DOMI | MINA
NVS TIO
ILLV | MEA

By, P

\* ¥/

‘everyday’ attacker

Alice Henshaw

Word count, excluding figures: 9,998






Abstract

The most common authentication method in modern day computer systems is still text-based
username and password pairs [19,28]. This motivates many attacks to be developed against them
based on complex mathematical and probabilistic algorithms, which have been developed to perform
efficient and accurate password cracking [27,33,54,55]. However, they require both extensive
development time, and mathematical knowledge and therefore are not a major threat to the general
population (although rapid proliferation of easily acquired weaponised toolkits may transform this
threat in the near future) [4,12,18]. While state-of-the-art attack developments are important for
theoretical research, little has been done to measure the extent of threat from an ‘everyday’ attacker.

In this project an ‘everyday’ attacker and their capabilities are described, and attacks simulated on a
real-world database, successfully cracking over 80% of the 14.3 million passwords. This allows us to
assess the level of security of user-created passwords. We then combine the consideration of the
effectiveness of these attacks with an analysis of the different hash functions used to protect
passwords, and also of the password policies implemented by commonly visited websites, allowing us
to shed light upon the confusion regarding what constitutes a secure password. From here we
provide informed recommendations for both user password-construction, and for set-up of password
policies and hash functions in defending systems.
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1 Introduction

1.1 Introduction to the problem

Text-based usernames and passwords are the most common authentication method in computer
systems [19,28]. Individuals use them to protect everything from emails to bank accounts, meaning
that the security they provide is of vital importance; however this also provides motivation for
attackers wanting to break these passwords in order to access the data or systems they are
protecting. This risk is heightened by the fact that users use the same password for an average of 3.9
different online accounts [11]; if one account is compromised, the others may be too.

The secrecy of password databases cannot be assumed:; there are many instances of hackers gaining
access to them in large systems [7,9,13,14,23,57,58], in fact in some systems they are not really
hidden at all [33,40]. Related work has been carried out to look at developing state-of-the-art
mathematical algorithms for cracking passwords efficiently [27,33,54,55]. However, with password-
cracking tools readily available online [4,12,18,38], an attacker need not be an expert to set about
attacking a system, and little or no work has been done to look at the threats imposed by such an
‘everyday’ attacker (defined in Section 4.1).

There is a trade-off between password memorability and security [52]; if humans were able to
remember long strings of random symbols, password cracking would be significantly more difficult.
For passwords of length n, there are 95" different possible passwords (as there are 95 possible
characters), which for large » would take hundreds of years to crack. However, this is not the case;
not only do humans struggle to memorise strings of random characters, studies have shown that
easily memorable passwords are those based on biographical information or simple words [26,52).

In some cases, companies try to ensure the security of passwords by providing users with passwords
and not allowing them to create their own. However, a result known as the generation effect shows
that there is a far greater chance of a password being forgotten if it was not generated by the user
themselves, which therefore leads to passwords being written down [56]. In fact 55% of users admit
to having written down passwords, with 8% writing down alf passwords [39].

It is important to educate the population as to what a secure password is to empower them to
generate them themselves, thereby increasing both security and memorability. Password policies and
measures of strength are put in place by the majority of systems to force users to create passwords
that follow a certain set of rules (details given in Section 5.3), however few provide any information as
to why these guidelines are valid.

This project defines the capabilities of an ‘everyday’ attacker and analyses their potential in password-
cracking. From this, conclusions can be drawn about the strength of users’ passwords, and
recommendations made about how to create passwords secure against our ‘everyday’ attacker.
Further analyses are carried out of the effectiveness of different security measures put in place to
protect users’ passwords, including choice of hash function and password policies, and additional
recommendations made for implementation of these in a system.



1.2 Contributions to the field

While thorough experimental research has been carried out looking at how easily passwords can be
cracked, many of the methods developed involve complex probability, Markov models, and
‘intelligent’ algorithms, which can train themselves from a set of passwords to be better at cracking
another [27,33,54,55]. While these prove theoretical possibilities, and may be considered a threat
against systems of great importance, they are not representative of the threats against everyday
systems and websites that the general population use. This project provides detail into how a typical,
‘everyday’ attack might be formed, and how successful it is against the actual passwords created by
users. This therefore can be used to inform users as to how secure their passwords actually are
against such an attack.

Furthermore, research has been carried out looking into the effects of different password policies on
user password creation, proving that stronger policies do in fact lead to users creating less ‘crackable’
passwords [19], but policies currently implemented in the world’s password-protected systems are
not comprehensively considered. In this project, an analysis is provided of the password policies set
by the most widely known systems, and insight provided into whether these policies are helping to
guide users to create passwords that are secure against ‘everyday’ attacks.




2 Background

When a user enters a password to authenticate themselves to an entity, the password entered is
compared to the password which they have previously created for their account, and access granted
if the passwords match. However storing a database of users’ passwords in plaintext risks attacks
from people trying to gain access to a user’s account. Furthermore, for remote access to a system,
transmission of passwords as plaintext provides further opportunities for an attacker.

Many systems use cryptographic hash functions to considerably reduce these security risks. When a
user sets up a password, the password is hashed, and the hash itself is stored in a database along with
the user’s identification. When they later wish to be authenticated, they enter a password, the hash
of which is sent to the client storing the hash database. If the two hashes match then access is
granted to the system, otherwise it is refused.

2.1 Hash functions

The versatility of hash functions due to the large number of properties they have means there is a
degree of disagreement on their exact definition. For the remainder of this report, the following
definitions will be assumed.

A hash function f: {0,1}* — {0,1}" is a deterministic function which takes an arbitrary length input bit
string, and outputs a bit string of a fixed and finite length, n, known as a hash.

2.1.1 Cryptographic hash functions

Cryptographic hash functions are a subset of hash functions, exhibiting additional properties. Before
defining a cryptographic hash function, the following terms must be defined:

A problem is said to be computationally infeasible if the best known algorithm to solve it requires an
unreasonable amount of computational time or resources. More precisely, the worst case time to
compute for large enough input will eventually exceed any given polynomial function of the input size
(36].

A function f: D — R is preimage resistant if, for a non-negligible proportion of possible outputs y € R,
it is computationally infeasible to calculate an input x € D such that f{x) = y [20]. This ‘non-negligible’
quantification is important — one cannot claim no single input can be found for any output, as an
attacker can easily calculate s(x) = y for some x, and immediately know a preimage for y € R. Our
guantification instead implies that our function cannot be reverse engineered to find an x such that

h(x) =y.

A collision of a function f£ D — R occurs when fyields the same value when applied to two distinct
inputs, i.e. x, x’ € D, are a collision if and only if x # x” and f{x) = f{x ) [36]. Infinitely many collisions
are guaranteed to exist for every hash function, as they have an infinite domain and a fixed and finite
range.

A function f: D — R is second-preimage resistant if, for any given input, it is computationally
infeasible to calculate a collision with that input, i.e. for any x € D, it is computationally infeasible to
find a distinct x # x € D such that f{x) = f{x’) [36].



A function - D — Ris collision resistant if it is computationally infeasible to calculate any collisions for
f, i.e. it is computationally infeasible to find a pairx, x” € D such that f{x) = f{x’) [36].

A cryptographic hash function chf: D — R is a hash function additionally exhibiting preimage
resistance, and some protection against collisions. This could come in the form of either second-
preimage resistance, or full collision resistance. These properties together mean that a cryptographic
hash function has good diffusion — each input has a seemingly random hash, and a small change in the
input bit string causes a large change in this hash.

2.1.2 Salted hash functions

A salted hash function shf-{0,1}*"" — {0,1}" also has an argument called a sa/t. The salt is a bit string
of fixed length, s, which is appended or prepended to x before the hash function is applied.

When a user enters their password, to ensure the correct password yields the correct hash, the salt
used must always be identical. For this reason, the salt must be stored along with h(x||s) in the
database, and therefore cannot be assumed to be secret. Although an attacker with access to the
hashes has access to the salts, they can have numerous advantages when it comes to protecting
attacks. for example, if a different salt is used for each user, two users with the same password will
have different hashes, thereby limiting the knowledge an attacker can glean about passwords from
just the hashes. Further advantages in Section 2.2.

2.1.3 Key-stretched hash functions

Key-stretched hash functions-are another method by which some hash functions are strengthened
against some forms of attack. Here the hash function is iterated n times, usually for a large n. This
makes it approximately n times slower to calculate the hash for any given input, thereby making it
take longer to authenticate a user. However, this also slows an attacker calculating hashes in attacks
against the system. This is discussed further in Section 2.2.

2.2 Methods of attack

Cryptographic hash functions are often used in systems to protect important and secret data,
passwords being just one example of this. A lot of time and effort has therefore been put into
developing attacks against hash functions, by both attackers hoping to crack them and by researchers
verifying the extent of their security.

For this project, it is assumed that the hash functions in question are fully preimage resistant. This
means that attempts will not be made to reverse or exploit flaws in hash functions to find passwords,
but instead attacks against preimage resistant hash functions are explored. Attacks against such hash
functions require the hash of different possible plaintexts to be calculated in turn, and each compared
with the hash(es) hoping to be cracked. Such attacks are limited by the speed at which hashes can be

calculated, meaning that they can be slowed by a time-intensive hash function, like a key-stretched
hash function.




2.2.1 Brute-force attacks

A brute-force attack hashes every single possible input over a given character set — no possible strings
are missed. These attacks tend to start with all strings of length 1, incrementing this until either a
string with the desired hash is found, or all passwords up to a certain length have been tried.

By Kerckhoff’s Principle?, in the case of salted hash functions, we must assume the attacker not only
knows the hash function, but also the salt stored in the database as well. The attacker can therefore
append it to each guessed string before hashing, meaning the number of guesses needed to crack a
single hash is not increased. However, one level of security that using salts introduces is that, when
trying to crack say 5 hashes at once, if the system has used a different salt for each hash then each
must be attacked separately.

Although a brute-force attack is guaranteed to crack every possible password, the time required to
hash such a large set of values makes this a time-consuming task. Instead, other methods of attack
can be used, which reduce this set of values to be hashed.

2.2.2 Dictionary attacks

When brute-forcing passwords, strings such as a”W or &g0 may be tried before common English
words such as cat or dog, and all these 3 letter strings will be tried long before password. instead,
a dictionary attack can be performed. In a dictionary attack, a list of words called a dictionary is
compiled by the attacker, and each word is hashed and compared to the hash to be cracked. This
dictionary could be a list of all the English words, or a list of commonly known passwords (including
for example, 123456 and gqwerty).

Dictionary attacks are like brute-force attacks, in that they are limited by the speed at which the
attacker can calculate the hashes, and so salted and key-stretched hash functions have similar effects
in slowing an attacker.

2.2.3 Other attack methods

Many other methods of attack against hashed passwords exist, including creation of lookup tables
storing plaintext and hash pairs for a set of plaintexts, or rainbow tables that balance the time taken
to carry out a brute-force attack, with the space required to store a lookup table. However these
attack methods have been researched in detail [43,50,58], and will not be discussed in this project.

2.3 Hardware for attacks

When using a brute-force attack against a hash, where the corresponding password could be up to
length 3, and calculation of up to 95 + 957 + 957 hashes is necessary, totalling 866,495 passwords to
hash and compare. If that length is then increased to 8, there are 6.7 thousand trillion passwords to
hash. However, the calculation of so many hashes is easily parallelisable by calculating the hashes for
multiple different strings at once. Computers have two key forms of processor that can be used to
carry out such parallel operations, CPUs and GPUs.

! kerckoff’s Principle states, that a cryptographic system should be secure even if everything about the system,
except the private key, is public knowledge. [6]



The CPU of a computer is responsible for executing sequences instructions, and allows parallelisation
through the use of multiple cores, each of which- can execute a sequence of instructions
independently of the others. Some of the less modern CPUs have just two cores (e.g. Intel Core i3),
but it is common for more modern CPUs to have four or more cores (e.g. Intel Core i5/i7) [15]. This
allows the computer to execute four instructions at a time, reducing 6.7 thousand trillion to 1.7
thousand trillion passwords for each core to hash.

Computers moreover have another processing unit built in; the GPU. These were created to perform
mathematical calculations involved with a computer’s display. The sheer volume of calculations
involved in graphic calculations lead to GPUs having a large number of cores, which can be exploited
by giving them computations unrelated to the graphical display.

The number of cores in a GPU varies greatly — a standard laptop may have an integrated GPU built
into its motherboard (for example, the Intel Core i5-5200U has an integrated GPU with 24 cores), or
may have a distinct, more powerful GPU (for example, the Toshiba Satellite L50 has a GPU with 384
cores) [15]. Dedicated GPUs have been built for the purpose of carrying out highly-parallelisable
general-purpose GPU programs (GPGPU), for example the NVIDIA Tesla K80 has 4992 cores [34],
which reduces our 6.7 thousand trillion passwords to be hashed to just 1.34 trillion per core.

An analysis of the speeds at which these different hardware devices can carry out attacks can be
found in Section 4.4. )
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3 Related work

A number of groups have studied the effects of using probability to predict and generate different
possibilities of passwords [27,33,54,55]. One method of doing this is using Markov models, which use
the structure of natural language to assign probabilities to different combinations of letters appearing
consecutively, and use this to generate the more probable strings of characters. In 2005, Narayanan
and Shmatikov [33] paired this technique with a finite automaton to further eliminate strings of lower
probability, and found the technique achieved similar cracking percentages to previous methods but
using a smaller search space (and therefore faster running time).

In 2009, Weir et al. [55] published a new style of password attack - the Probabilistic Context-Eree
Grammar (CFG). This also uses probability to generate higher-probability strings using knowledge of
common password structures (e.g. six letters followed by two numbers). These templates are then
filled in with the most common substrings. They found their approach cracked 28% to 129% more
passwords than cracking software John the Ripper [18].

As recently as 2016, a further development of the use of probability was published by Melicher et al.
[28]. They developed a neural network for password guessing — a memory-efficient machine learning
technique that guesses which character is likely to follow after a certain string of characters. It was
shown to regularly crack more passwords than both Markov models and CFGs.

Kelley et al. [19] researched the effects of different password policies on the complexity of passwords
created by users, and on the memorability of these passwords. They found that passwords created
under stricter policies are less likely to be cracked, however they more notably found that the length
of password enforced is more important than ‘randomness’ against an attacker. In a second paper
(2011), they analyse the memorability of the passwords created under different policies, and
discovered that policies enforcing passwords to be more ‘random’ lead to users writing them down or
forgetting them [22].

These models all have a complex theoretical basis, using probability and machine learning to create
algorithms that eliminate strings of low probability to increase efficiency of the algorithm. They
provide useful evidence for what an attacker can theoretically achieve, but require a large amount of
research and time to develop. These methods therefore are likely not to be used by attackers unless
they want to gain access to highly-valuable information. Little work exists on detailing the severity of
threat from an ‘everyday’ attack — an attack that could be carried out with considerably less
knowledge and time.

Furthermore, the results gathered in these papers are not used to further inform how a password
should be created to best secure any information protected under its protection. With passwords
remaining the most common computerised-authentication method, users need to be provided with
clear information detailing what constitutes vulnerability of passwords, and how to construct
passwords resilient against potential attacks.

This project is a study to provide additional insight into resistance to password cracking. It further
provides recommendations for construction of secure passwords, and for the set-up of systems to
provide maximum possible security to its users’ passwords.
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4 Methodology

4.1 The ‘everyday’ attacker

Due to the reasons outlined in Section 3, this project looks at simulating a systematic ‘everyday’
attacker, who poses a. very real threat against the world’s computer systems, and the general
population. More specifically, we model an attacker who:

e has obtained access to a database of hashed passwords —from a leak online, or by hacking a
system himself

e need not have detailed knowledge about the different styles of attack, but has read information
available online, and is logical and systematic in his approach

e has enough knowledge of computers and programming to download a package, install the
necessary drivers and carry out the (sometimes complex) commands on the command line

e has money with which to purchase efficient hardware on which to carry out his attack - hardware
costing approximately £15,000 (as of 01/07/2017) in our model.

4.2 The passwords

To model an ‘everyday’ attack on passwords, a set of passwords to hash and attack is necessary. Due
to the secrecy of passwords and the purpose they serve, there is a distinct lack of information known
about their structure. Creating a sample of passwords that accurately represents the passwords
chosen by the population is therefore exceedingly difficuit.

As discussed in Section 1.1, users have a tendency not to generate random passwords, and instead
base their passwords on biographical information and simple words to help with memorability [26].
This, and other available information about password habits (discussed in Section 4.6.2), is helpful for
structuring an attack against a set of passwords. However, it does not provide enough detail to inform
construction of a password set that accurately represents those created by the population. Instead
passwords must be collected from the population.

There are 2 main methods of collecting a set of passwords representative of the population’s
passwords. The first of these uses a survey to collect opinions from individuals about their personal
password habits [19,22]. However, an accurate sample is difficult to achieve as actual passwords will
not be revealed. Alternatively, password databases are sometimes hacked, and the data publicised
[7,9,13,14,57,58]. Often such databases are hashed and so the passwords themselves are not known
and so the hashes must be attacked, and only the recovered -passwords known. However some
systems do not have password hashing implemented and ali passwords are accessible; these are the
most accurate representation of the population’s passwords that’s available.

In 2009 the password database for RockYou.com was successfully hacked, and the passwords were
found to be stored in plaintext. This database included over 32 million passwords, 14,343,644 of
which were unique [42]; these are the passwords chosen for use in our model of attack. For the
purpose of these tests, any replicated passwords have been removed from the list.

12




4.2.1 Ethical considerations

Although many researchers have used the leaked passwords of the RockYou hack in their works
[21,28,54], there are undoubtedly ethical considerations related to using information acquired in an
illegal fashion. This consideration is heightened by the knowledge that the average user reuses the
same password for 3.9 accounts [11,21], thereby meaning if their username and password
combination is discovered from one attack, the same password is likely to be used for another system
by that user.

The data acquired for this project is already in the public domain, copies of the list can easily be
accessed online by anyone, and complex analyses of the passwords are also readily available [23]. This
thereby means that our use of the passwords does not increase the hurt caused to the victims of the
attack, and further does not increase any knowledge of the passwords to the wider community.

However in consideration of the users affected, permission was sought and granted from CUREC for
use of the passwords. Throughout the project, all information relating each password to its user is not
considered, any copies of the passwords remain encrypted or hashed at all times, and no information
about individual passwords is revealed.

4.2.2 Reliability

The RockYou password set was acquired illegally by a hacker, and published online for anyone to see.
This calls into question the reliability of the passwords, as proof that the list downloaded is in fact the
exact, unaltered set of passwords from RockYou is hard to come by. However the statistics in analyses
of this set have shown it to possess very similar properties to other sets of passwords leaked from
other companies, showing it to be representative of generic user passwords [14,23,54]. Furthermore,
this exact list has been used in many previous research studies, as training sets for intelligent
algorithms, or for testing the success of a state-of-the-art password cracking technique, and has
shown successful results [21,54].

4.3 Choice of hash function

A large number of hash functions exist, for many different purposes throughout computing, including
protecting the integrity of messages. However, we are only interested in those commonly used for
password hashing, so as to create an ‘everyday’ attack model. Many companies do not publicise the
security in place to protect the passwords used in their systems. This could be due to there being a
lack of security in place, or an attempt to keep it secret from possible attackers. However information
about the following large systems is known:

®  Microsoft used the LM hash function to hash passwords in a huge number of their Windows
systems [31]. This was later proven to be insecure and replaced with the NTLM hash, which was
also proven to be insecure. Microsoft also use versions of SHA and MD5 within their systems,
though not for the hashing of passwords [32].

* Apple are known instead to use a large variety of different hash functions through their products,
including SHA-1, SHA-256 and SHA-512 [3]. For password hashing on Macs, different hash
functions are used in different versions, these again include SHA-1, SHA-256 and NTLM [35].
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e UNiX-based operating systems support a variety of different hash functions for password
hashing, allowing the user to choose their preferred function. These include MD5, Blowfish, SHA-
256 and SHA-512 [37,54].

PBKDF2 is an iterated key-derivation function, aiming to make keys less vulnerable to brute-force
attacks [16]. PBKDF2 allows you to specify the function you would like to iterate, and the number, n,
of iterations, making it possible to use with a hash function to create a key-stretched hash function.
The specification of your own function allows PBKDF2 to be used with functions that are trusted to be
secure (such as SHA256), to build a system even more resilient against attacks. A number of different
systems utilise PBKDF2 with different numbers of iterations for a variety of purposes; these include
Kerberos (4,096), i0S3 (2,000), i0S4 (10,000), blackberry (1) and Last Pass (100,000) [10,17,24].
However no systems currently appear to be using PBKDF2 to hash passwords.

Clearly many different hash functions are used for the purpose of password hashing. In our model we
will be using the SHA-256 hash function, however a comparison of the security of different hash
functions against our attack is available in Section 5.2.

4.4 Hardware

In order to decide which hardware an attacker would be best to purchase, an analysis of the speeds of
an everyday laptop CPU and GPU was carried out. This was followed by a comparison with a purpose-
built GPU to compare their performance when attacking a set of hashes. The results follow.

The laptop used was a Dell Latitude E5550, with the following specification [15]:
e  CPU: Intel Core i5-5300U (2 cores, 4 threads, maximum 2.9GHz)
e  GPU: intel HD graphics 5500 (24 cores, maximum 950MHz)

This is an integrated GPU, meaning it is found on the motherboard, and is built purely for processing
the simple graphics for a laptop. The purpose-built GPU chosen was a NVIDIA Tesla K80, with the
following specification [34]:

e GPU: Tesla K80 (4096 cores, base clock 560MHz, booster 875MHz)

70 tests were carried out on each of the first two devices, consisting of 10 repetitions of 7 different
brute-force attacks (on passwords of lengths 2 through to 8). For each test the number of hashes the
processor could calculate per second was recorded. The results of these tests can be seen in Figure
4.4a. The table of values corresponding to the graph can be found in the Appendix, Section 11.1

14




60

50
©
§ 40 ] 9 s
e
: ! ‘
g 30
%D 20 .
{ Intel HD Graphics 5500
; ; (embedded GPU)
e Intel Core i5-5300U
(cpU)
0
0 1 2 3 4 5 6 7 8 9

Number of characters in brute-force

FIGURE 4.4a: Graph of CPU vs. GPU hashing rates.

The number of hashes to calculate in each test is equal to 95, where x is the number of characters in
the possible passwords. When x is small, the two processors do not reach their full capacity, as with
fewer hashes the program is less parallelisable, and so fewer are calculated per second. However, as x
increases it can be seen that both the CPU and GPU trend towards their capacity.

The results show that, at their full capacity, the GPU can calculate a larger number of hashes per
second than the CPU. This is because, despite the fact that the GPU has a far slower clock speed in
this particular device, its larger number of cores benefits it greatly in such a parallelisable
computation.

Undoubtedly such a GPU is created to process the graphics for a laptop, and therefore only has the
maximum specification required for this simple process. A comparison of this integrated GPU with a
NVIDIA Tesla K80 built specifically for highly parallelisable general purpose GPU programming was
therefore subsequently carried out. The 70 results previously calculated using the Intel GPU were
used, and the same tests carried out on the K80.

The drastically different results can be seen in Figure 4.4b, with the table of results found in the
Appendix, Section 11.2. These results clearly show that the purpose-built K80 is capable of calculating
nearly 16 times as many hashes per second, meaning it would be far more successful in a password-
cracking scenario, as each attack chosen could be carried out nearly 16 times faster.
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4.5 Software

Many hash-cracking programs and websites are available online for free. These include downloadable
programs such as John the Ripper, Hashcat, and Cain and Abel [4,12,18], or websites employing
lookup or rainbow tables [25,38]. This means that to set about cracking a hashed password,

knowledge of hash functions is not necessary, let alone any expert programming knowledge or
experience.

For the purposes of this project, we make use of the freely downloadable software, Hashcat [12].
Hashcat is compatible with over 190 different hash functions and has versions available for both Linux
and Windows operating systems, and for any AMD, Intel or NVIDIA GPU, making it highly versatile for
anyone to use. It has further been used by many previous researchers in their papers, has extensive
documentation, an online advice forum, and many step by step tutorials online [12,28]. Together

these attributes make Hashcat an accessible piece of software and suitable for use by our ‘everyday’
attacker.

4.6 Attack method

To effectively use Hashcat to attack a set of hashes, the different incorporated attack modes need to
be explored to discover what the software is capable of. These modes are described in Section 4.6.1,
with examples given in Figure 4.6.1a, and screenshots provided in the Appendix, Section 11.3.
Furthermore, knowledge of the trends in how users construct their passwords is important to ensure
the attacks carried out are targeted and time is not wasted hashing unlikely strings.
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4.6.1 Hashcat attack modes

The first attack mode, known as ‘straight’ attack mode in Hashcat, implements a dictionary attack.
The user provides a dictionary of their choosing, and every word in the provided dictionary is hashed
and checked against the provided file of hashes. A more detailed and knowledgeable use of Hashcat

allows users to further provide rules to be applied to each dictionary word in turn before the attack is
carried out.

The second provided attack mode, known as ‘combination’ attack mode combines dictionary words in
a most sophisticated version of the dictionary attack. Users provide 2 dictionary files, possibly the

same file, and for each x in Dict; and y in Dict,, the software hashes xy and compares this to the
provided file of hashes.

The next attack mode is a brute-force attack. This mode allows the brute-force attack described in
Section 2.2.1 to be carried out, however it also allows a more sophisticated brute-force to be carried
out over a particular mask of characters. For example, all possible strings consisting of one uppercase
letter followed by three lowercase letters could be brute-forced. This reduced character-set brute-
force attack can dramatically reduce the search space: a brute-force of alf four character strings must
hash 81.45 million strings, compared to less than 457,000 for our example mask.

The final two possible styles of attack are a hybrid attack that combine a dictionary attack, with a
masked brute-force attack. Users can either append or prepend a mask to every word in the provided
dictionary, as shown in Figure 4.6.1a.

Mode Dictionaries Mask / Rule Passwords generated
‘Straight’ three, example, three, example,
dictionary words words
Dictionary + rule | three, example, |Rule:c; se3 Thr33, Exampl3,

words (capitalise, then Words

substitute 3 for e)

Combination 1:blue, red bluecat,

2:cat, dog bluedog,

redcat, reddog

Masked brute- Mask: 212172d (2 aa0, aal, .., aa?9,
force lowercase then 1 digit) | ab0, .., zz8, zz9
Hybrid: dictionary | cat, dog Mask: ?d (1 digit) catQ, ..., cat9, dogo, ...,
+ mask dog9
Hybrid: mask + cat, dog Mask: ?s (1 symbol) lcat, “cat, #cat, ...,
dictionary ldog, “dog, #dog, ...

FIGURE 4.6.1a: Example usage of each Hashcat attack mode

Although it is not possible to apply rules in the hybrid or combination modes, a program can be
written to apply the rule to the dictionary. This new dictionary is then piped into the hybrid or
combination attacks, to produce new untried password attempts. The details of the attack carried out
are provided with the results in Section 5.1, with further detail provided in the Appendix, Section
11.4.
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4.6.2 Password constru_ction

The attack modes of Hashcat gives a good basis of an attack. However, to make the attack more
efficient and increase the chance of success, investigation into the common structures of passwords
allows attacks to be targeted towards the most probable password choices.

Vu et al. (2007) gave an analysis of user password construction habits and showed that the majority of
users tend to base their password on biographical information or on a simple word [26,52]. This
information allows us to utilise the dictionary attack from Hashcat to test whether each word was
chosen - a discussion of dictionary choice can be found in Section 4.6.3. A second analysis, by Weir et
al. {2010), looked at the most common alterations of dictionary words, finding that four of the five
most common alterations were adding 1, 2, 3 or 4 digits to the end of the word, the other being
leaving the word unaltered [54]. Other common rules included capitalising the word and appending
digits, replacing *i’ with ‘17, replacing ‘o’ with *0’ and replacing “a’ with *@’. The full list of
common alterations is available in [54].

From these analyses, it can be seen that Hashcat’s dictionary attack is likely to be effective, both with
and without substitution and case altering rules. The hybrid attack of appending masks can also be
used to create many of the other common word-alterations found, e.g. appending one digit. A
number of the common alterations include both applying a rule and appending a mask to the
dictionary word. While Hashcat does not permit a rule to be applied to the word during a hybrid
attack, a new dictionary can be created containing words transformed by the rule, and this new
dictionary used in the hybrid attack.

Once dictionary attacks have been exhausted, brute-force attacks can be used to try to catch the
passwords that were cracked. Using a mask instead of a full brute-force attack is a useful tool to
speed up the attack against a password set by decreasing the size of the search space, and therefore

decreasing the time taken to carry out each attack. However this attack is only efficient if masks are
chosen effectively.

For this stage of the attack model, masks are chosen using information gathered from a number of
different password analyses of other leaks of password dictionaries. These analyses are of leaks of
passwords from Sony, MySpace, phpBB, Hotmail and Gawker [7,9,14,54]; two analyses of passwords
from different Finnish and Italian websites are also used. A summary of these results can be seen in
Figure 4.6.2a.

Sony | MySpace | phpBB | Hotmail | Gawker | Finnish | Finnish | Italian
1 2
Average 8.3 7.3 8.8 7.6 7.6 7.9
Length
Only 45.0% 7.3% 50.6% 43.0% 61.0% 51.6% 53.1% 51.2%
lowercase
Only lower 84.1% 87.0% 92.8%
and digit
Contain a 1.0% 9.5% 1.4% 5.2% 0.7% 1.8% 4.6% 6.6%
symbol
Contain an 6.9% 7.2% 8.1% 3.0%
uppercase
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FIGURE 4.6.2a: Summary of results from eight password dump analyses

Unfortunately, without carrying out an analysis ourselves of the individual password sets, not all
information in the table could be gathered. However from the information gathered from these eight
password analyses, some clear trends can be seen and used for attacking the RockYou password set:

®  For all password sets except MySpace, 43-61% of passwords only consisted of lowercase letters.
The anomaly of the MySpace set (7.3%) is due to the fact that MySpace had password policy
enforcing no passwords consisted of only lowercase letters. The passwords without this
requirement could show a bug in the policy enforcement, or passwords created before the policy
was brought in.

®  From the sets where information is available, 84-93% of passwords consisted of only lowercase
characters and digits. This data is extremely informative towards an attack, as it allows masks to
be created from a far smaller set of characters and therefore improves the efficiency of an
attack. This is backed up by the percentages of passwords containing symbols or lowercase
letters being small in comparison.

® An average password length of between 7 and 9 also informs mask composition, as masks of
these lengths can be constructed and prioritised over others.

As mentioned, the MySpace password set was collected under a password policy and therefore does
not share the high percentage of all lowercase passwords that the other lists do. However, a list of the
top 10 masks in the MySpace set can be found from an analysis by Weir [54], giving a clear breakdown
of the most popular password structures when a password of all lowercase has not been chosen.

This list of 10 popular masks, found in Figure 4.6.2b, makes up 48.6% of the MySpace password set,
and inform the choice of masks used in the attack in section 5.1. Further to being useful to inform
masks for an attack, they also provide insight into how users choose their passwords; all 10 of these
masks consist of a string of lowercase letters, followed by one or two digits. Password memorability
studies on how users construct passwords show that largely passwords are based on a memorabie
word or phrase [26,52], implying many of these passwords will actually consist of a word or collection
of words as the string of letters.

Rank | Mask
L6D1
LeD2
L7D1
L8D1
L5D2
L9D1
L7D2
L5D1
L4D2
L8D2

[N

Ol ]JwiNo

[AY
(@]

FIGURE 4.6.2b: Top 10 MySpace masks
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4.6.3 Dictionaries

For many of these attacks, the choice of dictionary is key. The larger the dictionary size, the greater
the chance of it containing words that a user has chosen for their password, but the longer the attack
takes. For an attacker working with GPUs as efficient as Tesla K80s, the priority becomes looking for a
dictionary of the greatest size, many of which can easily be located online [29,42].

For this model of attack, a large English word corpus was selected containing 3,160,120 words, along
with 4 smaller dictionaries each containing common passwords such as 123456, or passwords from
other attacked websites like MySpace or phpBB [42]. These password dictionaries are easily locatable
on websites that provide dictionaries for hacking, and contain a total of 225,579 entries.

4.7 Attack summary

After carrying out the investigation summarised in Sections 4.1-4.6, our ‘everyday’ attacker model is
set up as follows:

e The RockYou password list hashed under SHA-256, represents the database of hashes an
attacker may get their hands on, with all 14 million distinct hashes stored in a file together.

e  Hashcat used to crack as many hashes as possible, using two Tesla K80 GPUs. Each hash that is
successfully cracked is removed from the file, so that if future attacks have overlapping attempts
with the currently attempt, it is known how many distinct hashes have been cracked.

e The attacks outlined in Section 4.6, implemented on Hashcat, recording both the number of
passwords cracked, and the length of time taken for each attack.

More details, the results of the attack, and its consequences are given in the following sections.

20




5 Results

This section gives the results produced from the main attack, plus further results comparing the
effectiveness of different hash functions in protecting a password, and an analysis of the password
policies implemented by the top 50 most popular websites [2]. A discussion of the consequences of
these results can be found in Section 6.

5.1 Attack results

Over the course of the attack, 142 individual attacks were run against our password set. However,
these attacks can be grouped into nine main groups of consecutive attacks of the same style. For
example, dictionary attacks were carried out with 13 different substitutive rules (e.g. all e’s

substituted with 3’s), and these can be grouped into one main ‘Dictionary with letter substitution’
attack.

A table summarising the results of these 9 main attacks can be found in Figure 5.1a, and a graph
containing data points from all 142 attacks can be seen in Figure 5.1b. A complete table describing all
142 attacks, with a breakdown of their individual results, can be found in the Appendix, Section 11.4.

As the results show, after 20 hours and 3 minutes of attacking, over 80% of all passwords had been
successfully cracked. The first 48.77% of these took only 3 hours and 50 minutes; in fact the first 40%
were cracked in just over an hour. With an attack running as such, within one day of acquiring a
hashed set of passwords, an attacker could gain access to four in every five users’ accounts, and have
access to all information the user has protected by this. This is clearly a major threat against
password-protected systems as we know them, and a greater awareness of what constitutes a strong
password must be shared with the population. A discussion of the results found through this attack
can be found in Section 6.

Attack method Number Time % cracked
cracked (seconds) (cumulative)

Brute-force (all 1-6

character passwords) 2,227,076 2,310 15.53

Dictionary 325,597 713 17.80

Dictionary with letter

substitution 46,742 515 18.12

Hybrid: Dictionary +

mask 3,972,588 5,704 45.82

Hybrid: Mask +

dictionary 423,510 4,572 48.77

Combination (each

dictionary with itself) 2,527,488 11,893 66.39

Brute-force (common

masks) 1,743,324 29,096 78.55

Combination (pair of

different dictionaries) 16,012 197 78.66

Brute-force (further

different masks) 207,068 17,199 80.10

Total 11,489,405 20h 3m 19s

FIGURE 5.1a: Summary of main attack results
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5.2 Hash function comparison

As well as the main attack against the hashed RockYou set, an analysis of different hash functions was
carried out, looking at the cracking speeds of a single Tesla K80 running Hashcat on the same

passwords, purely changing which hash function they are hashed under, and therefore also changing
which function is being calculated. This style of attack does not take into account potential
weaknesses of the hash functions themselves, but merely looks at attacks of the style in previous

section. This allows analysis of whether different hash functions provide greater security against this

style of attack, and by what degree. Separate consideration of whether each function truly is

preimage resistant is of course necessary.

The specific functions were chosen either due to their wide usage, or their recommended usage — as

discussed in Section 4.3. The results are shown in Figure 5.2a.

Hash function Hashes per second Time for attack
LM 2,125,530,000 7h 26m
SHA-256 788,610,000 20h 3m
SHA-512 83,519,480 7d 21h
Salted SHA-256 704,180,000 22h 27m
PBKDF2-HMAC- 1 round 21,969,590 29d 24h
SHA256 1,000 rounds 252,060 7y 59d
10,000 rounds 25,484 70y 302d
100,000 rounds 2,593 696y 36d

FIGURE 5.2a: Comparison of the hashing rates of 8 different hash functions on a NVIDIA Tesla K80
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Due to the slight variation in speeds between tests, the values given are the average values recorded
across 50 different attacks for each hash function. Although 50 is not a large number of tests, the
results for each hash function had a relative standard deviation? of less than 1%, and so no further
tests were required to calculate a reliable average.

The right-hand-most column is purely to add perspective to these hashing rates and is not
experimental; it shows how long the tests carried out in Section 5.1 would have taken if the password
set were hashed by a different function. These differences in calculation speeds have a clear
advantage in being able to improve the security of a system. A further discussion of these results is
given in Section 6.1.

5.3 Password policy analysis

Further to the tests run in Sections 5.1 and 5.2, an analysis of the password policies implemented by
various websites was carried out. Work has previously been carried out looking at password policies,
as described in Section 3 [19,22]. However little analysis of the policies implemented by leading
websites has been carried out, therefore, although we know that a stronger password policy can lead
to less ‘crackable’ passwords being created, it is not known whether these are actually being used in
practice.

To carry out this analysis, the top 50 most visited websites (as of 30/03/2017) in the UK were
recorded, and a new account created for each [2]. Information about the structure they enforce on
new passwords was then collected. The most popular UK websites were chosen as opposed to the top
50 global websites, as many of the top 50 global websites correspond to the same accounts (e.g.
www.google.com, www.google.co.uk, www.google.fr, etc.), and so a smaller number of distinct
accounts would be considered.

Of the top 50 UK websites, four had no option to create an account. The remaining 46 websites
corresponded to 37 distinct accounts, and were the password policies analysed. Figures 5.3a-d
contain a summary of data collected; a more comprehensive and detailed table can be found in the
Appendix, Section 11.5.

Required characters Number of
websites

No restriction 25

1 lowercase, 1 6

number

1 lowercase, 1 2

number/symbol

At least 2 types of 2

character

1 number 1

/symbol

1 lowercase, 1 1

uppercase, 1 number

FIGURE 5.3a — Table of character restrictions in passwords of the top 50 websites

? Relative standard deviation is obtained by dividing the standard deviation by the mean, and multiplying by
100; it is expressed as a percentage [48].
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Minimum | Number of
length websites

1 2
2 0
3 1
4 2
5 1
6 18
7 1
8 11
9 1
10 0

FIGURE 5.3b, above — Table of enforced minimum password lengths of the top 50 websites

Character restrictions in top 50 website accounts

25
20
15

10

None L+N L+N/S 2 types N/S L+U+N

FIGURE 5.3c, above — Character restrictions in passwords of the top 50 websites (data in 5.3a)
L—1 lowercase, S—1 symbol, N—1 number, U — 1 uppercase, 2 types — any 2 character sets

Minimum password length in top 50 website accounts
20
18
16
14
12
10

o N OB O

il 2 3 4 5 6 7 8 9 10

FIGURE 5.3d, above —enforced minimum password length of the top 50 websites (data in 5.3b)
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Despite the knowledge from previous research that a stronger password policy leads to creation of
less “crackable” passwords [19,22], our results show that the majority of websites still do not enforce
any restrictions over the choices of characters included in a password and most only enforce
passwords to be of 6 or 8 characters in length. Furthermore, 25 of the 37 websites enforced no
restrictions on the characters within the passwords.

A further service provided by some websites is an indication of password strength, this is usually a
scale from ‘weak’ to ‘strong’ given on creation of a new password. However, for all the top 50
websites [2], whenever such a scale is given, no reference is provided to illustrate why they are
qualified to provide this information. While some websites seem to have a rough idea as to what
would constitute a strong password, others provide a scale that misleads users into thinking
passwords are secure when they unequivocally are not.

Take, for example, www.facebook.com — a website trusted by millions of users, which has a
reputation of being run by some of the world’s leading computing brains. On creation of a password
on Facebook, the password $gP&2s is deemed as ‘strong and a password of
gefajsyctnnupasoqvbpdgftofpyls is deemed as ‘weak’. The former of these passwords can
be cracked by the set-up described in this paper in just 20 minutes by carrying out a brute-force of all
6 character passwords. The latter is a pseudorandom string of lowercase letters, requiring a brute-
force of all 30 character strings of lowercase letters taking roughly 255.5 years to crack. A further
discussion of the results presented in this section is given in Section 6.1.
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6 Discussion

6.1 Discussion of attack results

The results of the attack, given in Section 5.1, give some clear insight into the security of the
passwords chosen by users: The vast majority of these passwords are not secure, even against an
‘everyday’ attacker. The first 40% of passwords were cracked in less than 75 minutes meaning
realistically even an attacker with a cheaper and less efficient (yet still dedicated) GPU (for example
the Tesla M4 costing just £2,000 [45]) could crack a large proportion of the passwords within just a
few hours.

The insecurity of so many passwords could be down to many factors, however it is fair to assume that
the vast majority of the users who created these passwords do not realise the extent of the
vulnerability of their accounts. The password policies implemented by the majority of websites do not
require users to construct secure passwords, but do put some limitations on the password
construction {e.g. minimum of 6 characters), and so this enforcement may lead users to believe that
this limitation is a satisfactory level of security.

Many companies, much like the example given of Facebook in Section 5.3, put no weighting on the
length of a password, and instead consider the complexity of the character sets they contain. Trusted
websites like this are giving their users a false sense of security, leading inexperienced users to believe
that their personal information is protected when it is not. Furthermore these ‘secure’ passwords are
likely to then be used for other accounts by this user [11,21], increasing their vulnerability to attack.

Of the 37 websites, 25 enforced no restrictions on the characters within the passwords set.
Considering the research shown in Figure 5.1a, we can see that around 50% of the passwords created
for all 25 of these unrestricted websites will likely be constructed purely from lowercase letters,
decreasing the size of a brute-force attack from 95" to just 26", where n is the length of the password
chosen. Also in Figure 5.1a we can see the average password length chosen is 7-9. Using our attack
set-up, all nine character lowercase passwords (26°) can be cracked in less than 77 minutes, clearly
showing more information needs to be given to users in order to help them protect their personal
information and accounts.

The attacker simulated in this project has been described as an ‘everyday’ attacker, however the
attack would require research online and logical planning. The word ‘everyday’ is used because all
hardware, software, and background understanding are readily available online, and the attack can be
performed without detailed knowledge of its workings. Some attackers may structure their attack
with less research and logical structure, leading them to perform attacks in a less efficient order,
possibly with unnecessary testing in between. However the efficiency of the attack in Section 5.1
means an attacker could be 8 times less efficient than our model, and stili crack 80% of passwords in
less than a week; this is therefore still a severe threat.

fn terms of the hash function used by these systems, the results in Figure 5.2a show clearly that the
choice of hash function can greatly dictate the security of the passwords it protects. If a PBKDF2-
HMAC-SHA256 hash were to be calculated with 100,000 rounds for every password entered, then
attacking the hashed password database would be an incredibly difficult and iengthy task.

However, the increased length of time for an attacker to calculate each hash is also an increased time
for the system employing the hash function to calculate each hash. For some systems this may not be
a problem, however consider a large system like Facebook, with nearly 2 billion users active every
month, and over 1.25 billion users active daily [46,47]. For such systems, both security and efficiency
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are key considerations, and so a balance must be found between the length of time taken to calculate
the hashes, and allowing the system to run efficiently.

6.2 Recommendations for password-protected systems

The form of attack described in this paper is known as an offline attack; the attacker gets hold of the
hashed password database, and has as much time and as many attempts as they like to try to attack
the data. Although companies believe they have stored their database in a secure location, it is still
important that they do not assume the database is safe from attackers, and therefore must assume
that an attacker has access to the database itself. For this reason, the hash function applied is often
the only level of security that protects each password in the database, and therefore this must be
carefully chosen — along with carefully chosen passwords.

PBKDF2-HMAC-SHA256 is a variant of the commonly used hash function SHA256, which, as shown in
Section 5.2, allows calculation of fewer hashes per second due to its computational intensity. For
maximum protection of users’ passwords, this hash function should be used with as many rounds as
possible, while still allowing the system to run as efficiently as required. In practice, from the results
of the hash functions provided in Section 5.2, it can be seen that more than 10,000 rounds is not
necessary unless the system contains security-critical information — even if the attacker had access to
140 Tesla K80 GPUs (costing roughly £1m) our attack would still take them an entire year to carry out
against PBKDF2-HMAC-SHA256.

In addition to the hash function, the most important security is the password itself. Although the
defending system should not choose the users’ passwords themselves — as this leads users to writing
down and forgetting passwords, they can help to ensure that users create secure passwords by
implementing strong password policies, and giving more accurate measurements of password
strength [19,22,56].

Password policies should ideally enforce all passwords to:

*  Not be formed from only digits, as these can be efficiently cracked

® Have at least 8 characters if a mixture of 3 or 4 character sets are used. This is due to the fact
that a brute-force of 8 character passwords takes our attacker 61 days to complete, giving the
accounts security against this.

® Have at Jeast 12 characters for passwords using just 1 or 2 character sets. Popular masks can be
generated, as they were when the MySpace password database were leaked, and so if just1or2
character sets are used, usually this would be just lowercase and digits, and therefore additional
length is required so that even popular masks take time to crack.

In addition to protection against offline attacks, defending systems can put measures in place to help
protect themselves from online attacks. Attackers try each password in turn into the log-in form, and
are therefore limited by the frequency with which each attempt can be tried; implementing a timeout
after a fixed number of incorrect attempts helps to protect against these.

6.3 Recommendations for passwords

Using a password set that was leaked in plaintext means that the set of uncracked passwords can
easily be recovered by performing a dictionary attack using the set of all RockYou passwords against
the remaining hashes. This allows an analysis of the strongest passwords to be done, found in Section
6.3.1, which can then be used to form recommendations of how strong passwords should be
structured in Section 6.3.2.
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Characteristic RockYou set Uncracked set

Average password length , 874 11.31
Single character type 44% 37.4%
Only lowercase letters 26% 35.6%
Only digits , 16.4% 0.2%
Only uppercase letters 1.6% 1.6%
Only symbols , 0.04% 0.2%
Contain a symbol 6.6% 25.2%
7 characters or less 33% 6.5%
9 characters or less 69.0% 29.7%

FIGURE 6.3.1a: Comparison of statistics for RockYou vs uncracked password sets

RockYou vs uncracked sets
80%
70%
60%
50%
40%
30%
20%
10%

0%

Single Only Only digits Only Only symbols Containa 7 characters 9 characters
character lowercase uppercase symbol or less or less
type letters letters
Full RockYou set The uncracked passwords

FIGURE 6.3.1b: Graph showing the comparison in 6.3.1a

6.3.1 The uncracked passwords

An analysis of the passwords in the entire RockYou password set, and their composition of characters
was carried out by Korelogic [23]. This allows the uncracked passwords in our attack to be compared
to the original set, thereby shedding light on how these passwords differ from the cracked ones. In
Section 5.1, 2,854,239 passwords were left uncracked after the 20 hour attack — this is 19.9% of the
original set of passwords. Figures 6.3.1a and 6.3.1b show an analysis of the RockYou passwords vs the
uncracked passwords.

These results confirm the research that say longer passwords are less ‘crackable’ [19,22], through an
increase from an average of 8.74 to 11.31 characters. Furthermore, the percentage of passwords
containing a symbol has increased from 6.6% to 23.4% showing that passwords with a symbol in them
are less likely to be cracked than those without a symbol. These properties cannot be considered
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separately, as all passwords of length less than 7, including those containing symbols, were cracked
within 77 minutes.

These two results have been discussed by previous research trying to formulate the creation of secure
passwords, however Figure 6.3.1a also contains some results which are more surprising. The
percentage of passwords constructed from only lowercase letters shows an increase from 26% to
nearly 36% in the uncracked set. A further analysis of the uncracked dataset shows that the average
length of the uncracked passwords which were created using only lowercase letters is 13.24 —
significantly longer than the average length of all uncracked passwords.

An additional result of note is the percentage of passwords constructed only from digits. This
decreases from 16.4% to 0.2%. This result is due to the number of possible digits being only 10 —
compared to 26 for lowercase or uppercase letters and 33 for symbols. This means that a brute-force
attack against passwords containing only digits is far more efficient than one against passwords
consisting of a different character type.

6.3.2 Generation of strong passwords

From the previous section, informed conclusions can be drawn as to how users should create
passwords to withstand our ‘everyday’ attacker. It is easy to say that secure passwords are long
random strings, however, as discussed in Sections 1.1 and 3, this leads to passwords being written
down or being forgotten leading to new passwords requested, both of which lead to security
problems.

The most important feature of the passwords leading to them remaining uncracked is their length.
Any form of mask or brute-force attack increases exponentially in time as the length of the password
increases. Additional attack styles do allow attacks on passwords of a greater length without carrying
out the exponential brute-force, however these attacks target passwords of a set structure:

®  One dictionary entry, possibly with rules applied to switch the case of letters and/or replace
occurrences of one character with another specified character.

*  Two concatenated dictionary entries

¢  Onedictionary entry with a mask applied to the beginning or end

To combine both password memorability, and security, long passwords can be created as a
combination of four or more words appended to one another, possibly with numbers/symbols
interspersed. These numbers and symbols could either be as a substitution for letters, or as part of
the memorable phrase — for example Ex4mpleP4sswordForSecurity, or ThislsinThe20%Uncracked.

Comparable advice has been given by individuals previously, however the severity of the risk of
weaker passwords is not emphasised and is not evidenced by simulation of an attack [41].

The use of four or more words not only ensures password length is greater than the average user had
created for RockYou, but also ensure it is resistant to combinations of dictionary attacks. For a
dictionary of over 3 million words, trying a combination of n words leads to 3,000,000" possible
passwords needing to be hashed, meaning that only combinations of two words is a feasible attack.

An extension to this structure of password generation is to add spaces between the words. A space is
in the ‘symbol” character set, and so removes the possibility of a brute-force against passwords with
just letters. Of the uncracked passwords 11.1% contained at least one space in them — these make up
nearly half of the uncracked passwords containing a symbol. However, some systems prohibit use of a
number of symbols, which limits the range of passwords that can be created — a handful of systems
do not allow any symbols to be used at all [30].
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7 Reflection

Initially this project started with the intention of carrying out a large-scale password hacking
comparison on both a CPU and a GPU. However it quickly became apparent that a large-scale attack
was not going to be practical on a CPU which attacks just one hash far slower than a GPU. | therefore
decided it would be better to focus on the vulnerability of passwords to an 'everyday' attacker using
GPUs, with a minor consideration of CPUs. This would have received far less focus in the original
project plan, but has far more practical implications for protecting users' data, whilst the original plan
would have been more of a technological investigation.

Setting up Hashcat to run on my laptop was a lot harder than | initially thought it would be. The error
messages provided by Hashcat are not very meaningful, and only after days of research did | discover
that the laptop in question was not actually capable of running the necessary drivers for Hashcat to
work, and so a new plan of action was needed.

The use of the state-of-the-art GPUs belonging to ARC [1] ran far more smoothly than the attempt
with an old laptop. Unfortunately, Hashcat had to be built from scratch from the source code, as the
set-up in ARC means that there is no operating system available to download the software onto.
However once this was set up, the tests began running smoothly and efficiently.

The results of the attack came as a surprise to me; | was expecting to crack a number of the RockYou
passwords, however the speed with which the attack cracked such a large proportion of passwords
was staggering. Brute-force and dictionary attacks against hashed passwords were briefly mentioned
in Computer Security lectures, however the extent of the efficiency of parallelising these attacks
against a set of passwords was not made apparent. ‘

When the time came to start running the longer tests, taking over an hour apiece, it became apparent
that it was not possible for a job to run for this long without being automatically halted by ARC, with
no progress saved. On speaking to the support at ARC they were not immediately sure as to what was
causing the problem, so | instead had to find a way of creating restore points, so that after being
logged off automatically, | could easily log in and resume the test without losing progress.

Before completing this project, | had never had to deal with large-scale data before, and so I've always
been able to carry out small alterations to data in editing software, or by writing a simple program.
However the scale of the passwords in this project meant that many text editing programs could not
even open the file, and so other ways of editing the contents had to be found. | discovered many
efficient command-line tools exist for dealing with such large stream of data, and learnt to adapt
these to perform the necessary alterations. Hashing of passwords, removal of extra data and analysis

of uncracked passwords were all carried out through use of bash scripts and command-line
commands.

In hindsight, progress of the project could only take-off after permission had been granted to use the
RockYou password set by approval of a CUREC 1A form. The application for permission was only sent
in when | wanted to start work using the passwords, without realising that the approval can take 30-
60 days to be confirmed. If | were to carry out similar work in future, | would therefore consider
whether CUREC approval was needed earlier in the process.
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8 Conclusions

The ‘everyday’ attacker simulated in this project demonstrated a new angle on the art of password
cracking, by successfully cracking the vast majority of the passwords in a large corpus using a simple
set-up. The efficiency and success of the attack shed light on the extent of the vulnerability of real-
world password-protected accounts, and exposed flaws in the understanding of what it means for a
password to be secure. Education of the general population, and update of both hash functions used
and password-creation policies are vital next steps if accounts are to become more secure against
attackers in the near future.

9 Future work

Although probabilistic password-cracking methods are not currently accessible to those without
detailed knowledge of probabilistic methods, once an algorithm has been designed it is easily
replicated and run without knowledge of how it works. This means it is only a matter of time before
weaponised toolkits implementing password-cracking with probabilistic CFGs, Markov models or
neural networks are available for the general population to download, and when this happens our
‘everyday’ attacker will suddenly be capable of far more complex and efficient attacks. For this
reason, to continue to educate users about what makes a password secure, an analysis of the
password structures most resilient against these more complex attacks should be carried out.

Furthermore, although recommendations for constructing a secure password have been given in this
report, it is important that further analysis is carried out on the human-factor side of password
generation. As shown by our attack, humans have a tendency to follow trends and therefore generate
similarly structured passwords. If a large proportion of the population now moves to create more
secure passwords, but all follow similar trends in doing this, efficient attacks may be developed to
target a new, specific structure of password.
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11 Appendix

11.1 Table of CPU vs. GPU hashing rates

Brute-force

2 3 4 5 6 7 8

length

GPU test 1 0.5333 | 27.0415 | 52.4512 52.103 | 49.5202 | 49.8839 | 49.9061
GPU test 2 0.9095 | 27.8881 | 54.9547 | 52.2149 | 49.7022 | 49.9936 | 49.9458
GPU test 3 0.8068 | 15.3384 | 52.5475 | 51.5109 | 49.3323 49.828 | 49.9268
GPU test 4 0.5223 | 37.4036 52.931 | 52.2339 | 46.8806 | 50.0073 | 50.0441
GPU test 5 0.986 | 29.7611 52.473 52.116 | 50.1052 | 50.0389 | 49.9834
GPU test 6 0.296 | 24.2335 | 43.7936 | 52.4198 | 49.9107 | 49.9027 | 49.9086
GPU test 7 0.3529 | 32.7773 | 51.3805 | 52.2134 | 49.9275 | 49.9055 | 50.0125
GPU test 8 0.8624 | 38.0058 | 48.7751 | 51.6564 | 49.9341 50.004 | 50.0433
GPU test 9 0.6659 | 38.9054 | 51.8683 | 52.2541 | 46.0839 | 49.8421 | 49.9398
GPU test 10 0.6154 | 32.8572 | 52.0984 | 52.2691 | 49.9376 | 49.7483 | 49.975
CPU test 1 10.4262 | 32.4037 | 33.7115 | 33.8168 | 40.1038 | 40.1038 | 40.1348
CPU test 2 15.7388 | 32.7723 | 33.4835 | 33.7334 | 39.0024 | 39.0024 | 40.1986
CPU test 3 15.9289 | 33.9148 | 32.7542 | 33.8653 | 40.2004 | 40.2004 | 40.231
CPU test 4 11.286 | 35.0107 | 33.8699 33.898 | 40.1542 | 40.1542 | 40.1472
CPU test5 15.4923 | 31.7499 | 33.9049 33.852 | 40.1504 | 40.1504 | 39.3444
CPU test 6 12.3056 | 33.9282 | 33.6039 33.957 39.944 | 39.944 | 39.3093
CPU test 7 14.72 34.081 | 33.9952 | 33.8511 | 40.208 | 40.208 | 39.3053
CPU test 8 14.928 | 33.0924 | 33.6748 | 33.6887 | 40.1329 | 40.1329 | 40.2322
CPU test 9 14.273 34.898 | 33.8685 | 33.9875 | 40.2095 | 40.2095 | 40.2206
CPU test 10 17.4459 34.81 33.953 | 33.9758 | 40.0327 | 40.0327 | 39.3015

FIGURE 11.1a: Table of results from Intel HD Graphics 5500 vs Intel Core i5-5200U tests. Measured in
Mega Hashes per second.
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11.2 Table of Intel HD Graphics vs. NVIDIA Tesla K80 hashing rates

FIGURE 11.2a: Table of results from Intel HD Graphics 5500 vs NVIDIA Tesla K80 tests. Measured in
Mega Hashes per second.

Brute-force ) 3 4 5 6 7 3

length

Intel test 1 0.5333 | 27.0415 | 52.4512 52.103 | 49.5202 | 49.8839 | 49.9061
Intel test 2 0.9095 | 27.8881 | 54.9547 | 52.2149 | 49.7022 | 49.9936 | 49.9458
Intel test 3 0.8068 | 15.3384 | 52.5475 | 51.5109 | 49.3323 | 49.828 | 49.9268
Intel test 4 0.5223 | 37.4036 | 52.931 | 52.2339 | 46.8806 | 50.0073 | 50.0441
Intel test 5 0.986 | 29.7611 | 52.473 | 52.116 | 50.1052 | 50.0389 | 49.9834
Intel test 6 0.296 | 24.2335 | 43.7936 | 52.4198 | 49.9107 | 49.9027 | 49.9086
Intel test 7 0.3529 | 32.7773 | 51.3805 | 52.2134 | 49.9275 | 49.9055 | 50.0125
Intel test 8 0.8624 | 38.0058 | 48.7751 | 51.6564 | 49.9341 | 50.004 | 50.0433
Intel test 9 0.6659 | 38.9054 | 51.8683 | 52.2541 | 46.0839 | 49.8421 | 49.9398
Intel test 10 0.6154 | 32.8572 | 52.0984 | 52.2691 | 49.9376 | 49.7483 | 49.975
K80 test 1 8.1194 550 746.6 738.5 788.4 786 788.9
K80 test 2 8.8276 569.3 747.7 740.1 789.5 788.4 7883
K80 test 3 9.029 551.4 749.7 737.3 788.9 788.2 789.2
K80 test 4 8.9363 566.2 751 739.7 789.3 788.4 788.7
K80 test 5 8.1196 554.3 747.2 737.4 788.5 788.6 788.3
K80 test 6 8.4174 563.9 746.6 737.9 788.9 788.4 788.5
K80 test 7 9.1237 561.7 746.3 738.6 787.9 788.5 788.6
K80 test 8 9.0104 560.9 748.5 737 788.5 788.6 787.5
K80 test 9 9.0478 558 752.3 741 789 789 788.4
K80 test 10 8.9917 553.6 746.3 739.9 788.1 788.8 789.7
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11.3 Screenshots of Hashcat

Attack Modes ] -

Straight

Combination
Brute-force

Hybrid Wordlist + Mask
Hybrid Mask + Wordlist

Built-in Charsets ] -
Charset

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
0123456789abcdef
0123456789ABCDEF

PPRSHE () *+,-. [15<=>2@[\]1*_"{I|}~
?12u2d?s
0x00 - Oxff

oo wnITITToc
et e o et et et i Gt o

FIGURE 11.3a: Screenshot showing Hashcat attack modes, and character sets. Retrieved by
command hashcat --help

- [ Hash modes ] -

Category

MD5
Half MD5S
SHA1
SHA-224

SHA-256
SHA-384

SHA-512

SHA-3(Keccak)

SipHash

RipeMD160

Whirlpool

GOST R 34.11-94

GOST R 34.11-2812 (Streebog) 256-bit

GOST R 34.11-2012 (Streebog) 512-bit

md5(Spass.Ssalt) Hash, Salted and /
or Iterated

FIGURE 11.3b: Screenshot showing some of the Hashcat hash functions. Retrieved by command
hashcat --help
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* Device #1: Tesla K48m, 2847/11439 MB allocatable, 15MCU
* Device #2: Tesla K4Bm, 2847/11439 MB allocatable, 15MCU

Hashes: 14344391 digests; 14343644 unique digests, 1 unigque salts
Bitmaps: 24 bits, 16777216 entries, Ox00ffffff mask, 67188864 bytes, 5/13 rotates

Applicable Optimizers:
Zero-Byte

Precompute-Init
Precompute-Merkle-Demgard
Early-Skip

Not-Salted

Not-Iterated

Single-Salt

Brute-Force

Raw-Hash

* ¥ % ¥ % ¥ * ¥ #

Watchdog: Temperature abort trigger set to 96c
Watchdog: Temperature retain trigger disabled

Initializing device kernels and memory...J}

FIGURE 11.3c: Screenshot showing Hashcat initialising before an attack. Retrieved by command
hashcat -m 1400 -a 3 rockyou.txt 2121212121721

edbosbsFdb396b140899f52dd9eb86bc5d5dafd944c5d6affe47820af878975b2:
b7f1de946c16378916a180Ff05074Fbed1e7662cf0649d752e70ac4fa2976e9¢cO:
970115ec7ad4c708bccdc839592d8ab3b941bb9764d2a77903f65c718cb8a76d:
3p6F548a339ac83be65e558aba4403264548d8d3c99ach4b94566cab61fd577el |
ac4723f416075F4d63537F571e06ae375F4fdab7ccala256a8cedf4a336a9390:
Pc58d6b123a3707480857b375300d7F1d7589d7438126c63F5bbb6edcdf198b71:
2174f477a3208b3dd8bc53e7a437a8c9alededaect5179cddb6cda86828dbe79:
485d145434217d69273a4f035a3eca56e20308dd0ebd8114610674dd630ag3e5:
992ab5fa7b51F9284120b045c2474ca732bf238F7881b8b8e59a15e04c2079ar:
695bafa79f30TFa7458184F4049c43e99eb8dff8d98b3dbc6b28e15d58cadffds:|
13144619fe2332a6e2d5e21027af6ceb584e7d1db8e®9af23cd9dc769F4d1bde:
75ebe21467222b7fedbe2f92805c60320b8bc8370009b0d8579e18da8ec2e80c:
c78653d0c3dbbb88cbc21a44a8dB89adbd567539d11d08d4d655bd161F1dabe76:
8d39dd5P8c3047dcf9747ac1d706dc9777cabpf53b6622a0eefbc8157a325255:
bbf66934383e64e8f9343dbbe7800102ceb7f7c4c72d87b4ab21780f26325¢c624:
Pb48P750157231b72dceef3017f824d68a3a17501fabc64b5d28dfac99aeabidl:
c45f24b35b3487285d8616433fed2a9abd9aB81c6c96fca38act68125bafe2caf:
a70bae834d892f3a4a41ddds77ebobfd19edd9676622a83919304%ecc4e3db74:
47179996931a72F2128Ffd27d53bc149fa360f62bd1a763ffe2c24d9e783e6327
cc96eca2766da2154d24a9e3f47b0305e53cb60b76c859300708a88c8a182530:
83330d5c983d4acfebbb7d9bbed9bfd1b686eb155c497c225ad25c99419a8Fdf:
17bf79e84647feb377f09d9758e9cf33128c1b757d394723e928339bbe4728e4:
[s]tatus [p]ause [r]esume [b]ypass [c]heckpoint [qluit => |

FIGURE 11.3d: Screenshot showing Hashcat during an attack. Retrieved by command hashcat -m
1400 -a 3 rockyou.txt 212121217217212121721721

The passwords are obscured for privacy of users.
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Exhausted
SHA256
rockyoufull. txt
: Wed Jul 5 02:00:42 2017 (© secs)
Time.Estimated...: Wed Jul 5 02:00:42 2017 (© secs)
Input.Mask S |
Input.Queue : 1/1 {100.00%)
Speed.Dev.#1 : ® H/s (0.65ms)
Speed.Dev.#2 5 @ H/s (0.00ms)
Speed.Dev.#* : ® H/s
Recovered : 23/14343644 (0.00%) Digests, ©/1 (0.80%) Salts
: CUR:N/A,N/A,N/A AVG:88021,5286612,126734693 (Min,Hour,Day)
26/26 (100.00%)
8/26 (0.00%)
9/1 (0.00%)
SNBSS
[Generating]
: Temp: 19c Util:100% Core: 745Mhz Mem:3004Mhz Lanes:16
: Temp: 21c Util:100% Core: 745Mhz Mem:3004Mhz Lanes:16

Started: Wed Jul 5 ©1:59:43 2017
Stopped: Wed Jul 5 ©2:00:44 2017
[ball4222@gnode1068(arcus-b) ~1$ [}

FIGURE 11.3e: Screenshot showing Hashcat after completion of an attack. Retrieved by command
hashcat -m 1400 -a 3 rockyou.txt 2?1
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11.4 Break-down of attack results
Key
: Do nothing to the dictionary word
I dictionary words all lowercase
u dictionary words all uppercase

dictionary words with first letter uppercase and the rest lowercase
?d 1 digit — 0123456789
?l 1 lowercase letter — abcdefghijkimnopgrstuvwxyz
?u 1 uppercase letter — ABCDEFGHIJIKLMNOPQRSTUVWXYZ
?s 1 symbol — "#S%&'()*¥+,-./;:<=>?@ [\]*_{} }> or space

L7 7 lowercase letters — an abbreviation of ?I?2[?1?{?1?1?|
D5 8 digits — an abbreviation of ?d?d?d?d?d

ue 6 uppercase letters — an abbreviation of Pu?u?u?u?u?u
S4 4 symbols — an abbreviation of ?s?s?s?s

FIGURE 11.4a Table showing a breakdown of all 142 of the tests run in the attack in section 5.1.

Leftto Total Percentage
Attack Cracked | Time crack cracked cracked
14343644

Brute-force 1 character, all 46 71 | 14343598 46 0.0003207
Brute-force 2 character, all 336 65 | 14343262 382 0.002663201
Brute-force 3 character, all 2475 70 | 14340787 2857 0.01991823
Brute-force 4 character, all 17961 113 | 14322826 20818 0.145137456
Brute-force 5 character, all 258952 761 | 14063874 279770 1.950480645
Brute-force 6 character, all 1947306 1230 | 12116568 2227076 15.52657051
English dictionary 265624 424 | 11850944 | 2492700 17.378425908
All other dictionaries 59973 289 | 11790971 | 2552673 17.79654459
All dicts + e to 3 (under ;, |, u, ¢ 7098 60 | 11783873 | 2559771 17.84602992
All dicts +1to 1 (under:, 1, u, c) 4486 58 | 11779387 | 2564257 17.8773051
All dicts + oto O {under :, |, u, ¢ 6067 57 | 11773320 | 2570324 17.91960258
All dicts + ato 4 (under :, |, u, ¢) 2314 57 | 11771006 | 2572638 17.93573516
Alldicts +ato @ (under:, |, u, ¢ 1921 57 | 11769085 | 2574559 17.94912785
All dicts + sto S {under:, |, u, ¢ 1253 56 | 11767832 | 2575812 17.95786343
All dicts +sto 5 (under:, |, u, ¢) 7196 56 | 11760636 | 2583008 18.00803199
All dicts+ito 1/gto9/ito l/zto 2/b

to 8/Ito! 10976 58 | 11749660 | 2593984 18.08455369
Combinations of substitutions 5431 56 | 11744229 | 2599415 18.12241715
All dicts + 2d 331774 66 | 11412455 2931189 20.43545559
All dicts + ?s 42070 56 | 11370385 | 2973259 20.72875624
All dicts + ?d?d 842743 107 | 10527642 | 3816002 26.60413212
All dicts + ?s7?s 8676 57 | 10518966 | 3824678 26.66461884
All dicts + ?d?s 8188 52 | 10510778 | 3832866 26.72170336
All dicts + ?s?d 21335 52 | 10489443 | 3854201 26.8704452
All dicts + ?d?d?d 753112 98 | 9736331 | 4607313 32.12093803
All dicts + ?s?s?s 4339 213 | 9731992 | 4611652 32.15118836
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All dicts + ?d?d?d?d 1139936 136 | 8592056 5751588 40.09851332
All dicts + ?d?d?d?d?d 469337 497 | 8122719 6220925 43.37060373
All dicts + ?d?d?s 12137 57| 8110582 | 6233062 43.45521961
All dicts + ?s?d?d 39349 60 | 8071233 | 6272411 43.72955018
All dicts + ?s?s?d 837 91| 8070396 6273248 43.73538551
All dicts + ?d?s?s 1039 895 | 8069357 6274287 43.74262914
All dicts +l/u/c + ?d 58446 69 | 8010911 6332733 44.15009882
All dicts +l/u/c + ?s 6188 42 | 8004723 | 6338921 44.19323988
All dicts +1/u/c + ?d?d 91332 85| 7913391 6430253 44.82998184
All dicts +l/u/c + ?s?s 1093 54 | 7912298 6431346 44.83760194
All dicts +1/u/c + ?d?s 1038 51| 7911260 6432384 44.84483859
All dicts +l/u/c + ?s?d 2927 53| 7908333 6435311 44.86524484
All dicts +l/u/c + ?d?d?d 41964 52 | 7866369 6477275 45.15780648
All dicts +1/u/c + ?s?s?s 537 532 | 7865832 6477812 45.1615503
All dicts +l/u/c + ?d?d?d?d 50363 382 7815469 6528175 | 45.51266749
All dicts +l/u/c + ?d?d?d?d?d 15039 1301 | 7800430 6543214 45.61751533
All dicts +l/u/c + ?d?d?s 1323 82 | 7799107 | 6544537 45.62673892
All dicts +/u/c + ?s?d?d 3904 79 | 7795203 | 6548441 45.65395655
All dicts +l/u/c + ?s?s?d 87 178 | 7795116 6548528 45.65456309
All dicts +1/u/c + ?d?s?s 132 178 | 7794984 6548660 45.65548336
All dicts +l/u/c + ?s?d?d?d 15406 467 | 7779578 6564066 45.76288982
Al dicts +l/u/c + ?d?d?d?s 7937 468 | 7771641 6572003 45.81822443
?d + all dicts (under :/I/u/c) 41800 44 | 7729841 | 6613803 46.10964271
?s + all dicts {under :/l/u/c) 5646 39| 7724195 | 6619449 46.14500509
?d?d + all dicts (under :/l/u/c) 51254 43 | 7672941 6670703 46.50633409
?s?s + all dicts (under :/l/u/c) 821 60 | 7672120 6671524 46.51205788
?d?s + all dicts (under :/I/u/c) 1039 46 | 7671081 | 6672563 46.51930151
?s?d + all dicts {under :/1/u/c) 2404 46 | 7668677 6674967 46.53606155
?d?d?d + all dicts (under :/I/u/c) 45052 59| 7623625 6720019 46.85015189
?s?s?s + all dicts (under :/I/u/c) 512 433 | 7623113 | 6720531 46.85372141
?d?d?d?d + all dicts (under :/l/u/c) 113606 207 | 7509507 6834137 47.64575167
?d?d?d?d?d + all dicts (under :/I/u/c) 155590 1786 | 7353917 6989727 48.73048299
?d?d?s + all dicts (under /I/u/c) 2000 106 | 7351917 6991727 48.74442645
?s?d?d + all dicts (under :/l/u/c) 746 105 | 7351171 6992473 48.74962736
?s?s?d + all dicts {under :/I/u/c) 52 218 | 7351119 6992525 48.74998989
?d?s?s + all dicts {under :/|/u/c) 34 218 | 7351085 | 6992559 48.75022693
?s?d?d?d + all dicts (under :/1/u/c) 568 585 | 7350517 6993127 48.75418687
?d?d?d?s + all dicts (under :/l/u/c) 2386 577 | 7348131 | 6995513 48.77082142
Combination, 2 from English words 2447116 11160 | 4901015 | 9442629 65.8314512
Combination, 2 from passwords.txt 6532 50| 4894483 | 9449161 65.87699053
Combination, 2 from MySpace.txt 5511 49 | 4888972 | 9454672 65.91541173
Combination, 2 from phpBB.txt 52640 111 4836332 9507312 66.28240355
Combination, 2 from 500worst.txt 5 44 | 4836327 | 9507317 66.28243841
Combination, 2 from English (1) 9338 271 | 4826989 | 9516655 66.34754042
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Combination, 2 from English (u) 6346 208 | 4820643 | 9523001 66.39178301
Mask L7 26135 140 4794508 9549136 66.57398915
Mask L8 71549 310 | 4722955 9620685 67.07280939
Mask L9 88811 4602 4634148 5709496 67.69197562
Mask D7 0 45 4634148 9709496 67.69197562
Mask D8 0 45 | 4634148 9709496 67.69197562
Mask D9 89112 89 4545036 9798608 68.31324035
Mask D10 443869 273 4101167 | 10242477 71.40777476
Mask D11 102357 198 3998810 | 10344834 72.12138003
Mask D12 36629 989 3962181 | 10381463 72.3767475
Mask L6D1 35229 152 3926952 | 10416692 72.62235454
Mask LeD2 117127 330 3809825 | 10533819 73.43893225
Mask L7D1 56957 102 3752868 | 10590776 73.83602103
Mask L8D1 69423 761 3683445 | 10660199 74.32001938
Mask L5D2 42761 147 3640684 | 10702960 74.61813748
Mask L7D2 108843 382 | 3531841 | 10811803 75.37696139
Mask L4D4 27966 132 3503875 | 10839769 75.57193277
Mask L5D3 21928 63 3481947 | 10861697 75.72480884
Mask L3D5 0] 65 3481947 | 10861697 75.72480884
Mask L2D6 19856 87 3462091 | 10881553 75.86323949
Mask L1D7 10209 114 | 3451882 | 10891762 75.93441388
Mask L6D3 41652 372 3410230 | 10933414 76.22480034
Mask L5D4 20713 75 3389517 | 10954127 76.36920576
Mask L4D3 10455 63 | 3379062 | 10964582 76.44209519
Mask D2L6 4470 54 3374592 | 10969052 76.47325882
Mask D1L7 6570 177 3368022 | 10975622 76.51906308
Mask D3L5 2586 118 3365436 | 10978208 76.53709197
Mask D4L4 3632 106 3361804 | 10981840 76.56241329
Mask D1L6 3621 105 3358183 | 10985461 76.58765792
Mask D2L5 1778 104 | 3356405 | 10987239 76.60005365
Mask D314 1257 104 3355148 | 10988496 76.60881712
Mask D4L3 0 S0 3355148 | 10988496 76.60881712
Mask U7 26199 193 3328949 | 11014695 76.79146945
Mask U8 29458 267 3299491 | 11044153 76.99684264
Mask U9 22226 4738 3277265 | 11066379 77.15179629
Mask U6D1 6445 102 3270820 | 11072824 77.19672909
Mask U6D2 7231 79 3263589 | 11080055 ‘ 77.24714166
Mask U7D1 7086 123 3256503 | 11087141 77.29654333
Mask USD1 6625 93 | 3249878 | 11093766 77.34273104
Mask U5D2 3473 118 | 3246405 | 11097239 77.36694385
Mask U7D2 6286 762 3240119 | 11103525 77.41076814
Mask U4D4 1467 54 3238652 | 11104992 77.42099567
Mask U5D3 1151 55 3237501 | 11106143 77.42902013
Mask U3D5S 0 52 3237501 | 11106143 77.42902013
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Mask U2D6 1478 53 | 3236023 | 11107621 77.43932434
Mask U1D7 926 56 | 3235097 | 11108547 77.44578017
Mask U6D3 1574 364 | 3233523 | 11110121 77.45675367
Mask U5D4 856 104 | 3232667 | 11110977 77.46272147
Mask U4D3 729 51| 3231938 | 11111706 77.46780386
Mask S7 162 153 | 3231776 | 11111868 77.46893328
Mask L8D2 116500 8100 | 3115276 | 11228368 78.28113972
Mask L9D1 - stopped 37957 3185 | 3077319 | 11266325 78.54576564
Combination password.txt + English 1570 54 ] 3075749 | 11267895 78.55671125
Combination English + password.txt 5060 59 | 3070689 | 11272955 78.5919882
Combo English (I/u/c) + password.txt 9382 84 | 3061307 | 11282337 78.65739696
Mask S8 203 763 | 3061104 | 11282540 78.65881222
Mask L4D5 2473 64 | 3058631 11285013 78.67605331
Mask L6D4 36420 2676 | 3022211 | 11321433 78.92996368
Mask L5D5 2428 1172 | 3019783 | 11323861 78.94689104
Mask LAD6 22759 502 | 2997024 | 11346620 79.10556062
Mask L3D8 6410 129 | 2990614 | 11353030 79.15024941
Mask L5D6 - stopped 398 65 | 2950216 | 11353428 79.15302415
Mask D4L5 4187 212 | 2986029 | 11357615 79.18221478
Mask D6L4 7669 45 | 2978360 | 11365284 79.23568097
Mask D5L5 5073 89 | 2973287 | 11370357 79.27104856
Mask D4L6 2593 151 | 2970694 | 11372950 79.28912625
Mask U4D5 132 52 | 2970562 | 11373082 79.29004652
Mask U6D4 175 102 | 2970387 | 11373257 79.29126657
Masks U5D5 L3D7 L3D6 U3D8 U3D7

U3D6 47692 248 | 2922695 | 11420949 79.62376227
Mask L5D2S1 501 65 | 2922194 | 11421450 79.62725511
Mask 1.551D2 1690 64 | 2920504 | 11423140 79.63903733
Mask L10 - stopped 66265 10800 | 2854239 | 11489405 80.10101896
Total 72199

20:03:19
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11.5 Analysis of password policies

FIGURE 11.5a: Table detailing the password policies of the top 50 UK websites

Policy
Rank | Websit i
an epsite Min CharfacFer Other information
length | restrictions
Advice given: a strong password contains a mix of
numbers, letters and symbols. It is hard to guess,
1 google.co.uk 8 None does not resemble a real word, and is only used for
this account.
8 chars with 3 types of char is classed as 'Strong'
2 youtube.com Same account as google (1)
3 googie.com Same account as google (1)
Password of all lowercase of ANY length and
4 facebook.com 6 None randomness is classed as weak. Compared to a
password length 6 of all 4 character types is strong
Password of all lowercase of ANY length and
5 reddit.com 6 None randomness is classed as weak. Compared to a
password length 6 of all 4 character types is 'okay’'
Min 1 letter
& min1l
6 bbc.co.uk 8 No measure of strength
number or
symbol
7 amazon.co.uk 6 None No measure of strength
8 wikipedia.org 1 None No measure of strength
iff
thl eirzpt Password length 6 of all 4 types is strong,
9 ebay.co.uk 6 yciars password with 1U followed by any number of L is
needed medium
10 fwitter.com 5 None All lower 6 (weak) 12 (medium) 16 (strong) 22(very
strong) all 4 types of char length 6 very strong
11 live.com 8 None No measure of strength
12 yahoo.com 9 None No measure of strength
theladbible.
13 eradbibe.c No accounts possible
om
all lower 6 (3/5 strength) 11 (4/5 strength) 20 (5/5
14 linkedin.com 6 None strength) - passwords that pass cant be less than 3
though
15 diply.com No accounts possible
16 livejasmin.com 6 None No measure of strength
17 instagram.com 6 None No measure of strength
' Min 1 letter
18 imgur.com 6 & minl No measure of strength
number
19 t.co Same account as twitter (10)
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h jan.
20 t eguoar;dlan ¢ None No measure of strength
21 netflix.com None No measure of strength
22 pornhub.com None No measure of strength
23 office.com Same account as live (11)
. . all lower 5 (weak) 10 (medium) 15 (strong) all diff
24 | l.co.uk N .
dailymail.co.u one char types 5 (medium) 6(strong)
25 microsoftonli Same account as live (11)
ne.com
26 imdb.com None No measure of strength
27 avoal.com irnsunr;tl;f)rl No measure of strength
paypal. y. Can be all numbers or all symbols
required
28 twitch.tv None 8 length lower is fair strer-wgth, Iohger strength
depends on whether it contains words
29 tumblr.com Same account as yahoo {12)
30 ntd.tv No accounts possible
Min 1
31 www.gov.uk number & No measure of strength
min 1 letter
32 givemesport None No measure of strength
.com
33 amazon.com None No measure of strength
34 wikia.com None No measure of strength
35 thesportbib No accounts possible
le.com
8 if just
wordpress.c Iow.er, and just disallows if It deems it weak but doesn’t say
36 8 if any Y
om why it is weak
word can
be found
37 rlthr?Jive.c None No measure of strength
38 bing.com Same account as live (11)
telegraph.co Min 1
39 grapn.co. number & No measure of strength
uk .
min 1 letter
Min1
40 stackoverfl number & No measure of strength
ow.com )
min 1 letter
41 microsoft.com Same account as live (11)
Min 1 letter
42 gumtree.com & min 1 there’s an indication of strength
number or
symbol
43 xhamster.com None No measure of strength
44 msn.com Same account as live (11)
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45 pinterest.com None No measure of strength
Min 1 letter
46 github.com & min1 No measure of strength
number
Min 1
47 apple.com lower, 1 there’s an indication of strength
upperand 1
number
48 trlpa(;j\ljlljor.c None No measure of strength
Min 1 letter
lloydsbank.
49 oycasbani.c &minl No measure of strength
o.uk
number
) Any number of lowercase characters does not
independe .
50 nt.co.uk None make the strength better - 60 lowercase is weaker

than 5 lowercase plus 1 number
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