). We have π · ι =
∑

q∈Q I(q)π · q =
∑

q∈Q I(π · q)π · q = ι

since I is equivariant and π · − is a bijection of Q. We also have

π ·Da(p) =
∑
q∈Q

δ(p, a, q)π · q =
∑
q∈Q

δ(π · p, π · a, π · q)π · q = Dπ·a(π · p)

for any p ∈ Q by the equivariance of δ. It follows by the linearity of π · − that

π ·Da(u) = Dπ·a(π ·u) for all u ∈ LinQ. Given a configuration v = (Dam◦· · ·◦Da1)(ι)

in Vn, we then have π · v = (Dπ·am ◦ · · · ◦Dπ·a1)(π · ι) = (Dπ·am ◦ · · · ◦Dπ·a1)(ι) which
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is the configuration of the word π · a1 . . . am of length m ≤ n. Again by the linearity

of π · − : LinQ→ LinQ, we conclude that π · w ∈ Vn for all w ∈ Vn.

In light of Example 2.16, Vn is thus a C[AutA]-submodule of LinQ. It is clear

from the definition that Vn ⊆ Vn+1 for all n, so we have an ascending sequence of

C[AutA]-submodules V0 ⊆ V1 ⊆ V2 ⊆ · · · in LinQ.

Proposition 2.24. If Vn = Vn+1 for some n, then Vn = Vn+i for all i ≥ 0.

Proof. Observe that

Vn+1 = V0 +
∑
a∈Σ

Da(Vn) (2.25)

for all n. Indeed a word of length m ≤ n + 1 is either the empty string ε, or

b1 . . . bm−1a whose configuration is Da(v) where v ∈ Vm−1 ⊆ Vn is the configuration

of the prefix b1 . . . bm−1.

Now suppose that Vn+1 = Vn for some n. Note that Vn+i = Vn implies that

Vn+i+1 = V0 +
∑

a∈ΣDa(Vn+i) = V0 +
∑

a∈ΣDa(Vn) = Vn+1 = Vn, so the conclusion

follows by induction.

The crux is therefore the strictly ascending prefix of the sequence.

Definition 2.26. Let M be a C[AutA]-module. A chain is a sequence of C[AutA]-

submodules

M0 ⊊M1 ⊊ · · · ⊊Ml

in M ; we say that the chain has length l. We define length(M) to be the largest

possible length of any chain in M if such a maximum exists; otherwise we set

length(M) =∞.

Remark (technical!). Equivalently and more commonly, length(M) is defined to be

the length of any composition series of M — a chain which is maximal in the sense

that no submodules can be added to extend it — thanks to the Jordan–Hölder

Theorem. Curious readers are invited to consult [GW04, Chapter 4]. ■
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2.3. Zeroness checking

Notice that if ι = 0, then {0} = V0 = V1 = · · · stabilises right away by (2.25).

Thus suppose that 0 6= ι ∈ V0. Provided that length(LinQ) is finite, we must have

{0} ⊊ V0 ⊊ · · · ⊊ Vs = Vs+1 = · · · (2.27)

for some s with s+1 ≤ length(LinQ). By Proposition 2.22, if LA is the zero function

then φ(Vs) = {0}. If conversely LA(Σ
∗) 6= {0} (which by Proposition 2.20 forces

ι 6= 0), φ(Vn) must be non-zero for some n ≤ s; let n be minimal. Then LA(w) must

be non-zero for some word w with length n ≤ length(LinQ)− 1.

Example 2.28. Consider a usual NFA N with states Q. Following Example 2.13,

we see by above that if LN 6= ∅ then it contains a word w whose length is less than

length(LinQ). But Aut(A) acts trivially on Q, so a C[AutA]-submodule of LinQ

simply amounts to a subspace. It follows that length(LinQ) = dim(LinQ), which

is just |Q|, the number of states.

We can arrive at the same conclusion with a much more rudimentary argument.

Pick a1 . . . an ∈ LN with the minimal length, and suppose for a contradiction that

n ≥ |Q|. Then there is an accepting run

q0
a1−→ q1 · · ·

an−→ qn

with n+ 1 > |Q| states, so necessarily qi = qj for some i < j. But then

q0
a1−→ · · · ai−→ qi

aj+1−−→ qj+1 · · ·
an−→ qn

is also an accepting run in the NFA, so a1 . . . aiaj+1 . . . an is a shorter word in LN

— which is absurd. Therefore the non-emptiness of LN must be witnessed by a

word whose length is strictly less than |Q| = length(LinQ). ■

2.3.2 Schützenberger’s algorithm

Example 2.29. For weighted finite automata, we also have length(LinQ) = |Q|.

The resulting zeroness-checking algorithm that iteratively computes V0, V1, . . . , V|Q|−1
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until φ(Vn) 6= {0} or Vn = Vn+1 is often attributed to Marcel-Paul Schützenberger

for his pioneering paper [Sch61].

Algorithm Zeroness of weighted automata
Input: Weighted finite automaton A = (Q,Σ, I, δ, F )

// Book-keeping

V0 ← |Q|-by-1 matrix whose (p, 1) entry is I(p)

for a ∈ Σ do

Da ← |Q|-by-|Q| matrix whose (p, q) entry is δ(p, a, q)

F0 ← 1-by-|Q| matrix whose (1, q) entry is F (q)

// Iteratively compute a |Q|-by-dim(Vn) matrix Vn representing Vn ⊆ LinQ

n← 0

repeat

if FVn has a non-zero entry then

return “LA is NOT the zero function”

Vn+1 ← V0 and the matrices DaVn, a ∈ Σ stacked horizontally . by (2.25)

Reduce Vn+1 to column echelon form and remove zero columns

n← n+ 1

until Vn−1 has the same number of columns as Vn

// Indeed φ(Vn) = {0} iff FVn is the zero matrix,

// and Vn ⊆ Vn+1 is strict iff Vn has fewer columns than Vn+1.

return “LA IS the zero function”

Note that the matrix operations can be performed in O(|Σ| · |Q|3) time at each

step. As there are at most length(LinQ) = |Q| steps, the overall algorithm runs in

O(|Σ| · |Q|4) time. ■

Perhaps surprisingly, the zeroness problem for weighted orbit-finite automata

can be reduced to that of weighted finite automata: by Lemma V.2 of [BKM21] we
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2.3. Zeroness checking

need only check the zeroness of a finitised automaton‡ with at most n · lk states and

l letters when Σ = A, where

• n is the number of orbits in Q,

• l = length(LinQ), and

• k is the smallest k′ such that every q ∈ Q is supported by at most k′ atoms.

All in all, we obtain an algorithm which runs in polynomial time with respect to

n · lk, provided that l is finite.

But is length(LinQ) finite when the set of states Q is only orbit-finite? That

is, do all chains of equivariant subspaces in the orbit-finite-dimensional state space

LinQ have finite lengths? A good starting point is Q = A(k); in fact, it turns out

that their lengths are all we need to know.

Lemma 2.30 (Generalised rank-nullity). For C[AutA]-modules M,N ,

• length(M ⊕N) = length(M) + length(N), and

• length(M) = length(ker f) + length(f(M)) ≥ length(f(M)) whenever f :

M → N is a C[AutA]-module homomorphism.

Remark. More generally, length(B) = length(A)+ length(C) whenever A→ B → C

is a “short exact sequence” — e.g., M ↪→ M ⊕ N ↠ N and ker f ↪→ M ↠ f(M).

See [EH18, Proposition 3.17(b)] or [GW04, Proposition 4.12] for a proof. ■

Corollary 2.31. Assume LinA(k) has finite length for all k ≥ 0. Then LinQ has

finite length whenever Q is orbit-finite.

Proof. Let Q be orbit-finite. By Lemma 2.9, we have an equivariant surjection

f :
⊔n

i=1 A(ki) → Q. We can easily check that the induced linear map

f̂ :
n⊕

i=1

LinA(ki) → LinQ

(a1, . . . , aki) 7→ f(a1, . . . , aki)

‡Namely, the weighted finite automaton (Qσ, σ, I|Qσ , δQσ×σ×Qσ , FQσ ) where σ := {1, . . . , l} and
Qσ := {q ∈ Q | q is supported by σ} are finite subsets of Σ and Q; more details can be found on
https://drive.google.com/file/d/14RIrUoZksd80oD2R1qeEWrbB9j18aeB1.
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is surjective and respects the Aut(A)-actions. It follows by Lemma 2.30 that

length(LinQ) ≤ length(
n⊕

i=1

LinA(ki)) =
n∑

i=1

length(LinA(ki)),

which is finite by assumption.

It remains to verify the assumption that length(LinA(k)) is finite, which will be

the focus of the two following chapters.
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3 Equivariant subspaces

In orbit-finite-dimensional vector spaces,
Equivariant subspaces find their places,
Where symmetry reigns and invariance holds,
A beauty that mathematicians unfold.

ChatGPT

To compute length(LinA(k)), perhaps the most straightforward way is to simply

find all the equivariant subspaces in LinA(k). We therefore attempt to classify all

subsets of LinA(k) that are closed under both linear combinations and permutations.

In doing so, we will compile a bestiary of these C[AutA]-submodules for both A =

(N,=) and A = ([n],=).

3.1 LinN and Lin [n]

Note that [n] ⊆ N gives rise to Lin [n] ⊆ LinN. Also, we view π ∈ Sn = Aut([n]) as

an element of Sn+1 and Aut(N) by letting π(i) := i for i 6∈ [n], so that Sn ⊆ Sn+1 ⊆

Aut(N) as groups.

Proposition 3.1. Define ε : LinN→ C by
∑

i aii 7→
∑

i ai, and write εn := ε|Lin [n].

Then ker(ε) := {v ∈ LinN | ε(v) = 0} ⊆ LinN is an Aut(N)-equivariant subspace,

while ker(εn) ⊆ Lin [n] is an Aut([n])-equivariant subspace.

Proof. We can check that ε is a C[AutN]-module homomorphism, i.e., ε(π · v +

v′) = π · ε(v) + ε(v′) for all v, v′ ∈ LinN and π ∈ Aut(N); its ker(ε) is then easily
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seen to be an equivariant subspace of LinN. Similarly εn is a C[Aut [n]]-module

homomorphism, so ker(εn) is an equivariant subspace of Lin [n].

Remark. {0} ⊊ ker(ε) ⊊ LinN and {0} ⊊ ker(εn) ⊊ Lin [n] for n ≥ 2: consider the

vectors 1− 2 and 1. ■

Lemma 3.2. ker(ε) and ker(εn), n ≥ 2 respectively have bases {1 − j | 2 ≤ j} and

{1− j | 2 ≤ j ≤ n}.

Proof. Clearly {1−j | 2 ≤ j} ⊆ ker(ε) is linearly independent: only 1−j contributes

to the coefficient of j. Moreover this set spans ker(ε), as any
∑

i∈N cii ∈ ker(ε) can

be written as
∑

i∈N(−ci)(1 − i) since
∑

i∈N ci = 0. Replacing N by [n], the same

argument shows that ker(εn) has {1− j | 2 ≤ j ≤ n} as a basis.

3.1.1 LinN

Proposition 3.3. {0}, ker(ε), and LinN are the only equivariant subspaces in LinN.

Proof. We paraphrase [BKM21, Example 5]. Let V ⊆ LinN be an equivariant

subspace. Suppose that V 6= {0}, so we can find a non-zero vector v =
∑

i∈I cii ∈ V

where we require ci 6= 0 for each i ∈ I. Then I ⊆ N is finite but non-empty,

and we can pick i0 ∈ N \ I as well as i1 ∈ I. By equivariance, V contains v′ :=

v − (i0 i1) · v = (0 − ci1)i0 + (ci1 − 0)i1 = ci1(i1 − i0). Now given j ≥ 2, we can

certainly find π ∈ Aut(N) with π(i1) = 1 and π(i0) = j. As ci1 6= 0 by assumption,

we see that c−1
i1
π · v′ = 1− j lies in V . It follows by Lemma 3.2 that ker(ε) ⊆ V .

Now suppose that ker(ε) ⊊ V , so there is w =
∑

j∈N dij ∈ V \ ker(ε). Then

w+
∑

j∈N dj(1− j) =
∑

j∈N dj1 = ε(w)1 ∈ V . As ε(w) 6= 0, by equivariance we have

n ∈ V for all n ∈ N. It follows that V = LinN.

Note that we were always able to choose a fresh atom i0 ∈ N \ I above. This

might not be possible when we work with [n] instead of N; indeed, the landscape of

Lin [n] differs slightly from that of LinN as a new equivariant subspace now emerges.
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3.1.2 Lin [n]

Proposition 3.4. {0}, C(1 + · · ·+ n), ker(εn), and Lin [n] are the only equivariant

subspaces in Lin [n] for n ≥ 2. Moreover Lin [n] = C(1 + · · ·+ n)⊕ ker(εn).

Proof. Firstly, observe that the 1-dimensional subspace C(1 + · · · + n) ⊆ Lin [n] is

equivariant: we have π · (1 + · · ·+ n) = 1 + · · ·+ n for any π ∈ Aut([n]).

Let V ⊆ Lin [n] be an equivariant subspace. Suppose that V ⊆ C(1 + · · · + n).

Then either

• dimV = 0, in which case V = {0}, or

• dimV = 1, in which case V = C(1 + · · ·+ n).

Now suppose that V 6⊆ C(1 + · · · + n), so there is v =
∑

i∈[n] cii ∈ V with ci0 6= ci1

for some i0, i1 ∈ I. Then v′ := v − (i0 i1) · v = (ci1 − ci0)(i1 − i0) ∈ V . For

2 ≤ j ≤ n, we can certainly find π ∈ Aut([n]) with π(i1) = 1, π(i0) = j so that

(ci1 − ci0)−1π · v′ = 1− j. It follows by Lemma 3.2 that ker(εn) ⊆ V ⊆ Lin [n]. But

dim(ker εn) = n− 1 whilst dim(Lin [n]) = n, so either

• dimV = n− 1, in which case V = ker(εn), or

• dimV = n, in which case V = Lin [n].

Finally we have ε(1 + · · · + n) = n 6= 0, which shows that C(1 + · · · + n)

and ker(εn) intersect trivially. By considering the dimensions, we conclude that

Lin [n] = C(1 + · · ·+ n)⊕ ker(εn).

Corollary 3.5. Below are the lattices of all equivariant subspaces in LinN and

Lin [n], n ≥ 2 with respect to inclusion. Thus length(LinN) = 2 = length(Lin [n]).

LinN Lin [n]

ker(ε) C(1 + · · ·+ n) ker(εn)

{0} {0}
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3.2 From LinN(k) to Lin [n](k)

Already when k = 1, we saw some connections (and disparities, no less) between

LinN(k) and Lin [n](k): notice that LinN = C[AutN] � Lin [n] and that ker(ε) =

C[AutN] � ker(εn) for any n ≥ 2, where the generating operator � is defined as

follows.

Definition 3.6. Let M be an R-module and let X ⊆ M be arbitrary. We write

R�X := {
∑

x∈X rx ·x | rx ∈ R is zero for all but finitely many x ∈ X} ⊆M . (The

more common notation is R · X, but it conflicts with how we denote the orbit

{r ·X | r ∈ R} of X under R.)

Remark. As M is an R-set, given x ∈M we note that the orbit R · x coincides with

R�{x} and is easily seen to be an R-submodule of M . Given X ⊆M , we see that

R�X =
∑

x∈X R · x is an R-submodule of M too. ■

Example 3.7. By definition, the C-vector space Lin [n] is a C-module; C�X is then

just the C-linear span of X ⊆ Lin [n]. For instance C�(1+ · · ·+n) = C(1+ · · ·+n),

and C� {1− j | 2 ≤ j ≤ n} = Lin [n] by Lemma 3.2. ■

3.2.1 Modules over C[AutN], C[S∞], and C[Sn]

Now fix k ≥ 1. On the one hand, Aut(N) naturally acts on LinN(k). On the other

hand, as Aut([n]) = Sn acts naturally on Lin [n](k), it is

S∞ :=
⋃
n≥1

Sn

that acts on
⋃

n≥1 Lin [n](k) = LinN(k). Note that S∞ ⊊ Aut(N): consider the per-

mutation
∏

i≥1(2k 2k + 1) which moves infinitely many points. We can nonetheless

reconcile this difference.

Proposition 3.8. Let V ⊆ LinN(k). Then V is a C[S∞]-submodule iff V is a

C[AutN]-submodule.
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Proof. If V is closed under the C[AutN]-actions, then clearly it is closed under the

actions of C[S∞] ⊆ C[AutN].

Conversely, suppose that V is only closed under the C[S∞]-actions. Let v =∑
p∈N(k) cpp ∈ V , and let π ∈ Aut(N). Writing supp(p) ⊆ N for the set of atoms

occurring in p ∈ N(k), we see that supp(v) :=
⋃

p∈N(k),cp ̸=0 supp(p) ⊆ N is finite. Since

π|supp(v) : supp(v)→ π · supp(v) is still bijective, it extends to a bijection π′ of [n] for

n ≥ max
(
supp(v)∪ π · supp(v)

)
. But π′ ∈ Sn ⊆ S∞, so V contains π′ · v = π · v.

Therefore length(LinN(k)) does not depend on whether we view LinN(k) as a

C[S∞]-module or as a C[AutN]-module. Moreover, we have the following bound.

3.2.2 supn�0 length(Lin [n](k)) bounds length(LinN(k)) from above

Theorem 3.9. Assume l ∈ N satisfies length(Lin [n](k)) ≤ l for sufficiently large n.

Then length(LinN(k)) ≤ l.

Proof. Say length(Lin [n](k)) ≤ l whenever n ≥ N . Suppose to the contrary that

length(LinN(k)) > l, so we can find a chain {0} ⊊ V1 ⊊ · · · ⊊ Vl+1 of length l+ 1 in

LinN(k). By induction, there exist v1, . . . , vl+1 ∈ LinN(k) such that

vi ∈ Vi \ C[S∞]� {v1, . . . , vi−1} = Vi \ (C[S∞] · v1 + · · ·+ C[S∞] · vi−1)

for all i: we can pick any v1 ∈ V1 \ {0}; having picked v1, . . . , vi−1, notice that

C[S∞] · v1 + · · · + C[S∞] · vi−1 ⊆ V1 + · · · + Vi−1 ⊆ Vi−1 ⊊ Vi. Now vi ∈ LinN(k) =⋃
n Lin [n](k), so each vi lies in Lin [ni]

(k) for some ni. Then vi ∈ Lin [N ′](k) for all i

if we put N ′ := max{n1, . . . , nl+1, N}, so that

Wi := C[SN ′ ]� {v1, . . . , vi} = C[SN ′ ] · v1 + · · ·+ C[SN ′ ] · vi

is a C[SN ′ ]-submodule of Lin [N ′](k). Clearly Wi−1 ⊆ Wi whenever 1 ≤ i ≤ l + 1,

but by assumption vi does not lie in C[S∞] � {v1, . . . , vi−1}, which contains Wi−1.

Therefore vi ∈ Wi \Wi−1, and we obtain a chain {0} = W0 ⊊ W1 ⊊ · · · ⊊ Wl+1 of
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Chapter 3. Equivariant subspaces

length l + 1 in Lin [N ′](k). But this is impossible since length(Lin [N ′](k)) ≤ l.

Remark. For k = 1, both the premise and the conclusion follow from Corollary 3.5:

we have length(Lin [n]) ≤ 2 for all n ≥ 2, and indeed length(LinN) ≤ 2. ■

Corollary 3.10. Under the same hypothesis, any equivariant subspace V ⊆ LinN(k)

is generated by at most l elements. In particular, V = C[S∞] �W where W is an

equivariant subspace of some Lin [n](k) with n ≥ N .

Proof. Suppose to the contrary that the C[AutN]-submodule V ⊆ LinN(k) cannot

be written as C[S∞] � {v1, . . . , vm} whenever m ≤ l. Then we can find v1, . . . , vl+1

such that vi+1 ∈ V \C[S∞]�{v1, . . . , vi} for 0 ≤ i ≤ l. Now, by putting Vi := C[S∞]�

{v1, . . . vi}, we see that V0 ⊊ V1 ⊊ · · · ⊊ Vl+1 is a chain of length l+1 in V ⊆ LinN(k).

By Theorem 3.9 this cannot occur, so we must have V = C[S∞] � {v1, . . . , vm} for

some v1, . . . , vm ∈ V with m ≤ l.

Choosing a large n ≥ N , we can accommodate v1, . . . , vm all inside Lin [n](k).

Then W := C[Sn] � {v1, . . . , vm} ⊆ Lin [n](k) is an equivariant subspace, and it is

immediate that V = C[S∞]�W as desired.

It remains to understand the equivariant subspaces of Lin [n](k) for all large n,

which seems to be an easier task. For one, any C[Sn]-submodule W ⊆ Lin [n](k) is

finite-dimensional and thus automatically finitely generated. We will make use of the

following criteria to compare the resulting C[S∞]-modules of the form C[S∞]�W .

Lemma 3.11. Let X,Y ⊆ LinN(k) be finite. The following are equivalent:

(a) C[S∞]�X ⊆ C[S∞]� Y ;

(b) there is n with C[Sn]�X ⊆ C[Sn]� Y ;

(c) there is n with C[Sn+i]�X ⊆ C[Sn+i]� Y for all i ≥ 0.

It follows that C[S∞]�X = C[S∞]� Y iff C[Sn]�X = C[Sn]� Y for some n.

Proof. It is routine to check that S� (R�Z) = S�Z whenever R ⊆ S is a subring,

and that S � ZX ⊆ S � ZY whenever ZX ⊆ ZY . But C[Sn] ⊆ C[Sn+i] ⊆ C[S∞] as

rings, so (b)⇒ (c) and (c)⇒ (a) follow immediately.
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3.3. Lin [n](2)

Now assume (a). Given x ∈ X, we then have x =
∑

y∈Y φx,y · y where each

φx,y ∈ C[S∞] is of the form
∑

π∈S∞
cx,y,ππ with all but finitely many cx,y,π ∈ C

being zero. As X and Y are finite, so is P :=
⋃

x∈X,y∈Y {π ∈ S∞ | cx,y,π 6= 0}. By

taking n large enough, we have P ⊆ Sn so that each φx,y lies in C[Sn]. Therefore

X ⊆ C[Sn]� Y , which implies that C[Sn]�X ⊆ C[Sn]� (C[Sn]� Y ) = C[Sn]� Y .

Using double inclusion, the final assertion follows straightforwardly.

3.3 Lin [n](2)

To find all the equivariant subspaces of LinN(k), by Corollary 3.10 we need only

determine the equivariant subspaces of Lin [n](k) for all large n. We shall presently

do so for k = 2; thus let n ≥ 2 so that [n](2) 6= ∅.

Here, it is helpful to view a vector
∑

a ̸=b c(a,b)(a, b) ∈ LinN(2) as a weighted, finite,

directed simple graph on the vertices {a ∈ N | c(a,b), c(b,a) 6= 0}: simply assign the

weight c(a,b) ∈ C to each edge (a, b). This helps explain the nomenclature of the linear

maps op : LinN(2) → LinN(2), in : LinN(2) → LinN, and out : LinN(2) → LinN

defined on the standard basis elements by

op : (a, b) 7→ (b, a),

in : (a, b) 7→ b,

out : (a, b) 7→ a.

These are clearly equivariant, and moreover satisfy

op(
∑
a ̸=b

c(a,b)(a, b)) =
∑
a ̸=b

c(b,a)(a, b),

in(
∑
a ̸=b

c(a,b)(a, b)) =
∑
b

(
∑
a ̸=b

c(a,b))b,

out(
∑
a ̸=b

c(a,b)(a, b)) =
∑
a

(
∑
b ̸=a

c(a,b))a.

We shall leverage these maps (or more pedantically, their restrictions to Lin [n](2),
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Chapter 3. Equivariant subspaces

which will be left implicit hereafter) to find equivariant subspaces in Lin [n](2).

Proposition 3.12. Lin [n](2) = ker(id+ op) ⊕ ker(id− op), where ker(id± op) are

equivariant subspaces with an
(
n
2

)
-element basis {(i, j)∓ (j, i) | 1 ≤ i < j ≤ n}.

Remark. ker(id± op) respectively consist of the graphs with antisymmetric and sym-

metric weight functions with respect to edge reversal. ■

Proof. Given any vector v ∈ Lin [n](2), we can write

v =
1

2
(v − op(v)) + 1

2
(v + op(v))

where (id± op)(v ∓ op(v)) = (v ∓ op(v)) ± (op(v) ∓ v) = 0 since op ◦ op = id.

Thus Lin [n](2) = ker(id+ op)+ker(id− op), where the sum is furthermore direct as

v ∈ ker(id+ op) ∩ ker(id− op) implies that v = 1
2
0 + 1

2
0 = 0 by the above equation.

Also, as id and op are both C[Sn]-module homomorphisms, so is id+ op; thus

ker(id+ op) ⊆ Lin [n](2) is a C[Sn]-submodule. Now consider

B+ := {(i, j)− (j, i) | 1 ≤ i < j ≤ n}.

It is clear that (i, j) − (j, i) lies in ker(id+ op) and is the only vector in B+ that

contributes to the coefficient of (i, j). So B+ ⊆ ker(id+ op) is linearly independent,

and we have dim(ker(id+ op)) ≥ |B+| =
(
n
2

)
. But, by defining B− analogously, we

have dim(ker(id− op)) ≥ |B−| =
(
n
2

)
by the same argument. Since

n(n− 1) = dim(Lin [n](2)) = dim(ker(id+ op)) + dim(ker(id− op))

by the direct sum decomposition above, we see that dim(ker(id± op)) =
(
n
2

)
= |B±|

precisely. It follows that B± give a basis for ker(id± op) respectively.

3.3.1 1n and Vn

We would like to decompose ker(id± op) further. One idea is to reuse the earlier

classification of equivariant subspaces in Lin [n] and see if any isomorphic copy ap-
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3.3. Lin [n](2)

pears in the kernels. We are thus led to consider ej :=
∑

i ̸=j (i, j) ∈ Lin [n](2) for

1 ≤ j ≤ n which satisfies π · ej = eπ·j for all π ∈ Sn, so that

ηn : i 7→ ei

extends to an equivariant linear map ηn : Lin [n] → Lin [n](2). As C[Sn]-module

homomorphisms are closed under compositions and pointwise linear combinations,

we have gathered quite a few C[Sn]-modules and module homomorphisms by now;

the (non-commutative) diagram below gives a summary of our current repertoire.

Lin [n](2) Lin [n] C

ker(id± op) ker(εn) C(1 + · · ·+ n)

{0} {0}

ηn ϵn

in,out

op

(3.13)

Proposition 3.14. For n ≥ 3, let

1n := ηn(C(1 + · · ·+ n)) (3.15)

and

Vn := ηn(ker εn). (3.16)

Suppose that λ, µ ∈ C are not both zero. Then 1n and (λ id+ µ op)(Vn)

• are both equivariant subspaces of Lin [n](2),

• satisfy length(1n) = 1 = length((λ id+ µ op)(Vn)), and

• have bases {e1+ · · ·+ en} and {(λ id+µ op)(e1− ej) | 2 ≤ j ≤ n} respectively.

Proof. Let φ denote the restriction of (λ id + µ op) ◦ ηn to ker(εn). Then clearly

φ : ker(εn) → Lin [n](2) is a C[Sn]-module homomorphism, and we can easily check

that its image φ(ker εn) = (λ id+ µ op)(Vn) is a C[Sn]-submodule of Lin [n](2). Now

φ(1− 2) = (λ id+ µ op)(
∑
i ̸=1

(i, 1)−
∑
j ̸=2

(j, 2))
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Chapter 3. Equivariant subspaces

must be non-zero: observe that the coefficients of (3, 1) and (2, 3) are λ and −µ

respectively. Thus ker(φ) is an equivariant subspace of ker(εn) but 1 − 2 6∈ ker(φ),

so by Corollary 3.5 we must have ker(φ) = {0}. It follows that φ is a C[Sn]-module

isomorphism between ker(εn) and φ(ker εn) = (λ id+ µ op)(Vn); by Lemma 2.30

length((λ id+ µ op)(Vn)) = length(ker εn) = 1.

Also, φ is a fortiori an injective linear map; as {1 − j | 2 ≤ j ≤ n} is a basis of

ker(εn), {φ(1− j) = (λ id+ µ op)(e1 − ej) | 2 ≤ j ≤ n} forms a basis for φ(ker εn).

By applying the same argument to ηn|C(1+···+n), we see that 1n = C(e1+ · · ·+en)

is an equivariant subspace of length 1 as well.

3.3.2 Un

Observe that 1n and (id+ op)(Vn) are both contained in ker(id− op): indeed op(e1+

· · · + en) = op(
∑

i ̸=j (i, j)) =
∑

i ̸=j (j, i) = e1 + · · · + en for the former, whereas

(id− op) ◦ (id+ op) = 0 for the latter.

Proposition 3.17. Let n ≥ 4. We have ker(id− op) = 1n ⊕ (id+ op)(Vn) ⊕ Un,

where

Un := C� {(id+ op)(
(a, b)− (b, c)

+ (c, d)− (d, a)

) | (a, b, c, d) ∈ Lin [n](4)} (3.18)

is a 1
2
n(n− 3)-dimensional equivariant subspace of Lin [n](2).

Proof. Start by writing ua,b,c,d for (id+ op)((a, b)−(b, c)+(c, d)−(d, a)), and consider

U := {u1,2,c,d | 3 ≤ c < d ≤ n} ∪ {u1,3,2,d | 4 ≤ d ≤ n}

which consists of
(
n−2
2

)
+ (n− 3) = 1

2
n(n− 3) elements.

Recall that vectors in ker(id− op) correspond to directed graphs with a symmet-

ric weight function. We can thus visualise them as undirected weighted graphs; by

way of illustration, u1,3,2,n and (id+ op)(e1 − e2) are depicted below — a blue edge
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3.3. Lin [n](2)

has a positive weight of +1, whilst an orange edge has a negative weight of −1.

1 1

3 n 3 4 · · · n− 1 n

2 2

Claim: Un is equivariant.

Any vector u ∈ Un is a linear combination of the ua,b,c,d’s. As id+ op is equivariant,

for any π ∈ Sn we have π · ua,b,c,d = uπ(a),π(b),π(c),π(d) ∈ Un, so by linearity π · u lies in

Un too. ■

Claim: Un = C� U, so dim(Un) ≤ |U|.

We first show that ua,b,c,d lies in C � U whenever {a, b, c, d} ∩ {1, 2} = {1, 2}. As

ua,b,c,d = −ub,c,d,a, by cyclically permuting the atoms if necessary we may assume

that a = 1; as u1,b,c,d = −u1,d,c,b, we may assume that b < d and that d 6= 2. Now

• u1,3,2,d ∈ U for 4 ≤ d ≤ n, and

• u1,b,2,d = −u1,3,2,b + u1,3,2,d ∈ C� U for all 4 ≤ b 6= d ≤ n;

• u1,2,c,d ∈ U for 3 ≤ c < d ≤ n, and

• u1,2,d,c = u1,2,c,d − u1,c,2,d ∈ C� U.

It follows that u1,b,c,d = −u1,2,c,b + u1,2,c,d ∈ C � U whenever b, c, d ∈ [n] \ {1, 2}

are distinct, which covers the case {a, b, c, d} ∩ {1, 2} = {1}. The remaining case

{a, b, c, d} ∩ {1, 2} ⊆ {2} is now immediate: ua,b,c,d = −u1,b,a,d + u1,b,c,d ∈ C � U

whenever a, b, c, d ∈ [n] \ {1} are distinct. This establishes the inclusion C � U ⊇

C� {ua,b,c,d | (a, b, c, d) ∈ [n](4)}; the other inclusion is obvious. ■

Claim: Un + (id+ op)(Vn) is (
(
n
2

)
− 1)-dimensional.

Recall from Proposition 3.14 that

V := {(id+ op)(e1 − ej) | 2 ≤ j ≤ n}
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forms a basis for (id+ op)(Vn), and thus Un+(id+ op)(Vn) = C�U+C�V. Writing

D := {(id+ op)((1, 2)− (i, j)) | 1 ≤ i < j ≤ n, (i, j) 6= (1, 2)},

we will first show that C � U + C � V = C � D. For any (a1, a2), (b1, b2) ∈ [n](2),

note that

(id+ op)((a1, a2)− (b1, b2)) = − (id+ op)((1, 2)− (min
i
ai,max

i
ai))

+ (id+ op)((1, 2)− (min
i
bi,max

i
bi)) ∈ C�V.

It is then clear that U ⊆ C�D. Also, given 2 ≤ j ≤ n observe that

(id+ op)(e1 − ej) = (id+ op)(
∑
a ̸=1

(a, 1)−
∑
b ̸=j

(b, j))

=
∑
d ̸=1,j

(id+ op)((d, 1)− (d, j))

as the a = j term cancels with the b = 1 term. Thus V ⊆ C � D as well, which

establishes the inclusion C� U+ C�V ⊆ C�D.

On the other hand, as u1,3,2,d = (id+ op)((3, 1)− (3, 2) + (d, 2)− (d, 1)), we see

that C� U+ C�V contains

(id+ op)(e1 − e2) +
∑

4≤d≤n

u1,3,2,d = (n− 2)(id+ op)((3, 1)− (3, 2)) =: v.

But Un + Vn is equivariant since both Un and Vn are equivariant, so

1

n− 2
(id+ (1 3 2 4)) · v = (id+ op)((3, 1)− (3, 2) + (2, 3)− (2, 4))

= (id+ op)((3, 1)− (2, 4)) =: v′

also lies in C� U+ C�V. Now each (id+ op)((1, 2)− (i, j)) ∈ D is easily seen to

be a permutation of v or v′ depending on whether {i, j}∩{1, 2} is an empty set or a

singleton. By invoking equivariance again, we conclude that C�U+C�V ⊇ C�D.

Finally, note that D is linearly independent: only (id+ op)((1, 2) − (i, j)) ∈ D

contributes to the coefficient of (i, j) for 1 ≤ i < j ≤ n, (i, j) 6= (1, 2). Therefore
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3.3. Lin [n](2)

C� U+ C�V = C�D has dimension
(
n
2

)
− 1. ■

Claim: dim(Un) =
1
2
n(n− 3).

By above we have dim(C�U) + dim(C�V)− dim(C�U∩C�V) = dim(C�D),

so dim(C�U) ≥ dim(C�D)−dim(C�V) = (1
2
n(n− 1)− 1)− (n− 1) = 1

2
n(n− 3)

with equality iff C � U ∩ C � V = {0}. But dim(C � U) ≤ |U| = 1
2
n(n − 3); thus

Un = C�U has dimension 1
2
n(n− 3) precisely, and C�D = (C�U)⊕ (C�V). ■

Claim: (C�D)⊕ 1n = ker(id− op).

It is clear that C�D+1n ⊆ ker(id− op) is an equivariant subspace. Recall that 1n

contains e1 + · · ·+ en =
∑

1≤i ̸=j≤n (i, j) =
∑

1≤i<j≤n(id+ op)((i, j)), so C�D+ 1n

contains

(e1 + · · ·+ en) +
∑
v∈D

v =

(
n

2

)
(id+ op)((1, 2))

where
(
n
2

)
6= 0 as we assumed that n ≥ 4. By equivariance we see that C�D+ 1n

contains {(id+ op)((i, j)) | 1 ≤ i < j ≤ n}, which by Proposition 3.12 forms

a basis for ker(id− op). Therefore C � D + 1n = ker(id− op), and furthermore

dim(C�D ∩ 1n) = (
(
n
2

)
− 1) + 1−

(
n
2

)
= 0. ■

Thus ker(id− op) = (C �D) ⊕ 1n = Un ⊕ (id+ op)(Vn) ⊕ 1n, which completes

the lengthy proof of Proposition 3.17.

3.3.3 Wn

We tackle ker(id+ op) analogously.

Proposition 3.19. Let n ≥ 3. We have ker(id+ op) = (id− op)(Vn)⊕Wn, where

Wn := C� {(id− op)((a, b) + (b, c) + (c, a)) | (a, b, c) ∈ [n](3)} (3.20)

is an
(
n−1
2

)
-dimensional equivariant subspace of Lin [n](2), n ≥ 3.
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Chapter 3. Equivariant subspaces

Proof. Again start by writing wa,b,c for (id− op)((a, b) + (b, c) + (c, a), and consider

W := {w1,i,j | 2 ≤ i < j ≤ n}

which consists of
(
n−1
2

)
elements.

Recall that vectors in ker(id+ op) correspond to directed graphs with an anti-

symmetric weight function; that is, if (i, j) has weight c, then (j, i) necessarily has

weight −c. Thus we need only keep track of the edges (i, j) with a positive weight.

For instance, w1,3,2 and (id− op)(e1 − e2) are depicted as follows — a dashed edge

from i to j represents the vector (i, j)− (j, i).

1 1

3 3 4 · · · n− 1 n

2 2

Claim: Wn is equivariant.

Any w ∈ Wn is a linear combination of the wa,b,c’s. For any π ∈ Sn we have

π · wa,b,c = wπ(a),π(b),π(c) ∈ Wn, so by linearity π · w lies in Wn too. ■

Claim: Wn = C�W, so dim(Wn) ≤ |W|.

Clearly C �W ⊆ Wn; it remains to show that C �W contains wa,b,c given any

(a, b, c) ∈ [n](3). Observe that wa,b,c = w1,a,b + w1,b,c + w1,c,a if a, b, c ∈ [n] \ {1},

which is aptly demonstrated by summing the boundaries of a tetrahedron without

its bottom face as illustrated below.

1

a

b c
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Now either a < b and w1,a,b is in W directly, or a > b and w1,a,b = −w1,b,a ∈ C�W;

hence wa,b,c ∈ C�W. In the remaining case that 1 ∈ {a, b, c}, we may assume that

a = 1 since wa,b,c = wb,c,a = wc,b,a; the argument right above then shows that w1,b,c

lies in C�W. ■

Claim: ker(id+ op) = (id− op)(Vn) +Wn.

As both (id− op)(Vn) and Wn are equivariant subspaces of ker(id+ op), so is their

sum (id− op)(Vn) +Wn.

We now show the reverse inclusion ker(id+ op) ⊆ (id− op)(Vn) +Wn. Recall

that (id− op)(Vn) contains

(id− op)(e1 − e2) = (id− op)(
∑
a ̸=1

(a, 1)−
∑
b ̸=2

(b, 2))

= (id− op)(2(2, 1) +
∑
c ̸=1,2

(c, 1) + (2, c)).

As w2,1,c = (id− op)((2, 1)− (c, 1)− (2, c)), we see that (id− op)(Vn) +Wn contains

(id− op)(e1 − e2) +
∑

3≤c≤n

w2,1,c = n(id− op)(2, 1).

By equivariance (id− op)(Vn) + Wn contains {(id− op)(i, j) | 1 ≤ i < j ≤ n},

which by Proposition 3.12 forms a basis for ker(id+ op). Thus ker(id+ op) =

(id− op)(Vn) +Wn. ■

Finally, by passing to dimensions we obtain dim(Wn) ≥
(
n
2

)
− (n − 1) =

(
n−1
2

)
with equality iff (id− op)(Vn) ∩Wn = {0}. But we showed above that dim(Wn) ≤

|W| =
(
n−1
2

)
, so dim(Wn) =

(
n−1
2

)
precisely and it follows that ker(id+ op) =

(id− op)(Vn)⊕Wn.

We have, for any n ≥ 4, arrived at

Lin [n](2) = ker(id− op)⊕ ker(id+ op)

= 1n ⊕ (id+ op)(Vn)⊕ Un ⊕ (id− op)(Vn)⊕Wn, (3.21)
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Chapter 3. Equivariant subspaces

which by Lemma 2.30 shows that length(Lin [n](2)) = 3 + length(Un) + length(Wn).

We still need to further decompose Un and Wn or, ideally, prove that no proper

equivariant subspaces are lurking around. It should be evident by now that reasoning

from first principles can become quite arduous. Instead, we will harness the full

power of character theory and discover that the heavy lifting has already been done.

3.4 Character theory

C[Sn]-modules enjoy some miraculous properties; we will enumerate a few of them

following the exposition of [Ser77].

3.4.1 Some results

In Proposition 3.17, we painstakingly exhibited an equivariant complement Un to

1n ⊕ (id+ op)(Vn) in ker(id− op). We will now see that, in fact, such a Un is

guaranteed to exist.

Lemma 3.22 (Maschke’s Theorem). Let U ⊆ V be finite-dimensional C[Sn]-

modules. Then there exists another C[Sn]-submodule U ′ ⊆ N such that U ⊕U ′ = V .

Proof. By picking a basis for U and extending it to a basis of V , we can find a

subspace W ⊆ V such that U ⊕W = V . This linear complement W will certainly

not be closed under the Sn-actions in general. Nonetheless, we can employ an

“averaging” trick: writing ϕ : V = U ⊕W → U to be the projection map sending

u+ w 7→ u, we define a new map ϕ : V → V by

ϕ(v) :=
1

|Sn|
∑
π∈Sn

π · ϕ(π−1 · v).

It is easy to check that ϕ is linear; moreover, given any τ ∈ Sn we have ϕ(τ · v) =
1

|Sn|
∑

π∈Sn
π ·ϕ((τ−1 ◦π)−1 · v) = τ · 1

|Sn|
∑

π∈Sn
(τ−1 ◦π) ·ϕ((τ−1 ◦π)−1 · v) = τ ·ϕ(v)

since π 7→ τ−1◦π gives a bijection of Sn, showing that ϕ is equivariant. In particular,

ker(ϕ) ⊆ V is an equivariant subspace.
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3.4. Character theory

Now, for any u ∈ U , we have ϕ(u) = 1
|Sn|

∑
π∈Sn

π · (π−1 · u) = u because each

π−1 · u still lies in U . Therefore ϕ(U) = U , and by the Rank-Nullity Theorem we

get dim(kerϕ) + dim(U) = dim(V ). But u ∈ ker(ϕ)∩U implies that 0 = ϕ(u) = u,

so by considering the dimensions we conclude that V = ker(ϕ)⊕ U . Thus ker(ϕ) is

the desired equivariant complement to U in V .

Remark. Despite the constructive nature of the proof, the calculations are only

practical for small, individual values of n. Also, the theory does not apply to the

C[S∞]-module LinN: ker(ε) ⊆ LinN does not admit an equivariant complement,

since ker(ε) itself is the only proper equivariant subspace of LinN by Corollary 3.5.

■

The existence alone of equivariant complements carries important theoretical

consequences concerning the structure of finite-dimensional C[Sn]-modules.

Definition 3.23. An R-module M is said to be simple if length(M) = 1. Equiva-

lently, M is simple if it is non-zero and contains no proper R-submodules.

Corollary 3.24. Let V be a finite-dimensional C[Sn]-module. Then there exist

simple C[Sn]-submodules U1, . . . , Un ⊆ V such that
⊕

i Ui = V .

Proof. We proceed by induction on d = dim(V ). The base cases are straightforward:

when d = 0, V = {0} is the empty direct sum; when d = 1, V must be simple as

{0} ⊊ V is the only chain for dimension reasons.

Now suppose that d > 1. Let U ⊆ V be a non-zero C[Sn]-submodule of the

least dimension; note that U must be simple. If U = V , then the decomposition is

trivial. Otherwise, by Maschke’s Theorem, we can write V = U⊕U ′ for some C[Sn]-

submodule U ′ ⊆ V where dim(U ′) = dim(V )− dim(U) < dim(V ). By the inductive

hypothesis, we obtain U ′ =
⊕

j U
′
j where each U ′

j is simple. Thus V = U ⊕ (
⊕

j U
′
j),

which completes the induction.

As we will see, the existence of a decomposition into simples is but one of the

algebraic miracles. But first, more theory.

41



Chapter 3. Equivariant subspaces

Definition 3.25. Let V be a finite-dimensional C[Sn]-module with B = {b1, . . . , bd}

as a basis. Given a linear map ϕ : V → V , we write B(ϕ)B for the d-by-d matrix

whose (i, j) entry is the coefficient ci,j of bi in ϕ(bj). Then the character χV : Sn → C

of V is the map sending π ∈ Sn to the trace tr(B(π · −)B) =
∑d

i=1 ci,i.

Remark. χV does not depend on the basis B chosen: if B′ is another basis of

V , then B′(π · −)B′ = B′(id)B B(π · −)B B(id)B′ ; since tr(ABC) = tr(CAB) and

B(id)B′ B′(id)B is the identity matrix, we see that tr(B′(π · −)B′) = tr(B(π · −)B).

The same argument also shows that isomorphic C[Sn]-modules share the same

characters. Indeed if ϕ : V ′ → V is an equivariant linear bijection and B,B′ are

any bases for V, V ′, then we have B′(π · −)B′ = B′(ϕ)B B(π · −)B B(ϕ
−1)B′ . ■

At first glance, we lose a lot of information by reducing each linear map π · − to

a mere scalar χV (π) ∈ C. As it turns out, this is not the case at all.

Lemma 3.26. Given C[Sn]-modules V and V ′, consider

〈χV , χV ′〉 := 1

|Sn|
∑
π∈Sn

χV (π)χV (π)

where c denotes the complex conjugate of c ∈ C. We have the following.

(a) If U and U ′ are simple, then

〈χU , χU ′〉 =


0 if U 6' U ′,

1 if U ' U ′.

Moreover

dimU

|Sn|
∑
π∈Sn

χU(π)π · u′ =


0 if U 6' U ′,

u′ if U ' U ′

for all u′ ∈ U ′.

(b) χV⊕V ′ = χV + χV ′.

(c) χV = χV ′ iff V ' V ′.

Remark. The proof for (a) is standard but slightly lengthy; (b) is easy, and (c) then
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3.4. Character theory

follows quite straightforwardly by applying Corollary 3.24 of Maschke’s Theorem.

We refer avid readers to [Ser77, §2]. ■

3.4.2 Decomposing Lin [n](2)

Let us return to Lin [n](2). Since [n]2 = {(i, i) | i ∈ [n]} t [n](2) as Sn-sets, we have

Lin [n]2 ' Lin [n] ⊕ Lin [n](2) as C[Sn]-modules, so χLin [n](2) = χLin [n]2 − χLin [n] as

functions Sn → C. Now fix π ∈ Sn. Observe that, given an Sn-set X, the matrix

X(π · −)X has an entry of 1 at (π · x, x) for each x ∈ X and zero everywhere else;

writing Fixπ(X) := {x ∈ X | π · x = x}, we then see that the trace χLinX(π) =

|Fixπ(X)| is a non-negative integer. In particular, as π · (a1, . . . , ak) = (a1, . . . , ak)

iff each ai ∈ Fixπ([n]), we have Fixπ([n]k) = Fixπ([n])k. Therefore χLin [n](2)(π) =

|Fixπ([n]2)| − |Fixπ([n])| = s2 − s with s := |Fixπ([n])|, and

〈χLin [n](2) , χLin [n](2)〉 =
1

|Sn|
∑
π∈Sn

(s2 − s)2

=
1

|Sn|
∑
π∈Sn

∣∣Fixπ([n]4)∣∣− 2
∣∣Fixπ([n]3)∣∣+ ∣∣Fixπ([n]2)∣∣ .

But 1
|Sn|

∑
π∈Sn
|Fixπ(X)| counts the number of orbits in X by Burnside’s Lemma.

Using (2.8), we compute that [n]4, [n]3, and [n]2 respectively have 1 + 7 + 6 + 1 =

15, 1 + 3 + 1 = 5, and 1 + 1 = 2 orbits provided that n ≥ 4. It follows that

〈Lin [n](2),Lin [n](2)〉 = 15− 2 · 5 + 2 = 7.

On the other hand, by Maschke’s Theorem we may decompose Un and Wn into

direct sums of simple C[Sn]-modules. After grouping the simple modules by their

isomorphism types, from (3.21) we obtain

Lin [n](2) =
⊕
i

mi⊕
j=1

Ui,j;

more elaborately, we require the simple modules Ui,j to satisfy Ui,j ' Ui,j′ for all

i as well as Ui,j 6' Ui′,j′ whenever i 6= i′. We may assume that U1,1 = 1n and

U2,1 = (id+ op)(Vn), U2,2 = (id− op)(Vn): these are simple by Proposition 3.14
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Chapter 3. Equivariant subspaces

with (id+ op)(Vn) ' ker(εn) ' (id− op)(Vn); additionally, 1n 6' ker(εn) because

dim(1n) = 1 6= n − 1 = dim(ker εn) — a C[Sn]-module isomorphism is a fortiori

a linear bijection and thus must preserve dimensions. Hence m1 ≥ 1 and m2 ≥ 2.

Now χLin [n](2) =
∑

i

∑mi

j=1 χUi,j
=

∑
imiχUi,1

, so we obtain

〈χLin [n](2) , χLin [n](2)〉 =
∑
i

∑
i′

mimi′〈χUi,1
, χUi′,1

〉 =
∑
i

mi
2〈χUi,1

, χUi,1
〉 =

∑
i

mi
2

by applying both cases of Lemma 3.26(a) consecutively. But 7 = 12 + · · · + 12 and

7 = 22 + 12 + 12 + 12 are the only ways to write 7 as a sum of squares, so by our

assumption on m1,m2 we are forced to conclude that m2 = 2 and m1,m3,m4 = 1.

As each Ui,j has length 1, it follows that

length(Lin [n]2) = m1 +m2 +m3 +m4 = 5 (3.27)

for all n ≥ 4. Moreover, recall that by construction the unidentified subspaces

U3,1, U4,1 are disjointly the simple constituents of Un and of Wn. As Un,Wn 6= 0,

without loss of generality we must have U3,1 = Un, U4,1 = Wn. In particular Un,Wn

are already simple, so (3.21) is already a decomposition into simple constituents.

3.4.3 Uniqueness of the decomposition

Remarkably, the C[Sn]-submodules of Lin [n](2) are almost uniquely determined by

the decomposition (3.21). To this end, suppose M ⊆ Lin [n](2) is an equivariant

subspace. By Maschke’s Theorem, there exists another equivariant subspace M ′

with M ⊕M ′ = Lin [n](2), and we can make the further decomposition M ⊕M ′ =

(S1⊕· · ·⊕Sm)⊕ (Sm+1⊕· · ·⊕Sl) into simple constituents; note that 0 ≤ m ≤ l = 5

for length reasons. Firstly, each Si must be isomorphic to one of 1n, Vn, Un, or Wn:

otherwise by letting
∑

π∈Sn
χSi

π act on
⊕

i Si = 1n⊕ ((id± op)(Vn))⊕Un⊕Wn we

obtain Si = {0} by Lemma 3.26(a), so length(Si) = 0 6= 1 which contradicts the

assumption that Si is simple. Using the same technique with 1n, Un, Wn, and Vn in

place of Si, we see that
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3.4. Character theory

• 1n = Si1 , Un = Si2 , and Wn = Si3 where i1, i2, i3 are distinct;

• Vn ' Si4 , Si5 is the remaining isomorphism type, and

• (id+ op)(Vn)⊕ (id− op)(Vn) = Si4 ⊕ Si5 .

We now determine Si4 .

Lemma 3.28. (id+ op)(Vn)⊕ (id− op)(Vn) = (λ id+ µ op)(Vn) + (λ′ id+ µ′ op) iff

(λ, µ), (λ′, µ′) ∈ C2 are linearly independent. Moreover, if either condition holds,

then (λ id+ µ op)(Vn) ∩ (λ′ id+ µ′ op)(Vn) = {0}.

Proof. Suppose (λ, µ), (λ′, µ′) are linearly dependent. Then c(λ, µ) + d(λ′, µ′) =

(0, 0) for some c, d ∈ C not both zero; without loss of generality, say c 6= 0. Now

(λ′, µ′) = d
c
(λ, µ), so (λ′ id + µ′ op)(Vn) = d

c
(λ id + µ op)(Vn) ⊆ (λ id + µ op)(Vn).

Hence (λ id + µ op)(Vn) + (λ′ id + µ′ op)(Vn) = (λ id + µ op)(Vn) is either {0} in

the case that λ = 0 = µ, or has dimension n − 1 by Proposition 3.14; however,

(id+ op)(Vn)⊕ (id− op)(Vn) has dimension 2(n− 1).

Suppose now that (λ, µ), (λ′, µ′) are linearly independent. Then λ, µ cannot be

both zero, and neither can λ′, µ′; also

C� {(λ, µ), (λ′, µ′)} = C2 = C� {(1, 1), (1,−1)}.

But by Proposition 3.14, {(λ id+µ op)(e1−ej), (λ′ id+µ′ op)(e1−ej) | 2 ≤ j ≤ n} and

{(id+ op)(e1 − ej), (id− op)(e1 − ej) | 2 ≤ j ≤ n} respectively form bases for both

sides of the purported equation; by above, these two span the same vector space.

Moreover (λ id+µ op)(Vn)∩ (λ′ id+µ′ op) has dimension 2(n+1)− (n+1)− (n+1),

so the sum is direct.

Thus Si4 ⊆ (id+ op)(Vn) ⊕ (id− op)(Vn) = Vn ⊕ op(Vn), giving us projection

maps

ϕ : Si4 → Vn, ϕ′ : Si4 → op(Vn)

that satisfy idSi4
= ϕ + ϕ′. If ϕ = 0, then {0} ⊊ Si4 ⊆ op(Vn) which implies that

Si4 = op(Vn) by simplicity; analogously, if ϕ′ = 0 then Si4 = Vn. The only remaining
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Chapter 3. Equivariant subspaces

case is when ϕ, ϕ′ 6= 0.

As Vn ' Si4 , pick an isomorphism ψ : Vn → Si4 ; we then get a C[Sn]-module

endomorphism

ϕ ◦ ψ : Vn → Vn

which is certainly a linear endomorphism of a finite-dimensional vector space. Be-

cause we work over C, its characteristic polynomial must admit a root λ ∈ C. We can

thus find an eigenvector v 6= 0 associated with λ which satisfies (ϕ◦ψ−λ id)(v) = 0,

so {0} ⊊ ker(ϕ ◦ ψ − λ id) ⊆ Vn. Since ϕ ◦ ψ − λ id is moreover a C[Sn]-module

homomorphism, by simplicity we must have ker(ϕ ◦ψ− λ id) = Vn. In other words,

the identity ϕ ◦ψ = λ id holds on Vn, which shows that ϕ = λψ−1 as ψ is invertible;

note also that λ 6= 0 since we assumed that ϕ 6= 0. This simple but powerful result

is known as Schur’s Lemma.

But we can apply the same Lemma to op ◦ ϕ′ ◦ ψ and obtain op ◦ ϕ′ = µψ−1 for

some µ 6= 0. It follows that µϕ = λµψ−1 = λ(op ◦ ϕ′) and that

µ idSi4
= µϕ+ µϕ′ = (λ op+µ idop(Vn)) ◦ ϕ′,

which shows that

{0} ⊊ Si4 = (µ idSi4
)(Si4) ⊆ (λ op+µ id)(op(Vn)) = (λ id+ µ op)(Vn).

But this last is simple by Proposition 3.14; hence Si4 = (λ id + µ op)(Vn) precisely.

We also see that the cases ϕ = 0 and ϕ′ = 0 can be subsumed by putting (λ, µ) =

(0, 1), (1, 0) respectively. Of course, the same applies to Si5 , giving Si5 = (λ′+µ′)(Vn)

where λ′, µ′ are not both zero. As Si4 ⊕ Si5 = (id+ op)(Vn) ⊕ (id− op)(Vn), by

Lemma 3.28 we see that (λ, µ) and (λ′, µ′) must be linearly independent.

Finally, recall that M ⊆ Lin [n](2) is the direct sum of a subset of {Si1 , . . . , Si5}.

As we have determined what each Sik must look like — to recapitulate,

• (Si1 , Si2 , Si3) = (1n, Un,Wn), whilst

• (Si4 , Si5) = ((λ id+ µ op)(Vn), (λ′ id+ µ′ op)(Vn))
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where (λ, µ), (λ′, µ′) ∈ C2 \ {(0, 0)} is linearly independent — we also know what

M must look like. Additionally, if we have Si4 ⊕ Si5 ⊆ M , then by Lemma 3.28 we

might as well set (λ, µ) = (1, 1) and (λ′, µ′) = (1,−1). Conversely, the direct sumM

of any subset of such {Si1 , . . . , Si5} is certainly an equivariant subspace of Lin [n](2).

We summarise our findings as follows.

Theorem 3.29. For n ≥ 4, the equivariant subspaces of Lin [n](2) are in bijection

with

Xn :=

a ∪ b

∣∣∣∣∣ a ⊆ {tn, u, w}, b ∈
{
∅
}
∪
{
(λ id+ µ op)(vn) | [λ : µ] ∈ CP 1

}
∪
{
{(id+ op)(vn), (id− op)(vn)}

}


where

• tn := e1 + · · ·+ en (where recall that ej =
∑

i∈[n]\{j} (i, j) depends on n),

• u := (id+ op)((1, 2)− (2, 3) + (3, 4)− (4, 1)),

• w := (id− op)((1, 2) + (2, 3) + (3, 1)),

• vn := e1 − e2

and CP 1 denotes the complex projective line (or equivalently, the Riemann sphere.

More elaborately CP 1 is the quotient of C2\{(0, 0)} under ∼, where (λ, µ) ∼ (cλ, cµ)

whenever c ∈ C is non-zero; customarily we write [λ : µ] for the equivalence class of

(λ, µ). See, e.g., [Gol99, §1.1.1 and §1.3.2] for more details.)

Proof. The correspondence is just

Ψ : X ⊆ Xn 7→ C[Sn]�X =
∑
x∈X

C[Sn] · x ⊆ Lin [n](2).

Indeed, notice how tn, u, w, and (λ id + µ op)(vn) respectively generate 1n, Un,

Wn, and (λ id + µ op)(Vn). Note also that Ψ is well-defined: given c ∈ C \ {0}, the

identity [λ : µ] = [cλ : cµ] in CP 1 is respected by Ψ as C[Sn] · (λ id + µ op)(vn) =

C[Sn] ·(cλ id+cµ op)(vn). Given a C[Sn]-submoduleM ⊆ Lin [n](2), by decomposing

it into simple constituents we can thus write M = Ψ(X) for some X ⊆ Xn as we

have discussed at length; hence Ψ is surjective.
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As for injectivity, we see that characters allow us to easily distinguish between the

Ψ(a∪b)’s that arise from distinct choices of a ⊆ {tn, u, w} and distinct cardinalities

of b ∈
{
∅
}
∪
{
(λ id+ µ op)(vn) | [λ : µ] ∈ CP 1

}
∪
{
{(id+ op)(vn), (id− op)(vn)}

}
.

Hence it is enough to show that Ψ(b) 6= Ψ(b′) whenever b 6= b′ are both singletons.

But [λ : µ] 6= [λ′ : µ′] says precisely that any representatives (λ, µ) and (λ′, µ′)

are not collinear and are thus linearly independent. It follows by Lemma 3.28 that

C[Sn] · (λ id+µ op)(vn) and C[Sn] · (λ′ id+µ′ op)(vn) intersect trivially, so these two

cannot be equal.

3.5 LinN(2)

Fulfilling the vision of understanding equivariant subspaces of Lin(N(k)) through the

equivariant subspaces of Lin([n](k)), we immediately obtain length(LinN(2)) ≤ 5 by

combining (3.27) and Theorem 3.9. But the Structure Theorem 3.29 for Lin [n](2)

together with Corollary 3.10 empowers us to discern much more about the structure

of LinN(2).

Corollary 3.30. Any equivariant subspace in LinN(2) is of the form C[S∞] � X,

where X is a subset of Xn for some n ≥ 4.

That is, the C[S∞] � X’s constitute a complete yet possibly highly redundant

collection of the equivariant subspaces in LinN(2). To unveil the lattice of such

equivariant subspaces ordered by containment, given X,X ′ ∈
⋃

n≥4 P(Xn) we need

to compare C[S∞] � X and C[S∞] � X ′ for inclusion and equality. Conveniently,

in view of Lemma 3.11, it suffices to compare C[Sn′ ] � X with C[Sn′ ] � X ′ for all

sufficiently large n′. Also, as C[Sn′ ] �X =
∑

x∈X C[Sn′ ] · x, we need only compute

C[Sn′ ] · x for x ∈ {(λ id + µ op)(vn) | [λ : µ] ∈ CP 1, n ≥ 4} ∪ {tn | n ≥ 4} ∪ {u,w}.

This already makes a handful of generators; in fact, we will define two more to ease

the computations — put y := (3, 1)− (3, 2) and z := (3, 1)− (3, 2)− (4, 1) + (4, 2).

A useful catalogue is available in Figure A.
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Generator x C[Sn] · x, if seen

tn =
∑

(i,j)∈[n](2)
(i, j) 1n

u = (id+ op)



(1, 2)

− (2, 3)

+ (3, 4)

− (4, 1)



1

2

3

4 Un

vn =

∑
i∈[n]\{1}

(i, 1)

−
∑

j∈[n]\{2}

(j, 2)

1

2

3 · · · n Vn

w = (id− op)


(1, 2)

+ (2, 3)

+ (3, 1)


1

2 3

Wn

y = (3, 1)− (3, 2)

1

2

3

z =
(3, 1)− (3, 2)

− (4, 1) + (4, 2)

1

2

34

Figure A: Named generators. Blue/orange edges respectively have weights +/−1.
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3.5.1 vn

We begin by studying the spaces generated by vn; hereafter we assume that n ≥ 4.

Even though we showed that C[Sn] · vn = Vn is simple in Proposition 3.14, we will

see that C[Sn+1] · vn already fails to be simple as it contains C[Sn+1] ·u = Un+1 from

(3.18) and C[Sn+1] · w = Wn+1 from (3.20) as submodules.

Lemma 3.31. C[Sn]� {u,w} = C[Sn] · z.

Proof. Consider z, (1 2 3) · z, (1 3 2) · z, and (1 2 4) · z depicted in order below.

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

Observe that z + (1 2 3) · z + (1 3 2) · z = (id− op)((1, 2) + (2, 3) + (3, 1)) = w,

whereas (1 3 2) · z + (1 2 4) · z = (id+ op)(−(1, 2) + (2, 3) − (3, 4) + (4, 1)) = −u;

hence u,w ∈ C[Sn] · z. In the other direction, notice that

u1,3,2,4 + v1,2,3 + v1,4,2 = (id+ op)((3, 1)− (3, 2) + (4, 2)− (4, 1))

+ (id− op)((3, 1)− (3, 2) + (1, 2))

+ (id− op)( − (1, 2) + (4, 2)− (4, 1))

= 2((3, 1)− (3, 2) + (4, 2)− (4, 1)) = 2z.

It then follows from Propositions 3.17 and 3.19 that C[Sn]� {u,w} contains z.

Corollary 3.32. u,w ∈ C[Sn+1] · vn.

Proof. As vn =
∑

1≤i≤n,i ̸=1 (i, 1) −
∑

1≤j≤n,j ̸=2 (j, 2), we have (n n + 1) · vn =∑
1≤i⪇n,i ̸=1 (i, 1)+(n+ 1, 1)−

∑
1≤j⪇n,j ̸=2 (j, 2)−(n+ 1, 2). Now C[Sn+i] ·vn contains

their difference, which simplifies to (n, 1)− (n, 2)− (n+ 1, 1) + (n+ 1, 2). But this

becomes z after we apply the renaming (n 3) ◦ (n+ 1 4).
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Lemma 3.33. C[Sn]�(α id+β op)(X) ⊆ C[Sn]�(α id+β op)(X ′) for any α, β ∈ C

whenever C[Sn]�X ⊆ C[Sn]�X ′.

Proof. It suffices to show that (α id+ β op)(x) ∈ C[Sn]� (α id+ β op)(X ′) holds for

any x ∈ X; thus let x ∈ X. As x ∈ C[Sn]�X ⊆ C[Sn]�X ′, we can write

x =
∑
x′∈X′

φx′ · x′

where each φx′ is in C[Sn]. By applying the C[Sn]-module homomorphism α id+β op,

we obtain

(α id+ β op)(x) = (α id+ β op)(
∑
x′∈X′

φx′ · x′) =
∑
x′∈X′

φx′ · (α id+ β op)(x′)

which certainly lies in C[Sn]� (α id+ β op)(X ′), as desired.

Lemma 3.34. C[Sn]� {vn, u, w} = C[Sn] ·
(
(n− 1) id− op

)
(y).

Proof. It is hard not to see that z = y − (3 4) · y lies in C[Sn] · y. By Lemma 3.31,

we then have u,w ∈ C[Sn] · z ⊆ C[Sn] · y; in turn,
(
(n − 1) id− op

)
(u) = (n − 2)u

and
(
(n − 1) id− op

)
(w) = nw lie in C[Sn] ·

(
(n − 1) id− op

)
(y) by Lemma 3.33.

Therefore u,w ∈ C[Sn] ·
(
(n−1) id− op

)
(y) as well. Now consider w, vn, and (4 i) ·z

for 4 ≤ i ≤ n (where we let (4 4) = id for convenience) depicted below.

1

2

3

1

2

3 · · · n

1

2

3 i

Observe that these share common edges, and indeed we have

w + vn +
∑

4≤i≤n

(4 i) · z =
(
(n− 1) id− op

)
(

y︷ ︸︸ ︷
(3, 1)− (3, 2)) (3.35)

after many cancellations. By rearranging the equation, we get an expression of vn as

a C[Sn]-linear combination of w, z, and
(
(n− 1) id− op

)
(y). But we showed above
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that C[Sn] ·
(
(n − 1) id− op

)
(y) contains u,w and hence z as well by Lemma 3.31;

we conclude that vn, u, w ∈ C[Sn] ·
(
(n− 1) id− op

)
(y).

On the other hand, (3.35) already shows that
(
(n − 1) id− op

)
(y) belongs to

C[Sn] � {vn, u, w}: the submodule C[Sn] � {vn, u, w} certainly contains w and vn,

but by Lemma 3.31 it also contains z since it contains u,w.

In other words, each vn is associated with a ‘twisted’ copy of y. These twists

parametrised by n seem inevitable, so instead we will learn to work with them.

Lemma 3.36. The maps ({α id + β op | α, β ∈ C}; ◦; id) form a commutative

monoid, whose invertible elements ({α id+ β op | α, β ∈ C, α 6= ±β}; ◦; id) form an

abelian subgroup that in particular contains

σ±
n := (n− 1) id± op

for n > 2. Additionally, given any ρ = α id+ β op we have

(a) ρ ◦ (id+ op) = c+(id+ op) where c+ := α + β is non-zero whenever α 6= −β;

(b) ρ ◦ (id− op) = c−(id− op) where c− := α− β is non-zero whenever α 6= β.

Remark. One can readily identify this monoid with the multiplicative structure of

the group ring C[S2], but we will pursue a more elementary line of reasoning. ■

Proof. Note that composition of C[Sn]-module homomorphisms is associative and

C-bilinear. Thus

(α id+ β op) ◦ (α′ id+β′ op) = (αα′ + ββ′) id+(αβ′ + βα′) op,

which furthermore establishes that {α id + β op | α, β ∈ C} is closed under ◦,

that ◦ is commutative, and that id is a unit. The assertions (a) and (b) also follow

straightforwardly. Observe moreover that (α id+β op)◦(α id−β op) = (α2−β2) id. If

α 6= ±β, then 1
α2−β2 (α id−β op) furnishes the inverse to α id+β op; in particular, σ+

n

and σ−
n are mutually inverse up to a non-zero scalar (n−1)2−1 for n ≥ 3. Conversely,

if α = ±β, then (id+ op) ◦ (id− op) = 0 shows that α id+ β op cannot be invertible
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because id 6= 0. Hence the invertible maps are precisely {α id + β op | α 6= ±β}.

But the invertible elements of a (commutative) monoid evidently form an (abelian)

subgroup: if ρ and τ are invertible, then so is their composition ρ ◦ τ — consider

τ−1 ◦ ρ−1.

Corollary 3.37. For all n ≥ 4, we have

(a) C[Sn]� {σ+
n (vn), u, w} = C[Sn] · y,

(b) C[Sn+i]� {σ+
n (vn), u, w} = C[Sn+i]� {σ+

n+i(vn+i), u, w} for all i ≥ 1, and

(c) C[Sn+1] · σ+
n (vn) = C[Sn+1]� {σ+

n (vn), u, w}.

Proof. Recall from Lemma 3.34 that C[Sn]�{vn, u, w} = C[Sn] ·σ−
n (y). By applying

Lemma 3.33 with σ+
n , we get

C[Sn]� {σ+
n (vn), u, w} = C[Sn] · y

since σ+
n (u) = nu, σ+

n (w) = (n−2)w, and (σ+
n ◦σ−

n )(y) = ((n−1)2−1)y are non-zero

scalar multiples of u, w, and y respectively for n ≥ 3. This establishes (a). But

C[Sn+i]� {σ+
n+i(vn+i), u, w} = C[Sn+i] · y since n is arbitrary, and also C[Sn+i] · y =

C[Sn+i] � {σ+
n (vn), u, w} by Lemma 3.11, thus proving (b). For (c), manifestly

C[Sn+1] ·σ+
n (vn) ⊆ C[Sn+1]�{σ+

n (vn), u, w}; the reverse inclusion C[Sn+1] ·σ+
n (vn) ⊇

C[Sn+1]�{σ+
n (vn), u, w} follows immediately by Corollary 3.32 and Lemma 3.33.

Remark. By (b), over C[Sn+i] the module generated by {σ+
n (vn), u, w} decomposes

into the simple submodules generated respectively by σ+
n+i(vn+i), u, and w as per

Theorem 3.29; this facilitates the comparison against other modules at the level

n+ i. But (a) tells us that {σ+
n (vn), u, w}, n ≥ 4 all generate the same module over

the limit C[S∞] — namely, C[S∞] · y. Moreover, we see from (c) that {σ+
n (vn)} and

{σ+
n (vn), u, w} in Xn both generate this C[S∞]-module. We will capitalise on these

observations to obtain a structure theorem for the C[S∞]-submodules of LinN(2)

once we complete such calculations for other sets of generators in Xn. ■
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Corollary 3.38. Let n ≥ 4 and i ≥ 1. Given λn, µn ∈ C not both zero, there exist

λ, µ ∈ C not both zero such that τ = λ id + µ op satisfies τ ◦ σ+
n = λn id+µn op.

Moreover [λ : µ] = [±1 : 1] iff [λn : µn] = [±1 : 1], and we have

(a)

C[Sn]� {(id+ op)(vn), u} if [λ : µ] = [1 : 1],

C[Sn]� {(id− op)(vn), w} if [λ : µ] = [−1 : 1],

C[Sn]� {(τ ◦ σ+
n )(vn), u, w} otherwise


= C[Sn] · τ(y),

(b) • C[Sn+i] � {(id+ op)(vn), u} = C[Sn+i] � {(id+ op)(vn+i), u} whenever

[λ : µ] = [1 : 1],

• C[Sn+i] � {(id− op)(vn), w} = C[Sn+i] � {(id− op)(vn+i), w} whenever

[λ : µ] = [−1 : 1],

• C[Sn+i]�{(τ ◦σ+
n )(vn), u, w} = C[Sn+i]�{(τ ◦σ+

n+i)(vn+i), u, w} whenever

[λ : µ] 6= [±1 : 1], and

(c) C[Sn+1] · (τ ◦σ+
n )(vn) =


C[Sn+1]� {(id+ op)(vn), u} if [λ : µ] = [1 : 1],

C[Sn+1]� {(id− op)(vn), w} if [λ : µ] = [−1 : 1],

C[Sn+1]� {(τ ◦ σ+
n )(vn), u, w} otherwise.

Proof. We can simply take τ = (λn id+µn op) ◦ 1
(n−1)2−1

σ−
n . If [λn : µn] 6= [±1 : 1],

then by Lemma 3.36 λn id+µn op is invertible; since so is σ−
n , their composite τ is

also invertible and thus [λ : µ] 6= [±1 : 1]. We see by (a) and (b) of the same lemma

that [λn : µn] = [±1 : 1] implies [λ : µ] = [±1 : 1] respectively. Because these 3 cases

are disjoint, we conclude that [λn : µn] = [±1 : 1] iff [λ : µ] = [±1 : 1] as claimed.

Now, we apply Lemma 3.33 with τ to Corollary 3.37. Noticing that τ(u) = 0 iff

[λ : µ] = [−1 : 1] whilst τ(w) = 0 iff [λ : µ] = [1 : 1], the assertions (a)–(c) follow

straightforwardly.

3.5.2 tn

Fortunately, the spaces generated by tn can now be easily described.

Proposition 3.39. Let n ≥ 4 and i ≥ 2. Then
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(a) C[Sn]� {tn, (id+ op)(vn), u} = C[Sn] · (id+ op)((1, 2)),

(b) C[Sn+i]� {tn, (id+ op)(vn), u} = C[Sn+i]� {tn+i, (id+ op)(vn+i), u}, and

(c) C[Sn+2] · tn = C[Sn+2]� {tn, (id+ op)(vn), u}.

Proof. For (a), recall from Propositions 3.12 and 3.17 that

C[Sn] · (id+ op)((1, 2)) = ker((id− op)|Lin [n](2))

= 1n + (id+ op)(Vn) + Un = C[Sn]� {tn, (id+ op)(vn), u}.

As n ≥ 4 can be taken arbitrary, (b) follows easily by Lemma 3.11. It remains to

show that (id+ op)(vn), u ∈ C[Sn+2] · tn.

As tn =
∑

1≤i ̸=j≤n (i, j), we have

(2 n+ 1) · tn − (1 n+ 1) · tn

=
∑

i ̸=j∈[n+1]\{2}

(i, j)−
∑

i ̸=j∈[n+1]\{1}

(i, j)

=
∑

k∈[n+1]\{1,2}

((1, k) + (k, 1))−
∑

k∈[n+1]\{1,2}

((2, k) + (k, 2))

= (id+ op)(
∑

k′∈[n+1]\{1}

(1, k′)−
∑

k′′∈[n+1]\{2}

(2, k′′))

= (id+ op)(vn+1)

where the second to the last equality follows since the terms associated with k′ = 2

and with k′′ = 1 have the same image under the symmetrising map id+ op; hence

(id+ op)(vn+1) ∈ C[Sn+1] · tn, which gives C[Sn+2] · (id+ op)(vn+1) ⊆ C[Sn+2] · tn.

But we are done: Corollary 3.38 tells us that

C[Sn+2] · (id+ op)(vn+1)

(c)
= C[Sn+2]� {(id+ op)(vn+1), u}
(b)
= C[Sn+2]� {(id+ op)(vn+2), u}
(b)
= C[Sn+2]� {(id+ op)(vn), u}.

55



Chapter 3. Equivariant subspaces

3.5.3 The structure theorem

Theorem 3.40. Figure B gives all the equivariant subspaces of LinN2. In particular

(a) length(LinN(2)) = 5 = length(Lin [n](2)) for n ≥ 4, and

(b) there is an infinite family, indexed by CP 1 \ {[1 : 1], [−1 : 1]}, of distinct but

isomorphic equivariant subspaces in LinN(2).

∅

{w}{u}

{(id+ op)(vn), u} {u,w}
{(id− op)(vn), w}

ker(id+ op)

{tn, (id+ op)(vn), u}

ker(id− op)
{(id+ op)(vn), u, w}

∀[λ : µ] 6= [±1 : 1] :

{(

(λ
id

+
µ

op
)

◦

( (n
−

1
)

id
+

op
)

)(vn), u, w}

ker(µ in− λ out)

{(id− op)(vn), u, w}

ker(in+ out)

{tn, (id+ op)(vn), u, w}

ker(in− out)

{(id+ op)(vn), (id− op)(vn), u, w}

ker(ε ◦ in)

{tn, (id+ op)(vn), (id− op)(vn), u, w}

Figure B: Lattice of all equivariant subspaces in LinN(2) with respect to inclusion,
labelled by their respective generators, where each n ≥ 4 can be arbitrarily large.
Equivalent characterisations of certain spaces are given in blue.
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Proof. Let A := {0, . . . , 11} t (CP 1 \ {[1 : 1], [−1 : 1]}), and consider the poset

P := ({Xα
• | α ∈ A};≤) given by the Hasse diagram

X11
•

X9
• X10

•

X6
• X7

• X
[λ:µ]
• X8

•

X3
• X4

• X5
•

X1
• X2

•

X0
•

where Xα
• denotes the family, indexed by n ≥ 4, of generating sets given by the

label at the corresponding position in Figure B. For instance, the leftmost family

X6
• consists of X6

n := {(id+ op)(vn), u} for each n ≥ 4. Note also that X [λ:µ]
• and

X
[λ′:µ′]
• are by definition incomparable whenever [λ : µ], [λ′ : µ′] ∈ CP 1 are distinct.

Aside from the X [λ:µ]
• ’s, we tally 12 distinct families of generators.

Further, for any families Xα
• , X

β
• and any n ≥ 4 we have

(i) C[Sn]�Xα
n ⊆ C[Sn]�Xβ

n iff Xα
• ≤ Xβ

• , and

(ii) C[Sn+i]�Xα
n = C[Sn+i]�Xα

n+i for all i ≥ 2.

Indeed, for (i) notice the poset Pn := ({C[Sn] · Xα
n | α ∈ A};⊆) admits the same

Hasse diagram as P above owing to Theorem 3.29; (ii) is a routine check using

Corollary 3.38(b) and Proposition 3.39(b). But given n, n′ ≥ 4, (ii) moreover entails

C[Sn+n′+2]�Xα
n = C[Sn+n′+2]�Xα

n+n′+2 = C[Sn+n′+2]�Xα
n′

and hence C[S∞] � Xα
n = C[S∞] � Xα

n′ . Denote this unique equivariant subspace

that every Xα
n , n ≥ 4 generates by (Xα

• ). Then (i) above together with Lemma 3.11
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says precisely that

P = ({Xα
• | α ∈ A};≤)→ (equivariant subspaces of LinN(2);⊆)

Xα
• 7→ (Xα

• )

is an order embedding. To show that we have an order isomorphism, it suffices to

establish surjectivity. By Corollary 3.30, any equivariant subspace of LinN(2) is of

the form C[S∞] �X where X ⊆ Xn with n ≥ 4. Observe that X is already one of

the Xα
n ’s unless it contains

• {(id+ op)(vn)} but not {u},

• {(id− op)(vn)} but not {w},

• {((λ id+ µ op) ◦ σ+
n )(vn)} where [λ′ : µ′] 6= [±1 : 1] but not {u,w}, or

• {tn} but not {(id+ op)(vn), u}.

But Corollary 3.38(c) and Proposition 3.39(c) tell us that these degeneracies can be

corrected without changing the C[S∞]-module generated; that is, C[S∞] ·X agrees

with (Xα
• ) for some α ∈ A as desired.

We conclude that Figure B indeed gives the full poset of equivariant subspaces

in LinN(2) with respect to inclusion. (This is additionally a lattice as claimed: given

C[S∞]-modules M and M ′, it is clear that their joins and meets are respectively

given by M +M ′ and M ∩M ′.) The assertions (a) and (b) then follow immediately,

with λ id+µ op affording the C[S∞]-module isomorphism (X
[1:0]
• )→ (X

[λ:µ]
• ).

We finish the section by supplying the alternative characterisations in Figure B.

Proposition 3.41. For any n ≥ 4, we have

(a) C[S∞]� {(id− op)(vn), w} = ker(id+ op);

(b) C[S∞]� {tn, (id+ op)(vn), u} = ker(id− op);

(c) C[S∞]� {tn, (id+ op)(vn), u, w} = ker(in− out);

(d) C[S∞]�{((λ id+µ op) ◦σ+
n )(vn), u, w} = ker(µ in−λ out) for [λ : µ] 6= [1 : 1];

(e) C[S∞]� {(id+ op)(vn), (id− op)(vn), u, w} = ker(ε ◦ in).
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Proof. Recall the diagram with the restrictions of op, in, out, and ε to Lin [n](2) in

(3.13). It is easy to verify that each generator on the left falls in the corresponding

kernel on the right. Indeed, observe from Figure A that in(u) = 0 = out(u),

in(w) = 0 = out(w), and in(vn) = (n − 1)1 − (n − 1)2 whilst out(vn) = −1 + 2;

notice also that

(
(µ in− λ out) ◦ (λ id+ µ op) ◦ ρ+n

)
(vn)

=
(
(−λ2 + µ2) out ◦ ρ+n

)
(vn)

= (−λ2 + µ2)
(
(n− 1) out+ in

)
(vn)

= 0

and that

(
ε ◦ in ◦(id± op)

)
(vn) = (ε ◦ in)(vn)± (ε ◦ out)(vn)

=
(
(n− 1)− (n− 1)

)
±
(
−1 + 1

)
= 0

because of the basic identity in ◦ op = out. We now demonstrate the reverse con-

tainments by considering the lengths.

To start with, we see that C[S∞] � {(id− op)(vn), w} ⊆ ker(id+ op) implies

by dint of Theorem 3.40 that length
(
ker(id+ op)

)
≥ 2 with equality iff the two

C[S∞]-modules are equal. Similarly, we have length
(
ker(id− op)

)
≥ 3 with equality

iff C[S∞] � {tn, (id+ op)(vn), u} = ker(id− op). But the beginning of the proof to

Proposition 3.12 also shows LinN(2) = ker(id+ op)⊕ker(id− op), so by Lemma 2.30

it follows that 5 = length(LinN(2)) = length
(
ker(id+ op)

)
+ length

(
ker(id− op)

)
.

Thus length
(
ker(id+ op)

)
= 2 and length

(
ker(id− op)

)
= 3 precisely, which by

above establishes (a) and (b).

As for (c), note that (in− out)(LinN(2)) = ker(ε): indeed

(ε ◦ in)(
∑
a ̸=b

c(a,b)(a, b)) =
∑
a ̸=b

c(a,b) = (ε ◦ out)(
∑
a ̸=b

c(a,b)(a, b)),

59



Chapter 3. Equivariant subspaces

so (in− out)(LinN(2)) is an equivariant subspace of ker(ε) that is moreover non-zero

as it contains (in− out)((1, 2)) = 2− 1. It follows by Lemma 2.30 and Corollary 3.5

that

5 = length(LinN(2)) = length
(
(in− out)(LinN(2))

)
+ length

(
ker(in− out)

)
= length(ker ε) + length

(
ker(in− out)

)
= 1 + length

(
ker(in− out)

)
.

We then have

length
(
ker(in− out)

)
= 4 = length

(
C[S∞]� {tn, (id+ op)(vn), u, w}

)
in view of Theorem 3.40, which forces the containment ker(in− out) ⊇ C[S∞] �

{tn, (id+ op)(vn), u, w} that we established earlier to be an equality. The assertions

(d) and (e) follow analogously from the observations that (µ in− λ out)(LinN(2)) =

LinN given [λ : µ] 6= [1 : 1] and that (ε ◦ in)(LinN(2)) = C.

Remark. These characterisations readily supply us with efficient membership tests:

for example, checking whether some v ∈ LinN(2) falls in C[S∞]� {(id− op)(vn), w}

by (a) amounts to checking whether (id+ op)(v) = 0. Moreover, we can exploit the

lattice structure of Figure B to describe other subspaces as meets: we now see that

• C[S∞]� {u,w} = ker(in) ∩ ker(out),

• C[S∞] · u = ker(id− op) ∩ ker(out), and

• C[S∞] · w = ker(id+ op) ∩ ker(in). ■

60



4 Lengths

We now leave the constructive world of k ≤ 2, switch gears and rely on more ab-

stract machinery to work out upper bounds on length(LinN(k)) for arbitrary k. The

culmination is Corollary 4.4, which improves the following result from Bojańczyk et

al. by at least a factor of k!.

Proposition ([BKM21, Lemma IV.9]). Given any k ≥ 0,

length(LinN(k)) ≤ k!(k + 1)!

and is in particular finite.

4.1 length(Lin [n](k))

We begin with a brief survey of the representation theory of finite symmetric groups

following [Sag01, §2–3].

Partitions. A partition of n is a weakly decreasing sequence

λ = (λ1, λ2, . . . , λl)

of positive integers such that λ1 + λ2 + · · · + λl = n; we write λ ` n and |λ| := n.

A Young tableau of shape λ is a bijection between [n] and the n boxes arranged in

l left-justified rows with λi boxes in row i for 1 ≤ i ≤ l; the tableau is moreover

standard if the rows and columns are all increasing sequences. For example, given
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λ = (2, 1, 1), the tableau
1 2

3

4

is standard, whereas
2 1

3

4

is not. The number of standard tableaux of shape λ is denoted by fλ.

We also record two ways to produce new partitions from old. Given m ≥ |λ|+λ1

(where we put λ1 := 0 if λ = () ` 0), we obtain a partition

λ[m] := (m− |λ|, λ1, λ2, . . . , λl, )

of m. Conversely, for |λ| > 0 we may remove the first entry of λ, which gives the

partition

λ∗ := (λ2, . . . , λl)

of |λ| − λ1.

Specht modules. Each partition λ ` n is associated with a simple C[Sn]-module

Vλ (or Sλ in some notations) of dimension fλ; known as the Specht modules, the

collection

{Vλ | λ ` n}

gives a complete, irredundant list of all simple C[Sn]-modules up to isomorphism

[Sag01, Theorems 2.6.5 and 2.4.6]. In fact, we have already met

• 1n ' V(n),

• Vn ' V(n−1,1),

• Un ' V(n−2,2),

• Wn ' V(n−2,1,1)

for all n ≥ 4. Indeed, the first isomorphism is trivial whilst the second is standard
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(pun intended) — see the first example after Theorem 4.3 along with Exercise 4.6*

and the hints at the back of the book [FH04]. Once one realises that Lin [n] '

Cn ' V(n) ⊕ V(n−1,1) and that Lin [n] ⊕ Lin [n](2) ' Lin [n]2 ' (Cn)⊗2 ' V(n) ⊕

V(n−1,1) ⊕ V(n−1,1) ⊕ V ⊗2
(n−1,1), the remaining two isomorphisms follow directly from

[FH04, Exercise 4.19*]. Alternatively, one can follow [Ham89, (7-167)–(7-177)] for

an intuitive, graphical rule to decompose V ⊗2
(n−1,1).

Notice that (n), (n− 1, 1), (n− 2, 2), (n− 2, 1, 1) are respectively given by λ[n]

if we put λ = (), (1), (2), (1, 1).

Schur–Weyl dualities. Consider Lin [n]k, where we now allow repeating entries

in the basis. Consider also the standard basis {ei | 1 ≤ i ≤ n} of Cn, where ei

is the column vector with 1 in the ith entry and 0 everywhere else; the kth tensor

power (Cn)⊗k then has B := {ei1 ⊗ · · · ⊗ eik | 1 ≤ i1, . . . , ik ≤ n} as a basis. We

can readily identify Lin [n]k with (Cn)⊗k via (i1, . . . , ik) 7→ ei1 ⊗ · · · ⊗ eik . But an

invertible n-by-n matrix A ∈ GL(n) with complex entries has a natural linear action

A · (ei1 ⊗ · · · ⊗ eik) = Aei1 ⊗ · · · ⊗ Aeik on (Cn)⊗k. In fact, thus far we have been

concerned with the actions of

Sn ⊆ GL(n)

where we view π ∈ Sn as the n-by-n matrix with 1’s in the (i, π · i) entries and 0

elsewhere. It turns out that, if we take G to be one of these two matrix groups, the

collection of linear maps φ : (Cn)⊗k → (Cn)⊗k whose matrix form B[φ]B satisfies

B[φ]B A = A B[φ]B for all A ∈ G are precisely the actions of

Pk(n) ⊇ C[Sk]

provided that n ≥ 2k. Here Pk(n) is the partition algebra, whilst C[Sk] is the group

ring of Sk where π ∈ Sk acts via π · ei1 ⊗ · · · ⊗ eik := eiπ−1·1
⊗ · · · ⊗ eiπ−1·k

(so that

eij becomes the (π · j)th component). The duality between GL(n) and C[Sk] is a

classical result of representation theory named after the pioneers Issai Schur and
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Chapter 4. Lengths

Hermann Weyl, whereas the analogue concerning Sn and Pk(n) is a fairly recent

discovery in the early 1990s [HR05]. We moreover have

(Cn)⊗k '
⊕

λ⊢n,0≤|λ∗|≤k

Pλ
k ⊗ Vλ (4.1)

as
(
Pk(n) × C[Sn]

)
-modules [HJ20, (2.14)–(2.15)], where the action on the right

hand side satisfies (d, π) · (u⊗ v) = (d ·u)⊗ (π · v). Now C[Sn] is certainly a subring

of Pk(n)× C[Sn] via the inclusion π 7→ (1, π), through which Pλ
k ⊗ Vλ restricts to a

C[Sn]-module with action π · (u⊗v) = u⊗ (π ·v). If we pick a basis {p1, . . . , pdim Pλ
k
}

for Pλ
k , it is then clear that pi⊗v 7→ (0, . . . , 0, v︸︷︷︸

ith entry

, 0, . . . , 0) gives an isomorphism

Pλ
k ⊗ Vλ '

⊕
1≤i≤dim Pλ

k

Vλ

of C[Sn]-modules. Since each Vλ has length 1, returning to (4.1) and taking lengths

gives

length(Cn)⊗k =
∑

λ⊢n,0≤|λ∗|≤k

dimPλ
k (4.2)

=
∑

λ⊢n,0≤|λ∗|≤k

k∑
t=0

S(k, t)

(
t

|λ∗|

)
fλ∗

by (4.4c) of [HJ20].

It is worth mentioning that an earlier work [GC05, Proposition 2] seems — based

on numerical evidence for small |λ∗| — to also yield (4.2), but we have not been

able to iron out the combinatorial details.

Theorem 4.3. length(Lin [n](k)) = ak whenever n ≥ 2k, where the sequence (ak)k≥0

is defined recursively by 
a0 = 1,

a1 = 2, a2 = 5,

ak+1 = 2ak + kak−1 if k ≥ 2.
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4.1. length(Lin [n](k))

Proof. We show first that (ak)k≥1 counts the number of partial involutions of [k],

i.e., functions π : X → X with X ⊆ [k] such that π ◦ π = idX . Here it is important

to explicitly write out the 1-cycles to distinguish between fixed points and elements

outside the domain. Clearly the empty function ∅ and the identity (1) are the only

partial involutions of [1],§ whilst as illustrated below ∅, (1), (2), (1)(2), and (1 2)

give all the partial involutions of [2].¶

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

But given k ≥ 2, a partial involution of [k + 1] either does not contain k + 1 in its

domain, has k + 1 as a fixed point, or maps k + 1 to some x ∈ [k] and x back to

k+1; furthermore, it restricts to a unique partial involution of [k], [k], and [k] \ {x}

respectively. In total we end up with ak + ak + kak−1 partial involutions of [k + 1],

which completes the inductive proof.

We proceed by another induction to show length(Lin [n](k)) = ak for n ≥ 2k ≥ 2.

The base cases k = 1 and k = 2 are immediate by Corollary 3.5 and (3.27). For the

inductive case, we will build upon the two following properties about the number

bm of (total) involutions of [m]:

(i) bm =
∑

µ⊢m f
µ for all m ≥ 0, and

(ii)
∑t

m=0

(
t
m

)
bm = at for all t ≥ 0.

The former is a well-known consequence of the celebrated RSK correspondence

[Sag01, Exercise 3.7(a)], whilst the latter follows straightforwardly from the defi-

nition of partial involutions. Notice also that for 0 ≤ m ≤ k there is a bijection

{λ ` n, |λ∗| = m}⇄ {µ ` m}

λ 7→ λ∗

µ[n]← [ µ
§Ceci n’est pas une référence bibliographique.
¶Idem.
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Chapter 4. Lengths

where µ[n] is a bona fide partition since n ≥ 2k ≥ 2m ≥ |µ| + µ1. Continuing with

(4.2), we then have

length(Cn)⊗k =
k∑

m=0

∑
λ⊢n,

|λ∗|=m

k∑
t=0

S(k, t)

(
t

m

)
fλ∗

=
k∑

m=0

∑
µ⊢m

k∑
t=0

S(k, t)

(
t

m

)
fµ

(i)
=

k∑
m=0

k∑
t=0

S(k, t)

(
t

m

)
bm

=
k∑

t=0

S(k, t)(
t∑

m=0

(
t

m

)
bm +

k∑
m=t+1

0bm)

(ii)
=

k∑
t=0

S(k, t)at.

On the other hand, by (2.8) and Lemma 2.30 we see that

length(Cn)⊗k =
k∑

t=0

S(k, t) length(Lin [n](t)).

As S(k, 0) = 0 and S(k, k) = 1, we conclude by the inductive hypothesis that

ak = Lin [n](k) too.

Our analysis is unnecessarily complicated by singling out the case k = 0. But

Lin [n](0) = C() has length 1 = a0 for a dull reason: it has no proper subspaces, let

alone equivariant ones.

Remark. For n ≥ 2k, the lengths of (Cn)⊗k and of Lin [n](k) are given by the [OEIS]

sequences A002872(k) and A005425(k) respectively. ■

4.2 length(LinN(k))

Corollary 4.4. length(LinN(k)) ≤ length(Lin [2k](k)) = ak for any k ≥ 0. Also

2k ≤ ak ≤ (k + 1)!, where the inequalities are furthermore strict for k ≥ 2.

Proof. In light of Theorem 4.3 above, the first part is an immediate consequence of
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4.2. length(LinN(k))

Theorem 3.9. The second part is an easy induction using the definition of (ak)k≥0

noting that 22 < a2 < (2 + 1)!.

Conjecture 4.5. length(LinN(k)) = length(Lin [2k](k)) = ak for any k ≥ 0.

Remark. The equality appears to hold, at least to the authors of [SS15], for very

simple reasons in view of their results — insomuch that they assert its validity in

(1.3.4) and (8.7) at the beginning and end of their work without explicit proof.

Embarrassingly, even after friendly correspondence with the original authors and

MathOverflow contributor Christopher Ryba, we have only been able to sketch a

proof that hinges upon a homomorphism between the Grothendieck rings of C[S∞]

and C[S2k] induced by derived specialisation functors. The machinery is out of

the scope of this paper, and we direct keen readers to https://mathstrek.blog/

2015/01/20/exact-sequences-and-the-grothendieck-group/. Instead we con-

tent ourselves with Corollary 3.5 and Theorem 3.40 that settle the cases k ∈ {0, 1, 2},

but leave the result for k > 2 as an open problem. ■
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5 Future work

Take a minute to consider your achievement.

John Cutter, The Prestige (2006)

Suppose that A is a weighted orbit-finite automaton with alphabet N and states

Q =

n0⊔
c0=1

N(0) t
n1⊔

c1=1

N(1) t · · · t
nk⊔

ck=1

N(k).

As we discussed in Section 2.3.2, using Schützenberger’s algorithm we can check

whether LA is the zero function in polynomial time with respect to

n · length(LinQ)k ≤ (
k∑

i=0

ni) · (
k∑

i=0

niai)
k

by Lemma 2.30 and Corollary 4.4; the decidability of the zeroness problem in the

orbit-finite setting alone is of importance to the nominal theory of computation.

But we are left with two questions, one algorithmic and one algebraic.

Attainability by automata. Recall from (2.27) that, provided LA is not the

zero function,

nA := min{|w| | w ∈ Σ∗, LA(w) 6= 0}

satisfies nA+1 ≤ LinQ ≤
∑k

i=0 niai and that Schützenberger’s algorithm terminates

upon reaching the nAth configuration space. Therefore Conjecture 4.5 will have

limited automata-theoretic significance if the upper bound
∑k

i=0 niai cannot in fact

be asymptotically (with respect to nk) attained by nA.

How do we devise an automaton A with a large nA? For k = 0, this is trivial:
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we can arrange n0 copies of the empty register N(0) in a chain, thus achieving

nA = n0 − 1 = Lin(
n0⊔

c0=1

N(0))− 1

which is the maximal possible for any n0 ≥ 1. For k = 1 and n0 = 1, we describe

an automaton in Appendix A which we conjecture to achieve

nA = 1 + 2n1 − 2 = length(
1⊔

c0=1

N(0) t
n1⊔

c1=1

N(1))− 2

for any n1 ≥ 2; its conception is grounded on the chain {0} ⊊ ker ε ⊊ Lin [n]

from Corollary 3.5 and the knowledge of the corresponding generators. For k = 2 a

contrived automaton may still possibly be constructed from a chain in Figure B, but

for k > 2 there is no clear way to proceed. This leads us to the algebraic question.

Explicit chain of length ak. Can we exhibit a chain of length ak in Lin [n](k)

and, assuming Conjecture 4.5, in LinN(k) for arbitrarily large k?

The problem is that the isomorphism (4.1) does not lend itself to an explicit

decomposition of Lin [n](k) into simple constituents that is uniform across large n’s,

and our ad hoc analysis for k ≤ 2 from Chapter 3 does not generalise naturally. We

mention an orthogonal, but possibly fruitful, line of research using induced repre-

sentations: for n ≥ k, we can make the identifications IndSn

Sn−k×(S1)k
C ' Lin [n](k)

and IndS∞
{π∈S∞:π|[k]=id[k]}×(S1)k

C ' LinN(k) as explained in [BHH17, (5.7)] and [TV07,

§3.3.2]; [NTV18] builds upon these.
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A Example in Haskell

-- A weighted orbit-finite automaton with n_0 = 1, n_1 = _n states
-- which, we conjecture (and verified for _n <= 7),
-- only produces zero outputs for words with < 2*_n - 1 letters
-- but a non-zero output for "b" ++ replicate (2*_n - 2) 'a'.
import Data.Char (chr, ord)
import Data.List (findIndex , groupBy, sortBy)
import Data.Maybe (fromJust)

type Atom = Char
type Weight = Int
-- | Parameter n \geq 2
_n :: Int
_n = 6

-- Components of the automaton \mathcal{A}_n
-- | Set of states Q_n
data State = P | Q Int Atom deriving (Eq, Ord, Show)
transition :: (State, Weight) -> Atom -> [(State, Weight)]
transition (P, w) a = [ (Q 1 a, w) ]
transition (Q n a, w) b -- The gadgets can be organised in 3 phases:

-- initialisation
| n == 1 =

[ (Q 2 a, w),
(Q 2 b, -w) -- so that config is in \ker(\epsilon)
-- Note that this is equivariant and non-guessing:
-- \delta(Q 1 a, a, Q 2 a ) = 1 - 1 = 0,
-- \delta(Q 1 a, b', Q 2 a ) = 1, and
-- \delta(Q 1 a, b', Q 2 b') = -1 for a \neq b'.

]
-- propagation
| 1 < n && n < _n =

-- foward
(Q (n + 1) a, w)

-- backward
: [(Q (n - 1) a, w) | n > 2]

-- contamination
| n == _n =

[(Q n b, w) | a /= b]
++ [(Q (n - 1) a, w) | n > 2]

| otherwise = []
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initialWeights :: [(State, Weight)]
initialWeights = [(P, 1)]

finalWeights :: (State, Weight) -> Weight
finalWeights (Q 2 _, w) = w
finalWeights _ = 0

-- | Simplify weighted sum of states.
-- >>> simplify [(P, 1), (P, -1)]
-- []
simplify :: [(State, Weight)] -> [(State, Weight)]
simplify =

filter ((/= 0) . snd)
. map (\xs -> (fst $ head xs, sum $ map snd xs))
. groupBy (\x y -> fst x == fst y)
. sortBy (\x y -> compare (fst x) (fst y))

-- | Compute the configuration after reading in a word.
-- >>> config ""
-- [(P,1)]
-- >>> config "a"
-- [(Q 1 'a',1)]
-- >>> config "aa"
-- []
-- >>> config "ab"
-- [ (Q 2 'a', 1),
-- (Q 2 'b',-1) ]
--
-- Now suppose _n = 6.
-- >>> config "abX"
-- [ (Q 3 'a', 1),
-- (Q 3 'b',-1) ]
-- >>> config "abXX"
-- [ (Q 2 'a', 1), (Q 4 'a', 1),
-- (Q 2 'b',-1), (Q 4 'b',-1) ]
-- >>> config "abXXX"
-- [ (Q 3 'a', 2), (Q 5 'a', 1),
-- (Q 3 'b',-2), (Q 5 'b',-1) ]
-- >>> config "abXXXX"
-- [ (Q 2 'a', 2), (Q 4 'a', 3), (Q 6 'a', 1),
-- (Q 2 'b',-2), (Q 4 'b',-3), (Q 6 'b',-1) ]
-- >>> config "abXXXXa"
-- [ (Q 3 'a', 5), (Q 5 'a', 4),
-- (Q 3 'b',-5), (Q 5 'b',-4),(Q 6 'b',-1) ]
-- >>> config "abXXXXX"
-- [ (Q 3 'a', 5), (Q 5 'a', 4),
-- (Q 3 'b',-5), (Q 5 'b',-4) ]
-- >>> config "abXXXXb"
-- [ (Q 3 'a', 5), (Q 5 'a', 4),(Q 6 'a', 1),
-- (Q 3 'b',-5), (Q 5 'b',-4), ]
-- >>> config "abXXXXbX"
-- [ (Q 2 'a', 5), (Q 4 'a', 9),(Q 5 'a', 1),(Q 6 'a', 4),
-- (Q 2 'b',-5), (Q 4 'b',-9), (Q 6 'b',-4),
-- (Q 6 'X', 1) ]
-- and etc.
config :: [Atom] -> [(State, Weight)]
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config =
foldl

( \xs a -> simplify $ concatMap (`transition ` a) xs
)
initialWeights

-- | The weighted language L_{\mathcal{A}_n}
-- >>> language ("ab" ++ replicate (_n-2) 'X' ++
-- ... "a" ++ replicate (_n-2) 'X')
-- -1
-- >>> language ("ab" ++ replicate (_n-2) 'X' ++
-- ... "c" ++ replicate (_n-2) 'X')
-- 0
-- >>> language ("ab" ++ replicate (_n-2) 'X' ++
-- ... "b" ++ replicate (_n-2) 'X')
-- 1
language :: [Atom] -> Weight
language = sum . map finalWeights . config

-- | Enumerate all partitions of a list;
-- courtesy of https://stackoverflow.com/a/46596325.
-- >>> partitions [1, 2]
-- [ [[1, 2]], [[1], [2]] ]
partitions :: [a] -> [[[a]]]
partitions [] = [[]]
partitions (x : xs) = expand x $ partitions xs

where
expand :: a -> [[[a]]] -> [[[a]]]
expand x = concatMap (extend x)

extend :: a -> [[a]] -> [[[a]]]
extend x [] = [[[x]]]
extend x (y : ys) = ((x : y) : ys) : map (y :) (extend x ys)

-- >>> partition2word [[1], [2, 3]]
-- "abb"
partition2word :: [[Int]] -> [Atom]
partition2word p = map (chr . (+ ord 'a')) indices

where
n = length . concat $ p
indices = [fromJust $ findIndex (i `elem`) p | i <- [1 .. n]]

-- | Guess a shortest word that produdces a non-zero output.
-- As L_{\mathcal{A}_n} is equivariant , we need only check the output
-- on each orbit of length-k words for k \geq 0.
findWord :: [Atom]
findWord = head . filter ((/= 0) . language) $ ws

where
ws =

map partition2word $
concatMap partitions [[1 .. k] | k <- [0 ..]]

main :: IO ()
main = do

putStrLn $ "n = " ++ show _n
let w = findWord
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putStrLn $
"least accepting length = "

++ show (length w)
++ " (word: "
++ w
++ ")"

putStrLn $ "Compare: 2n-1 = " ++ show (2 * _n - 1)
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