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Abstract

Recently, a new class of Markov chain Monte Carlo (MCMC) algorithms
has emerged, which relies on simulation of continuous-time non-reversible
piecewise-deterministic Markov processes (PDMP). Such algorithms have
been shown to compare favourably to the current state-of-the-art methods
and are particularly suitable for the big-data setting, due to the ability to
exploit the structure of target distributions. In this project, we implement
a flexible and efficient framework for simulating and analysing arbitrary
PDMPs. We further show how the current PDMP based MCMC algo-
rithms can be implemented within our framework, and how our framework
can assist in solving the current research problems.
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1 Introduction

1.1 A Brief History of the Monte Carlo Method

In 1946 a Polish-American mathematician Stanistaw Ulam! was playing Canfield
solitaire while recovering from brain surgery. He got interested in computinig the
probability of winning based on the initial layout of cards. After unsucessfully spend-
ing a lot of time trying to calculate it by pure combinatorial approaches it occured
to him that simply playing the game, say one hundred times and obtaining a rough
estimate might be of more practical use [11]. Using repeated random sampling to
obtain numerical approximations for intractable problems is at the core of the Monte
Carlo method.

The idea of statistical sampling itself was not new at the time. For example, the
Italian physicist Enrico Fermi used it to study neutron diffusion in the early 1930s.
Such techniques had fallen out of use because of the length and tediousness of the
calculations, which at the time had to be performed by humans. However, in F ebruary
1946 one of the earliest electronic general-purpose computer ENIAC was announced
to the public. The key insight of Stanistaw Ulam was that ENIAC’s computing power
could be used to revive these statistical sampling techniques [23], whose significance
was soon recognised by John von Neumann. Thus began the rapid development of
Monte Carlo techniques.

The first unclassified paper on the Monte Carlo method appeared in 1949, written
by Metropolis and Ulam [24]. Four years later, the first Markov chain Monte Carlo
(MCMC) approach was developed in Los Alamos by physicists Metropolis et al. [25].
In 1970 it was generalized by Hastings [21] to what is now known as the Metropolis-
Hastings algorithm. Despite extensive use of MCMC algorithms by physicists, it
only made an impact on the statistical community in the early 1990s, marked by the
seminal paper of Gelfand and Smith [16]. Since then MCMC has been a very active
area of research in Statistics. Indeed, almost half of the articles found by a Google
Scholar search using the keyword "MCMC" were published after the year 2000.

In 2012 a fundamentally different MCMC algorithm by Peters and de With [27]
appeared in the physics literature. This new algorithm relies on simulation of a
continuous-time non-reversible piecewise-deterministic Markov (PDMP) process. In
contrast, many other MCMC techniques are variations of the Metropolis-Hastings al-
gorithm and hence rely on simulation of a discrete-time reversible Markov chain. The
new algorithm by Peters and de With [27] was generalised by Bouchard-Coté et al.
[4], where theoretical guarantees and extensive analysis is given. It has been also
shown to compare favourably with the current state-of-the-art methods on various
Bayesian inference tasks and to be particularly suitable for the big data setting. Sim-
ilarly promising results were obtained by an even more recent PDMP based MCMC
algorithm by Bierkens et al. [2].

!Stan, currently one of the most widely used probabilistic programming languages providing full
Bayesian inference, is named after Stanistaw Ulam [33].
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1.2 Project Goals

Apart from very encouraging performance results, the Bouncy Particle Sampler (BPS)
[27, 4] and the Zig-Zag process [2] possess one very desirable quality that is absent
from most of the other algorithms — non-reversibility of the simulated Markov process.
See, for example, Neal [26] or Sun et al. [31] for the role that non-reversibility plays in
MCMC algorithms. PDMP based Monte Carlo algorithms are thus rapidly becoming
a very active and promising research direction.

Implementing such algorithms is, unfortunately, not the easiest task. The main
difficulty comes from the simulation of PDMPs; however, the technique for simulating
PDMPs across different MCMC algorithms could be reused. It is hence very inefficient
to develop such algorithms from scratch, which unfortunately seems to currently be
the case. Writing a generalised and reusable software is difficult and time consuming.
Most researchers thus understandably opt to implement their novel algorithms in the
quickest and the most direct way possible, which results in code that is hard to reuse.

In this project, we aim to contribute to future research of novel PDMP based
Monte Carlo algorithms by developing a framework for efficient simulation and anal-
ysis of as general PDMPs as possible. This framework will allow to focus on the
structure of the underlying PDMPs rather than on the tedious implementation de-
tails. We expect our software to be efficient, flexible, reliable, relevant and easy to
use.

1.3 Project Outline

e In Chapter 2 we provide the background material on PDMPs and their simu-
lation.

e In Chapter 3 we design and implement a framework for efficiently simulating
arbitrary PDMPs.

o In Chapter 4 we design an output analysis framework.

e In Chapter 5 we show how our framework can be used to implement the Bouncy
Particle Sampler and the Zig-Zag process.

e In Chapter 6 we summarise what we managed to achieve in this project and
reflect on the development process.



2 Background Material

In this chapter we provide the background material necessary for understanding the
current MCMC algorithms which rely on simulation of piecewise-deterministic Markov
processes. We further complement this chapter with Appendix A where we provide
motivation for using Monte Carlo techniques in the context of Bayesian statistics
and introduce the Metropolis-Hastings algorithm — a cornerstone for many MCMC
algorithms including the Bouncy Particle Sampler.

2.1 Non-Homogeneous Poisson Processes Simulation

Non-homogeneous Poisson processes play a central role in the simulation of piecewise-
deterministic Markov processes. We will later see that it is the main source of ran-
domness in the Bouncy Particle Sampler algorithm. In this section we first give the
definition of homogeneous Poisson processes and then discuss why such processes
appear so naturally in many real-world applications. Next, we generalize to the
non-homogeneous case and present a number of different simulation techniques. We
mostly refer to textbooks by Devroye [9], Feller [13] and Ross [30], where more careful
treatment of the following material can be found.

2.1.1 Homogeneous Poisson Processes

Consider a sequence of events occuring at random times 0 < 73 < T» < ... Let N be
a counting process, given by N(s,t] := #{i | T, € (s,t]} where 0 < s < ¢. In many
rea-world applications, such as modelling the number of incoming phone calls at a
telephone call centre or the number of decays from a radioactive source in a given
time interval, the following assumptions are met:

1. Independent increments.
Let 0 < s; <t <59 < -+ <5, <ty Then the random variables N(sy,t], .. .,
N(sp, t,] are independent.

2. Stationarity.
For any 0 < s < ¢ the random variables N(s,t] and N(0,¢ — s] have the same
distribution, so that the number of events in a given time interval depends only
on the length of that interval.

The remarkable consequence of these conditions is that IA > 0 such that for any
0 < s < t the random variable N(s,t] has a Poisson distribution with parameter

At — s).
We now sketch a proof of the above claim (see [13] for full details). Assume
that E[NV(0,1]] = X < co. Partition an interval of unit length into m subintervals of

length h := m™!. By the two conditions above, the number of events in each of these
subintervals are independent and identically distributed (i.i.d) with distribution of
N(0, h]. Let py(h) be a shorthand for P(N(0, k] = k). Then the expected number of
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subintervals containing at least one event is A~1(1 — po(h)). Intuitively, as A — 0 the
number of subintervals containing more than one event vanishes and hence we expect
that limp—0 A7 (1 — po(Rh)) = \. Hence we can write

po(h) =1 = Ah + o(h), 91
p1(h) = Ak + o(h). (2.1)
The proof concludes by considering pi(t + h) conditioned on the number of events
that happened up to time ¢, which allows us to derive a set of ordinary differential
equations whose solutions confirm that N(0,#] ~ Poisson(At) for any ¢ > 0.

Finally, note that for k € N we have P(Tjy; > Tj + ¢ | Ty) = P(NO,t] =0) =
exp(—At) and hence the interarrival time Tyy1 — T conditioned on Ty is exponen-
tially distributed with parameter A\. From independent increments and stationarity
conditions it also follows that interarrival times are independent. Hence, we can
simulate a homogeneous Poisson process with rate \ using Algorithm 1.

Algorithm 1 Homogeneous Poisson process simulation
TO 0
fori=1,2,... do
Generate U ~ Uniform(0, 1)

E,\ + ——lﬁ%‘@ > E) is an Exponential random variable with rate \
Ti < Ti 1+ E)
end for

2.1.2  Generalising to the Non-Homogeneous Case

Suppose we want to model the number of customers arriving at a supermarket. While
1t is reasonable to assume that different customers arrive independently of one an-
other, the customer counting process is not stationary — the number of customers will
clearly be larger in the evening than, for example, during the regular working hours.
We can model such processes by dropping the stationarity condition introduced in
the previous section.

Instead of parameterizing our process by some constant A > 0, we introduce an
intensity function A(¢) > 0, where ¢ is the time parameter, and further assume that
J° A(s) ds = oo. Let py(t, h) be a shorthand for P(N(¢,t + h] = k). The price we pay
for non-stationarity is that Equations 2.1 become:

Po(t, ) = 1= A(t)h + ofh), 0
pi(t,h) = A(t)h + o(h). |
Let A(t) == f(f A(s) ds where t > 0. Just like in the homogeneous case, by considering
pr(s,t+h), conditioning on the number of events that happened between times s and
s+t and using equations given in 2.2, we can derive a set of differential equations,
whose unique solution shows that N(s,t + s] ~ Poisson(A(t + s) — A(s)). We can
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Figure 2.1: The time scale transformation method for simulating a non-homogeneous Poisson process
with intensity function A(t). We simulate a homogeneous Poisson process (with rate 1) along the
y-axis and represent the generated samples with the green points. After mapping these points along
the quantile function of integrated intensity A, we obtain samples from a non-homogeneous Poisson
process with rate A, shown using the red points on the x-axis.

see that if \(¢) is constant, then Equations 2.2 do not depend ont ¢ and we go back
to Equations 2.1 for the homogeneous Poisson process. We will now present three
techniques for non-homogeneous Poisson process simulation, all of which can be found
in Devroye [9)].

Simulation by Time Scale Transformation

A non-homogeneous Poisson process can be seen as a homogeneous Poisson process
under a certain time scale transformation. Let {V(0, t] | t > 0} be a Poisson process
of rate 1 and define a new counting process M(0, ] :== N0, A(t)]. Since A(t) is non-
decreasing, M has the independent increments property. Also M(s, ] is distributed
as N(A(s), A(t)] ~ Poisson(A(t) — A(s)) which is enough to recover Equations 2.2.
Hence, {M(0,1] | t > 0} is a non-homogeneous Poisson process with intensity function
A(t). See Figure 2.1 for a graphical representation. Algorithm 2 shows how the above
idea can be used to simulate a non-homogeneous Poisson process. This algorithm is

Algorithm 2 Non-homogeneous Poisson process simulation by time scale transfor-
mation

1 Th«+0

2.5+0 > Last event time of a Poisson process N with rate 1
3fori=1,2,... do

4 S < next sample from N (given by, for example, Algorithm 1)

5 T; < inf{t | A(t) > S}

6 end for

computationally tractable only for intensity functions where we can compute line 5
quickly; however, most often we do not even have A in closed form.



Simulation by Thinning

Suppose M is a non-homogeneous Poisson process with intensity A(t). Let u(t) be
a function such that Vt > 0 A(t) < u(t). Then we can think of M as a thinned

out version of a non-homogeneous Poisson process N with intensity u(t) - an event

generated by N at time ¢ is counted (independently of others) with probability 2—%

Using 2.2 we can derive:
P(M(t, ¢+ h] = 0) = P(M(t,t + h] = 0| N(t,t + h] = 0) (1 — u(t)h + o(R))
+ P(M(t,t +h] = 0| N(t,t + h] = L) (u(t)h + o(h))
+ o(h)
= (L= p()h+o(h)) + (1 = == + o()) (u(t)h + o(R)) + o(h)
=1-A(t)h + o(h),

P(M(t,t+h] = 1) = P(M(t,t + h) = 1| N(t,t + h] = 1) (u(h) + o(h)) + o(h)
= A(t)h + o(h).
Also, the independent increments property for M holds (since it does for N ) and

hence M is a non-homogeneous Poisson process with intensity A(¢) as required. We
provide the pseudocode for the above technique in Algorithm 3.

Algorithm 3 Non-homogeneous Poisson process simulation by thinning

T+0 > Last event time of a Poisson process N with intensity w(t) > At)
fori=1,2,... do
counted < false
while not counted do
T’ + next sample from N (given by, for example, Algorithm 2)
Generate U ~ Uniform(0, 1)
if U < 23 then counted + true
end while
T, T
end for

Simulation by the Composition Method

The technique to be presented plays a crucial role in the big-data setting as we will
see in the following chapters. It will allow us to exploit special structual properies of
probability distributions for efficient simulation.

Sometimes the intensity function A(t) can be naturally represented as a sum of
non-negative functions: A(t) = 3°7; A\i(t). Denote the associated integrated intensity
functions by A;(¢). Let the main Poisson process be N , and denote by N; a Pois-
son process induced by the intensity function A;(t). Assume further that processes
Ni, N, ..., Ny, are independent. Then, to simulate the first event time T of Poisson
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process N we can simulate event times T} of processes Nj for i € {1,2,...,m} and
take the minimum. To see why this works, let E; be i.i.d. Exp(1) random variables
and note that:

P >t,To>t,..., T >t) = HIP’(Ti > t) (by independence)

=1 rE: > A)) (by Algorithm 2)

Assume that the first event time ¢; was induced by the process N,. To simulate
the second event time t», we can repreat the same procedure: simulate the first
event times of Poisson processes with intensity functions N,(¢) := \;(t + ¢,), take the
minimum and add ¢; to the result. Now comes the great part — instead of resimulating
event times for all processes, we can reuse the results we got before and only simulate
the next event for process k. To see why this is true, note that for i # k we have:

P(Ti >t | Ti > t1) =P(E; > Mi(t) | B > Ay(to))
(B > Ay(t) — Ai(t))

(B > A(t —t1))

(Ni(t1,t] = 0).

P
P
P

1

This concludes the proof of correctness for simulation via the composition method.
See Algorithm 4 for pseudocode.

We end this section by providing a more intuitive argument as to why this algo-
rithm is valid. Note that for the main Poisson process N, the probability of exactly
one event happening in (t,¢ + k) is A(t) + o(h). We can rewrite it as:

m m
A(t) 4+ o(h) = (Z /\i(t)> +o(h) = Z (Ai(t) + o(h)) .
i=1 i=1
Each term in the RHS of the above equation show the contribution of processes V;
to the main process N. Hence simulating events from individual components NV; and
ordering the event times yield the event times of Poisson process with rate A(¢).

2.2 Markov Processes and their Infinitesimal Generators

First, we briefly recall how a Markov process is defined. Let (X¢)t>0 be a stochas-
tic process taking values in some measurable space (E,&). Let {P, | z € E} !

1We also assume that the randomness of our Markov process is carried by letting X, =
Xt(w), where w € Q. Further, we assume that (X¢)t>0 is adapted to some filtration {F;} and
Vz € E (Q, F,{F:},P;) is a filtered probability space.

7



Algorithm 4 Non-homogeneous Poisson process simulation by the composition
method
D < Some data structure for efficient storage of event times (e.g. heap)
fori=1,2,...,mdo
T; « The first event time of Poisson process N;
Insert (7;,¢) to D where the elements are ordered by the first parameter.
end for
fori=1,2,... do
(T, k) < An element with the smallest time in D
T}, — Simulate the next event time of Poisson process IV},
Insert (T, k) to D
T T > Set the i-th event time of the main Poisson process.
end for

be a collection of probability measures and further define the transition function
P:]0,00) x E x & —[0,1] by:

P(t,z,T) =P,({X; € T}).

It represents the probability, that our process, started at position z € F, is in some
set I' € £ at time ¢. Finally, we require that V¢,s > 0,2 € B, € £

Po({zt+s € T} | Fi) = P(s,24,T) (a.s. with respect to P,).

This condition ensures the Markov property — the evolution of the process after time
t is independent of the past if we know the value of the process at time ¢. See
the classical monograph by Dynkin [10, Chapter 3] for more details and a rigorous
definition of Markov processes.

One can view the transition function as a family of linear operators { P };>o acting
on bounded £-measurable functions f by:

Bi(z) = /E ) P(t, 7, dy).

From the Markov property, we can deduce that {P,} forms a (contraction) semigroup
in the following way:
Vt,s >0 PP, = Py,

Sometimes, instead of defining the transition function, it is easier to define a
Markov process in terms of its movement on an infinitesimal time scale. An infinites-
imal generator A of a semigroup {F;} is given by:

lim w. (2.3)

t—0t

Af(z) =

We denote the set of functions for which the above limit is well-defined by D4 and
call it the domain of A. Intuitively, for small t we expect that

Fif(z) = f(z) + tAf(z)

8



should hold. Under some very mild assumptions, the infinitesimal generator uniquely
determines the transition function of the associated transition semigroup. See [10,
Chapters 1 and 2] for discussion on infinitesimal operators of contraction semigroups
and relation to the transition functions.

For MCMC applications, we are particularly interested in invariant distributions.
A probability measure y is invariant, if a Markov process distributed according to u
at time 0, stays at distribution u forever. More formally, a probability measure L on
(E, &) is invariant for the Markov process defined above, if:

VI e & vt >0 u() =/P(t,x,F)/J,(dx).
E
Verifying the above equation is often very hard. An alternative way to check if W
Is an invariant distribution is available if we know the infinitesimal generator A of
our process. Since for invariant measure p the distribution of our process does not
change over time and since A describes the movement of our process, we expect that
on average, our process "does not move" with respect to y, if y is invariant. Indeed,
it was shown in [8, Proposition 34.7] that u is invariant if and only if:

VfeDy /EAf(x)p(dx) = 0. (2.4)

To help better understand the infinitesimal generators of Markov processes, we
finish this section with a concrete example. Let N, = N (0,t] be a homogeneous
Poisson process (following the notation from Section 2.1) with rate A > 0. Recall that
the interarrival times follow i.i.d Exp(A) distribution. By the momoryless property of
the exponential distribution (it is in fact the only continuous time distribution having
such property), one can deduce that the process starts afresh at every time stept >0
in the sense that N :== N;,; — N is again a Poisson process with rate . So (Ni)>0
is a Markov process. What can we say about its infinitesimal generator .A? Let f be
some function defined on N>o. By Equation 2.1 we have:

Prof(n) = f(n)(1 = Ah+o(R)) + f(n+ 1)(Ah + o(h)) + o(h)
and hence by Equation 2.3 we deduce that
Af(n) = A(f(n +1) = f(n)). (2.5)

This expression is not surprising — on an infinitesimal time scale our function f can
only change by f(n+ 1) — f(n) while the rate A controls how often such changes can
occur.

2.3 Piecewise-Deterministic Markov Processes
We will now introduce a class of stochastic processes governed by random jumps

at a sequence of random times 77 < 75 < ... and deterministic motion in-between.
Piecewise-deterministic Markov processes (PDMP) were introduced by Davis [7] where
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it was claimed that this class of stochastic processes is rich enough to include virtually
all non-diffusion models in applied probability. The material below is not presented in
full generality and mathematical rigour; instead, we attempt to provide an intuitive
understanding to feel comfortable with the following chapters of this project report.
We refer to the textbook by Davis [8].

2.3.1 The definition

A PDMP is determined by the three local characteristics (¢, \, Q):

1. Let ¢ : REx R — R? be a continuous map differentiable in its second parameter
such that Vi,s € R ¢(-,t + s) = ¢(¢(, s),t). We call ¢ the flow function since
the PDMP process evolves deterministically according to ¢ in-between the jump
times.

2. The jump rate X : R? — R, together with the flow determines the jump times
T1,Ty,... In particular, if the current time is ¢ and the process is at state
z € RY, the next jump time ¢t + T is determined by the first arrival time T
of a non-homogeneous Poisson process with intensity function A(é(z,-)). We
assume that Vz € R? 3¢ > 0 such that A(¢(z,-)) is integrable on (0, ¢).

3. Finally, the actual jumps at the jump times are governed by the Markov kernel
Q : R¥ x B(RY) — [0,1] (ie. Vz € R? Q(z,-) is a probability measure and
VB € B(RY) Q(., B) is measurable). We also require that Vz Q(z, {z}) = 0.

The great thing about PDMPs is that we know precisely what their infinitesimal

generators are. It was shown in [8, Section 26|, that an infinitesimal generator A of
a PDMP (¢, A\, Q) is given by:

Af(a) = S5 (6(z.1)

2@ [ (G0 - f@)Qe ), (26)

t=0

where (-,-) is the dot product. The domain D4 of the generator A is also shown
to be the set of bounded functions f such that Vz € R? f(¢(z,t)) is absolutely
continuous as a function of ¢. As explained in [8], the above expression has an easy
intuitive interpretation. If A = 0, we end up with the first term only, which describes
the deterministic motion of our process. On the other hand, if there is no flow (i.e.
Vi, z ¢(z,t) = z), then we end up with a generator of a Markov jump process (see
how this relates to Equation 2.5).

2.3.2 A Toy Example

Suppose we want to model a particle moving along straing lines and changing direction
at random in a two dimensional space. Further, assume that we want to make it hard
for the particle to go too far away from the origin (where the difficulty increases with
the distance from the origin). We can model such process as a PDMP over the space
Z=R*=R?>xR?= (X,V), as follows:

10
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Figure 2.2: The toy example considered in Section 2.3.2. Figure a shows the first 7 simulated events.
We can see how the process evolved after 1000 events in Figure b.

1. Since we want the particle to move in straight lines, we can, for example, let
é(z,t) = ¢((z,v),t) = (z + vt,v). That is, we change the particle’s position
x based on velocity v. The velocity does not change during the deterministic
motion.

2. Now we want to make it hard for the particle to go far away from the ori-
gin. We can achieve that by letting the jump-rate function A\ be defined as
z = (z,v) = max{0, (z,v) }. We take the inner product, since we want to take
the particle’s movement direction into account. We also take the maximum
function, since the jump rate must be non-negative. Note that in such a sce-
nario, the particle can move freely directly towards the origin. However, as
the distance from the origin increases, the jump rate also increases, so that the
particle is more likely to change direction and go back.

3. At jump times, we leave the particle location unchanged, but sample a new
velocity uniformly from, S := {(v1,vs) € R? | v? +vZ = 1}.

See Figure 2.2 for a sample simulation of this process. The Bouncy Particle
Sampler is a very similar algorithm. By carefully choosing the jump rate function
and the transition kernel, we will be able to guide our particle, so that the resulting
invariant distribution is the one we want to sample from.
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3 Generic Implementation of PDMPs

Recall that the purpose of this project is to build a flexible and efficient framework for
implementing and testing Monte Carlo techniques based on piecewise-deterministic
Markov process (PDMP) simulation. We hope that such tools will contribute to
future research by allowing new ideas to be quickly implemented and benchmarked
against the current state-of-the-art. It is, however, hard to anticipate the exact details
of algorithms yet to be discovered. Therefore, before discussing the current PDMP
based Monte Carlo algorithms, we design and implement a framework capable of
efficiently simulating arbitrary PDMPs.

There are a number of trade-offs that need to be considered before choosing a
language for implementing our framework. Doing it in Python or R, for instance,
would allow us to effortlessly leverage rich plotting and statistical output analysis
packages at the cost of execution speed. Speed is, however, of cruicial importance to
us. Implementing novel algorithms using the wrong tools and bencharking against
the current state-of-the-art MCMC algorithms (often implemented, at least partially,
in C/C++) might provide too pessimistic results due to not realising the full poten-
tial of the new algorithm. Other possiblilities are fast JIT compiled languages like
Java, C# or Julia, the latter being a particularly interesting choice, with its focus
on fast numerical computations and built-in support for parallelism and distributed
computing.

We choose to implement the framework in C++. Even though in some cases
JIT compiled languages can potentially execute faster than C/C++-, most of the
benchmarks still show C/C++ superiority in terms of efficiency. It is also worth
noting that more than a decade ago processsor manufacturers’ focus has shifted on
engineering multi-core architectures rather than increasing clock speeds (see Sutter
[32]). It is thus natural to expect that the algorithms to come will eventually be forced
to exploit multi-core hardware to its full potential in order to be competetive. Writing
our framework in C++ allows to easily integrate CUDA code and take advantage of
modern GPUs (not explored in this project). Finally, the C++ language is very
expressive and allows us to make some design decisions which would not be possible
in most of the other languages (discussed in the next section).

3.1 Designing the framework

In Section 2.3.1 we defined a PDMP by its three local characteristics (¢, A, @), namely
the deterministic flow, intensity function and the Markov kernel. We would expect
our framework to be flexible enough to easily change any of these characteristics
with no/minimal modifications to the others. For example, consider two PDMPs,
which differ only by their Markov kernels. Having implemented the first algorithm,
we should have an easy way to implement the other, simply by changing the Markov
kernel and not touching any of the other existing code.

Implementing such a modular framework requires to identify a set of components
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allowing to simulate an arbitraty PDMP and implementing them in a loosely coupled
way. We also need a unified way to manage these components in a coherent manner
and a mechanism to easily substitute one component for another (e.g. changing one
Markov kernel to another as discussed above).

One possible way to achieve this is by using the Strategy pattern (fully described in
Gamma et al. [15]). We can agree on the interfaces of each component and implement
the main PDMP class, which knows how to manipulate each of the components
in a logically feasible way. The user of the framework can then reimplement any
component of the algorithm and pass it to the main PDMP class, thus choosing the
behaviour of the resulting PDMP. While this is a good solution to our problem, there is
one inefficiency we would like to get rid of. The Strategy pattern is designed to choose
the behaviour at runtime, which comes at the cost of relying on virtual methods. As
analysed in this great blog post!, the performance penalties associated with virtual
methods are: an extra layer of indirection, difficulties in inlining the method calls and
Incresing object sizes by an extra pointer, thus potentially contributing to more L1
cache misses. Luckily, we do not need to customize the behaviour of our PDMP at
runtime, since we know exactly what kind of process we want to run, before it even
starts executing. A compile-time variant of the Strategy pattern called the policy-
based design (popularised in Alexandrescu [1]) seems to be an excellent choice for us.
We will now briefly describe how it works.

The idea of the policy-based design is to assemble a class (called the host) with
complex behaviour from many other smaller classes (called policies). The host class is
parameterized via template parameters which are instantiated with particular imple-
mentations of policies. Each of the policies should define an orthogonal (as much as
possible) aspect of the behaviour of the resulting class, via its #mplicit interfaces. The
host class either inherits from its policies or uses them as class members. A particular
advantage of inheriting from the policies is that the resulting host class has an inter-
face specified by its policies (so the usual relationship between the base and derived
classes is inverted here). This allows for complex interaction between different types
of policies, of which the host class need not be aware, as we shall see in Section 3.4.
Since we can easily change between different policies by simply changing the template
parameter, we can achieve a combinatorial number of behaviours by implementing a
core set of policies. Finally, since C++ templates is a compile-time mechanism, any
incompatibilities between particular policies used will be found at compilation time.

This policy-based design requires support for templates and multiple inheritance.
Therefore, it is often associated to the C++ language, as not many other languages
possess both of these features. For a much more detailed discussion on why, when
and how policy-based design should be used, including specific code examples, refer
to [1]. We will now move on to the next section where we will see the policy-based
design in action.

http://eli.thegreenplace.net/2013/12/05/ the-cost-of-dynamic-virtual-calls-vs-static-crtp-
dispatch-in-c
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3.2 A basic policy-based implementation of PDMPs

Since the policy-based design is rather specific to C++, instead of presenting pseu-
docode examples we will illustrate the design of our PDMPs framework with C—+--
code examples. These examples will reflect the main ideas of the design; however, due
to space limitations and for clarity reasons some parts of the design will be omitted,
while others significantly simplified. The true implementation can be seen at the
project’s code repository?.

The most challenging part of designing policy-based software is deciding on what
the actual policies are. In the ideal case, policies would be completely orthogonal and
unaware of each other; however, our case is not that simple. The Poisson process sim-
ulation, for example, needs to be aware of the deterministic motion and the intensity
function. On the other hand, the flow and intensity does not need to know about the
details of the Poisson process simulation. As we will see in Section 3.3, for efficiency
reasons even the Markov kernel may need to communicate with the Poisson process
simulation policy.

To simulate a PDMP, we only need to know how to simulate one iteration of the
process, since the process has no memory (by definition). One iteration of a PDMP
(started at state z) can be simulated as follows:

1. Simulate the first arrival time T of an inhomogeneous Poisson process with rate

t = Ao(z,1)).
2. Set o’ = ¢(z,T).
3. Calculate Zpey by sampling from the measure Q(z’,-).

This algorithm naturally suggests us to choose three policies: the Poisson process
simulation policy, the Markov kernel policy and the deterministic flow policy. See
Listing 1 for the host class implementation using these three policies, which will
serve as the cornerstone of our PDMPs framework. Note that we can also look at
this implementation as a compile-time variant of the template method pattern (also
described in [15]). Indeed, the host class provides the skeleton for a PDMP simulation
algorithm, while the exact implementation details are delegated to the policy classes.

Lets now elaborate on what is going on in Listing 1. First note, that the simulation
method allows for any definition of the State class. This way we allow the client of the
library to customise its process state representation. For example, some users might
want to represent the states using a built in array or standard library containers, while
others might use some third party libraries or their own data structures customised
for their use cases. The code will compile as long as the state representation’s implicit
interface is compatible with all three given policies.

For this project purposes, we will only be interested in the R?? state spaces, where
the first d coordinates represent the position of a particle and the last d coordinates

*The project code can be found at https://github.com/ TomasVaskevicius/bouncy-particle-
sampler. The examiner can see the content of the repository at the day of submission deadline
(2274 of May, 2017), by clicking on commits and then clicking on "<>" button located at the right
of the commit of the latest valid date.
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Listing 1 A host class for simulating PDMPs.

1 template<class PoissonProcess, class MarkovKernel, class Flow = LinearFlow>
2 class Pdmp :
3 public PoissonProcess, public MarkovKernel, public Flow {

public:

// Specify the implicit interfaces for the policy classes.
using PoissonProcess::getJumpTime;

9  using MarkovKernel::jump;

10 using Flow::advanceStateByFlow;

0~ O U

12 template<class State>
13 State simulateOnelteration(const State& state) {

14 auto iterationTime = getJumpTime(state, *this);

15 State stateBeforeJump = advanceStateByFlow(state, iterationTime);
16 State stateAfterJump = jump(stateBeforeJump, *this);

17 return stateAfterJump;

18 }

19 }

represent the velocity (similarly to the example process in Section 2.3.2). We do
not consider other state spaces in this project, since all current PDMP based Monte
Carlo algorithms use such state space. See Listing 2 for the interface. Internally,
we use a lightweight and fast linear algebra library Eigen3 [20] for representing real
valued vectors (see lines 5 and 6), which also provides a lot of useful functionality,
such as norm and inner product calculations, matrix operations, operator overloads
for multiplying a vector with a scalar, etc. Note how this representation makes the
PDMP host class completely agnostic of the specifics of our state space internals.

Since the current PDMP based Monte Carlo algorithms all rely on constant ve-
locity flow (such flow was used in the toy example Section 2.3.2), we will restrict our-
selves to a LinearFlow policy (the default template argument in line 1 of Listing 1),
implemented in Listing 3. Note that the implementation of the advanceStateByFlow
method places the following requirements on the State representation:

1. It should have a data member called position.
2. It should have a data member called velocity.
3. It should be constructible by passing in a position and velocity representation.

4. The velocity vector can be multiplied by a scalar (time) and added to the
position vector.

If any of these conditions are not satistied, the compiler will point it out. This is the
intended behaviour, since the LinearFlow conceptually would not make any sense for
a state not having position and velocity. Also note that the clients of our library do
not have to use our state representation given in Listing 2. They can define their own
representations, as long as the implicit interface is satisfied.
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Listing 2 An interface for states given by position and velocity vectors.

1 template<typename RealType, int Dimension>
2 struct PositionAndVelocityState {

template<int N>
using RealVector = Eigen::Matrix<RealType, N, 1>;

4
5
6 using DynamicRealVector = Eigen::Matrix<RealType, Eigen::Dynamic, 1>;
7
8

static const int kDimension = Dimension;

9

10 PositionAndVelocityState(

11 RealVector<Dimension / 2> position,
12 RealVector<Dimension / 2> velocity);
13

14  DynamicRealVector getSubvector(std::vector<int> ids) const;

16  template<class VectorType>
17  PositionAndVelocityState constructStateWithModifiedVariables(
18 std::vector<int> ids, VectorType modification) const;

20  const RealVector<Dimension / 2> position;
21  const RealVector<Dimension / 2> velocity;

Two things remain to be discussed regarding the PDMP host class implementation
given in Listing 1. First, in lines 14 and 16 we pass the host class object to the policy
classes via the *this argument. As a result, the policy class can call any methods
provided by the other policies, if needed®. For example, this technique allows the
Poisson process policy to access the flow implementation provided by the flow policy.

The second (and final) issue is dealing with the policy classes constructor param-
eters. We do not want to restrict the policy classes in any way, so we cannot put
any constraints on the number and types of constructor parameters. This is indeed
possible to achieve by wrapping constructor parameters of each policy class in a tuple
(provided by the standard library) and using template metaprogramming tricks and
modern C++ features to unwrap each of the tuples and pass as arguments to the
associated policy classes. See the project code repository for implementation details.

This concludes our basic implementation of a generic way to simulate PDMPs.
See Listing 4 for example code constructing the toy PDMP from Section 2.3.2 using
our framework. In the following sections we will discuss some efficient simulation
opportunities which arise for special kind of PDMPs and provide an implementation
based on the framework presented in this section.

3 Alternatively, instead of passing the *this object, we could only provide the type of *this object
via explicitly specifying it in the method template parameter via decltype(*this). Then, the policy
class can access all host class methods by safely downcasting itself to the host class by calling
static_ cast<HostClassType*>(this)->someMethodProvidedBy AnotherPolicy().
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Listing 3 An implementation of the linear flow policy.

class LinearFlow {
public:

1

2

3

4 template<class State, typename RealType>

5 static State advanceStateByFlow(State state, RealType time) {
6 auto position = state.position;
7

8

9

0

auto velocity = state.velocity;
return State(position + velocity * time, velocity);
}

10 };

Listing 4 An implementation of the toy PDMP from the Section 2.3.2.

1 class ToyMarkovKernel {

2 public:

3

4  template<class State, class HostClass>

5 State jump(State state, const HostClass& hostClassObject) {

6 auto newVelocity = state.velocity;

7 for (int i = 0; i < newVelocity.size(); i++) {

8 newVelocity[i]l = ...; // Sample from Normal(0, 1) distribution.
9 }

10 newVelocity /= newVelocity.norm(); // Normalise the new velocity.
11 return State(state.position, newVelocity);

12}

13 };

14

15 class ToyPoissonProcessSimulator {

16 public:

17

18 // See Appendix B for the derivation of the equations used here.
19 template<class State, class HostClass>
20 auto getJumpTime(State state, const HostClass& hostClassObject) {

21 auto xv = state.position.dot(state.velocity);

22 auto vSquaredNorm = pow(state.velocity.norm(), 2);

23 auto U = ...; // Sample from Uniform(0O, 1) distribution.
24 if (xv <= 0) {

25 return (-xv + sqrt(-2 * vSquaredNorm * log(U))) / vSquaredNorm;
26 } else {

27 return (-xv + sqrt(xv * xv - 2 * vSquaredNorm * log(U)))
28 / vSquaredNorm;

29 }

30 )

31 };

32

33 // Recall that we have set the LinearFlow as a default template argument.
34 using ToyPdmp = Pdmp<ToyPoissonProcessSimulator, ToyMarkovKernel>;

35 ToyPdmp toyPdmp;

36

37 ... // Generate samples from the toy PDMP.
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3.3 Exploiting the structure of the process

In the previous section we have presented a general framework for implementing
PDMPs. It is, however, of a relatively low level of abstraction and delegates many
specific implementation details to the user. We will build another layer of higher
abstraction on top of the current implementation. This additional layer will auto-
matically exploit the structure of the process, where possible, in order to achieve
remarkable computational gains. The exact implementation details will be hidden
from the client of our library, but remain flexible in case some parts need to be cus-
tomised for special needs. In this section, we identify this special structure of certain
PDMPs and discuss how to exploit it. The implementation details will be explored
in the next section.

Recall Equation 2.6 giving a general form? for infinitesimal generators of PDMPs:

d
Af@) = G|+ Ao [ U@ -f@)ewa). G
= Rd
Deterministic motion  Poisson process Jump
intensity

Now suppose we want to simulate a PDMP with a Markov kernel Q inducing two
fundamentally different actions. That is, assume that there are two other Markov
kernels @; and Q, and functions pi, ps, such that Vz p;(z) + pa(z) = 1 and

Q(z,-) = p(z) (%, ) + pa(2) Qa(w, ).

That is, if the process is at state z and we want to jump according to the Markov
kernel Q, we first sample 4 € {1,2} from the discrete distribution (p;(z), p2(z)) and
then jump according to the measure Q,(z,-). Now define X;(x) := p;(z)A(z) and see
what happens to the second term of the infinitesimal generator:

Na) [ () = 1),y
=3e) [ (F0) = S@)r(@) Qs (5,4) + pali) Qa(o, )
=hu(e) | () = F@)Qulo,dy) + 2e(a) [ (76) = £(2)) Qalo )

]Rd

We can then simulate our PDMP started at z as follows:

1. Simulate times 77 and 75 from Poisson processes with intensities A\;(¢(z,t)) and
A2(@(x,t)) respectively.

2. Set 7 := arg min Tj. The resulting time T} is a jump time of Poisson process
ke{1,2}
with intensity A(¢(z,t)). See Section 2.1.2 for justification.

4Note how the explanations for each term in Equation 3.1 reassure us, that choosing the Poisson
process simulation, the Markov jump kernel and the deterministic flow as policies in our PDMP
framework’s design makes perfect sense.
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3. Let 2’ := ¢(z, T).

4. Generate z,, by sampling from the measure Q;(2',-). Note that at state ' Q;
will be invoked with probability ’}\i((;,)) = pi(z') (determined by the first step),

which is exactly what we want.

The above procedure generalises trivially to cases where we have n different Markov
kernels instead of just 2.

The opportunity for more efficient simulation arises from the composition method
for Poisson process simulation introduced in Section 2.1.2. This technique, however,
cannot be applied directly. Even though we can decompose our intensity function as

Alx) = 3" Ni(z), the resulting components are not necessarily independent of each

i=1

other. Lets illustrate that with specific examples.
Suppose we want to simulate a two dimensional process governed by two Markov
kernels Q; and Q,, with associated intensities A (z;, ;) = z? and Ao (21, 2) = 2.
While these intensities look like they are independent from one another, suppose that

Q; simply subtracts 1 from the second component. That is, let

Q1((z1, 22), (dz1, dzy)) = O(e1,20-1)(dz1, dzg)

where ¢ is the Dirac measure. Note that in this case, if we perform the simulation
procedure outlined above, and jump accodring to Q;, then we cannot reuse the time
simulated for the second Poisson process.

A dependency between the two Poisson processes can occur in a more subtle
way. Now assume that the Markov kernels Q: and Q, act only on the first and
second coordinates of the process respectively. Even this is not enough to ensure
independence properties which would allow us to reuse simulation results. Indeed,
suppose that the flow ¢ of our PDMP is given by:

(21, 22),1) = (21 + 1,22 + 21). (3.2)

Then the Markov kernel Q;, changing the coordinate z;, affects the speed of the
process in the second coordinate z,, which in turn affects the simulation outcome of
the second Poisson process.

We formalise this idea, by defining a function:

Dep,, : P(N) — P(N) (3.3)

which maps a set of variables (denoted by their indices) to an expanded set of vari-
ables, by including the variables which wil] be afected by ¢, as a result of a change to a
variable in S (obviously, changing a variable in S affects a variable in §, which is why
we have V.S € P(N) S C Dep,(S).) For example, for the flow given in Equation 3.2,
we have: Dep,({1}) = {1,2} and Dep,({2}) = {2}.

e are now ready to formulate sufficient conditions for the independence of Pois-
son processes. Let the generator of our PDMP be given by:

d n
Af(z) = 3/ (¢, Z‘))/tzo +Z/\z‘($)4 (f(y) = f(z) Qi(x, dy). (3.4)
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Further assume, that for i = 1,2,...,n we have simulated times 7} distributed as the
first events of Poisson processes with intensities ¢ — A;(¢(z,t)). Assume that the min-
imum of these times was T} so that we jump according to the measure Qr(é(x, T}), -).
This finishes one iteratrion of our PDMP simulation. Assume that the jump has mod-
ified the state space variables from some set S. Then to simulate the next iteration,
we can reuse the time T} (shifted by Tk, of course), if ¢ # k and evaluating \;(z) does
not depend on any of the variables from the set Dep,(S). We would like to conclude
this section by drawing the reader’s attention to the fact, that the independence be-
tween separate components of our PDMPs is not a symmetric relation. To see that,
consider a component, whose intensity is simply a constant, but whose associated
Markov kernel modifies all state space variables. Such a component does not depend
on any of the other components, while all the other components depend on it.

3.4 Implementing efficient policies

Now that we know how to exploit the structure of PDMPs, we can start thinking
about the implementation. The main problem we face is in representing different
components of our PDMP and calculating dependencies between them, while keeping
the policies of our framework as loosely coupled as possible. It is particularly chal-
lenging, because we need all the policies to communicate in some way. The Poisson
process simulator needs to know the set of variables S modified by the last jump
implemented by the Markov kernel policy. It further needs a way to access the Dep,
function, which naturally belongs to the flow policy implementation. Finally, the
Markov kernel policy needs to be aware of which Poisson process intensity factors
A; were responsible for the resulting jump times, in order to invoke the appropriate
Markov kernel components Q;. We solve these problems by introducing a concept of
the dependencies graph. We can then use this graph to perform the Poisson process
simulation by adapting Algorithm 4 (simulation by the composition method) for our
particular case.

3.4.1 The dependencies graph

Our graph will consist of three types of nodes (see Figure 3.1 for a graphical repre-
sentation):

1. Markov kernel nodes. Each node of this type represents the Markov kernel
component Q; and holds the indices of all state space variables, which can be
modified by this kernel.

2. Variable nodes These nodes only hold the indices of intensity factors A;, which
depend on the state space variable represented by such a node.

3. Factor nodes This is the most complex type of node. It is responsible for the
Poisson process time generation associated to the intensity factor of \;. It also
holds the process state space variable indices, which are needed to evaluate ;.
Finally, it can optionally provide access for pointwise evaluation of )\;, if needed.
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Figure 3.1: A graphical representation of an imag-
inary dependencies graph for a PDMP on a 4-
dimensional position-velocity state space. The
arrows represent the dependencies between the
nodes. The vertical arrows between the state
space variables are induced by Depy function (in
this case ¢ is the linear flow, whose implementa-
tion is given in Listing 3). The red nodes and
edges depict the procedure for finding which fac-
tors need to be resimulated, after invocation of a
specific Markov kernel (which is Qs in this image).

The user of our library will be able to specify each part of the process separatelly, by
creating markov Kernel and factor nodes, so the modularity of our framework is not
lost. Each factor and Markov kernel node can be thought of as a particular (sub)policy
class. Our implementation of the main Markov kernel and Poisson process policies
will be responsible for managing these subpolicies in a logically valid and efficient
way, which will be hidden from the client of our framework.

There are implicit assumptions that the user of our library has to be aware of. We
assume that the generator of the process is of the form given in Equation 3.4, so that
the number of factor and Markov kernel nodes must be the same (our implementation
of the graph performs compile-time checking of this assumption) and the number of
variable nodes has to match the dimensionality of the state space. Also, it is assumed
that the i-th factor node corresponds to the i-th Markov kernel. Finally, the flow
policy interface has to be expanded to support Dep, calculations. We provide such
functionality for the linear flow policy® from the Listing 3 (see the project’s code
repository for details).

We will now describe how to integrate this graph into our PDMPs simulation
framework. It is indeed very easy to do: we simply instantiate the Markov kernel
and the Poisson process policies, by providing the graph via a constructor argument.
Both policies can then decide exactly what they need to take from the graph in order
to set up their internal state. In our implementation, the Markov kernel policy simply
takes all the Markov kernel nodes, while the Poisson process policy takes the factor
nodes and will repeatedly query the graph for the dependencies between the separate
Poisson process components.

The interface of the dependencies graph is shown in Listing 5. We apply the policy-
based design to the graph’s class itself: customisation is allowed by changing node
types in the template parameters. There is one last design choice to be consider before
implementing the dependencies graph. One way to do the dependencies calculations
is to look at the variables modified by the markov Kernel at every iteration of the
process and every time solve a small graph problem of finding dependent intensity

®A particularly nice feature of C++ class templates is that if a method of some template class
is never called, the compiler ignores it so that it does not even appear in the resulting binary. So
extending the flow interface does not impose any performance penalties for PDMP simulations which
do not require such functionality.
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factors. Another option is to find the factors dependent on each Markov kernel (as
shown in Figure 3.1) and then cache the results. While the first choice would be great
for Markov kernels, whose components act on a random subset of variables, we could
actually split up such kernels into even smaller components. Therefore, for efficiency
reasons, we decided to implement the second method which relies on caching.

Listing 5 An interface of the dependencies graph.

1 template<

2 int N, int StateSpaceDim,

3 class MarkovKernelNodeType, class VariableNodeType, class FactorNodeType>
4 class DependenciesGraph {

5 public:

6

7

8

using MarkovKernelNodes = array<shared_ptr<MarkovKernelNodeType>, N>;
using VariableNodes = array<shared_ptr<VariableNodeType>, StateSpaceDim>;
9 using FactorNodes = array<shared_ptr<FactorNodeType>, N>;
10
11 // Create the graph by simply providing the nodes.
12 DependenciesGraph(

13 const MarkovKernelNodes& markovKernelNodes,
14 const VariableNodes& variableNodes,

15 const FactorNodes& factorNodes);

16

17 // Will be repeatedly called by the main Poisson process policy.
18  template<class Flow>

19  const std::vector<int>& getFactorDependencies(int factorId);

20

21 const MarkovKernelNodes markovKernelNodes;

22 const VariableNodes variableNodes;

23 const FactorNodes factorNodes;

24 };

The next thing we need to look at is the implementation of the actual nodes. Our
alm is to provide an intuitive syntax for encapsulating the behaviour specified by the
user in an appropriate type of node. Implementation of the variable nodes is trivial as
they only hold the edges to the factor nodes. We will not show the implementation of
factor nodes here, which are quite similar to the Markov kernel nodes but have some
additional rather intricate technical details; however, factor nodes can be created by
the client by using the same syntactic structure as for the Markov kernel nodes. We
show our implementation of the Markov kernel nodes together with a usage example
in Listing 6. There is one technical detail that requires attention. Each Markov
kernel node will implement a different jump function, as provided by the user. As
a result, each node will be of a different type, and thus we cannot store such nodes
in any standard library containers. We resolve this problem by creating a common
parent class for all markov Kernel nodes which is denoted by MarkovKernelNodeBase
in Listing 6. This is the type that will be provided to the dependencies graph as a
template argument.
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Listing 6 The implementation of Markov kernel nodes.

1 template<class State>
2 struct MarkovKernelNodeBase {
3 ~“MarkovKernelNodeBase() = default;

4  virtual State jump(const State& state) = 0;

5 const vector<int> dependentVariablelds;

6 };

7

8 template<class State, class JumpFunctor>

9 class MarkovKernelNode : public MarkovKernelNodeBase<State> {

10 public:

11

12 MarkovKernelNode(

13 const vector<int>& dependentVariablelds,

14 const JumpFunctor& jumpFunctor) ;

15

16  virtual State jump(const State& state) override final {

17 auto stateSubvector = state.getSubvector(this->dependentVariablelds);
18 auto modifiedSubvector = this->jumpFunctor_(stateSubvector);
19 return state.constructStateWithModifiedVariables(

20 this->dependentVariableIds, modifiedSubvector);

21}
22

23 private:

24  JumpFunctor jumpFunctor_;

25 };5

26

27 // The client code can then create the nodes as follows:
28 auto jumpKernel = [l (auto stateSubvector) -> {

29 ... // Do something with stateSubvector.

30 return modifiedStateSubvector;

31 };

32 MarkovKernelNodeBase* = new MarkovKernelNode<decltype (jumpKernel)>(
33 {1, 2}, // Specify the variable indices on which this kernel acts.
34 jumpKernel) ;
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3.4.2 Adapting the composition method for jump time simulation

As promised at the beginning of this section, we will use the dependencies graph and
an adapted version of simulation by the composition method to implement the main
Poisson process policy. Take a quick second look at Algorithm 4. It is easy to see
how this algorithm needs to be modified — instead of resimulating one event only at
each step, we also resimulate all its dependencies. See Listing 7 for a skech of the
implementation, which we will now briefly explain.

We first need to decide on the data structure that we will use for managing a
set of future events — in particular, we need to be able to quickly add new elements
and quickly extract the smallest element. The C-++ standard library provides a
priority queue implementation with O(1) time for minimal element extraction and
O(log N) for inserting a new element or removing an arbitrary element. The Boost
C+-+ library [3] provides an implementation of a Fibonacci heap, which provides
the same operations with complexities O(1),O(1) and O(log N) respectively. Such
an implementation is of particular intereset to us, since we can avoid calling the
operation of arbirary elemen removal as we will see in a while. By default, we set
our event scheduling data structure to C++ standard library’s priority queue. A user
might switch to Boost’s Fibonacci heap by simply changing the template argument to
our Poisson process policy (or for any other implementation. See Devroye [9, Chapter
XIV Section 5| for a review of discrete event simulation techniques).

Lets now point out the two improvements that we make over the most naive im-
plementation. Let EventType be some abstract data structure, encapsulating all the
information that we associate to a particular simulation time that we want to put
into our event scheduler. For each factor node, our Poisson process policy class holds
a pointer to the last EventType object provided to the event scheduler. If the last
time proposed by some factor node becomes invalid (due to jump induced by a de-
pendenct factor), we can simply modify the state of this the associated EventType
data structure through our internal pointer, marking it as invalid without any com-
munication with the event scheduler. Once such an invalid factor gets returned by
the event scheduler, we simply ignore it (lines 17-21 in Listing 7).

Another improvement is made in connection to the Poisson process simulation
by thinning (as discussed in Algorithm 3). Simulating an event using this procedure
might be expensive, if rejections are very common. It becomes a total waste of
computational power if such a time proposal gets invalidated due to a jump induced
by a dependent factor. To avoid unnecessary calculations, we can instead delay the
rejection step to the point when the jump time proposal is the minimum among all the
other scheduled times. A skech realisation of this is shown in lines 22-26 of Listing 7.

Finally, take a look at the line 37. We expand our Poisson process policy’s public
interface by exposing the id of the intensity factor which was the last one to induce
a jump. It allows the Markov kernel policy to decide, which jump component needs
to be invoked. The Markov kernel policy can call this method (not shown here, see

code repository for details) in a similar way to how the Poisson process policy figures
out what kind of flow policy is used by the host class (lines 28-29).
We summarise the full design of our PDMPs framework in Figure 3.2.
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Listing 7 The Poisson process policy based on the dependencies graph.

template<

class DependenciesGraph,

template<class> class EventScheduler = PriorityQueueEventScheduler>
class PoissonProcessPolicy {

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

// Provide the dependencies graph via a constructor argument.
PoissonProcess (DependenciesGraph graph) ;

1
2
3
4
5 public:
6
7
8
9

// The method which will be invoked by the PDMP host class.
template<class State, class HostClass>

auto getJumpTime(const Statek state, const HostClassk hostClass) {
resimulateEventsForFactors(factorsToResimulate_);

}

}

while (true) {

EventType event = eventScheduler_.pop();
int factorId = event.factorld;
if (levent.isValid) {
// This event was invalidated because a new event was
// simulated for this factorld.
continue;
}
if (tevent.shouldAccept()) {
// Event was rejected due to the Poisson process thinning step.
resimulateEventForFactor (factorId);
continue;
}
// Found an event that is valid and not rejected.
factorsToResimulate_ =
graph_.getFactorDependencies<HostClass: :FlowPolicy>(factorId);
auto iterationTime = event.time - currentTime_;
currentTime_ = event.time;
return iterationTime;

// This method will be accessed by the Markov kermel policy.
int getLastFactorId() const;

39 private:

EventScheduler<EventType> eventScheduler_;
DependenciesGraph graph_;

vector<int> factorsToResimulate_;

double currentTime_ = 0.0f;

40
41
42
43
44 };
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Figure 3.2: A UML diagram depicting the final design of our PDMPs simulation framework. The
dashed lines represent pointers, edges ending in a white triangle represent inheritance, edges with a
diamond shaped ending represent a has-a relationship. Red circles represent the events not yet re-
moved from the events scheduler, but who have already been invalidated. The user of our framework
is only concerned about defining the graph nodes.
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3.5 Testing

The importance of writing automated tests for any kind of software cannot be over-
stated. As the project grows in size, small code changes can have seemingly unex-
pected consequences. It becomes hard to reason about the correctness of our code
and as a result, subtle bugs get introduced to the production code, which can be
especially hard to track down later. To help alleviate these problems, we turn to unit
and integration testing, which will try to make sure, that any future changes to the
code will not break the correctness conditions.

We use Google’s googletest [18] framework for writing tests and mocking objects.
At first we test each of the individual component discussed in this chapter by replacing
their dependencies with mock copies, whose behaviour can be controlled precisely.
This idea is at the heart of unit testing — we are able to test the correctness of a specific
component regardless of the correctness of its dependencies (and the dependencies of
its dependencies for that matter). Next, we write Integration tests to see if separate
components behave correctly as a unit. An interesting issue arises in our case, because
we want to test inherently random processes. The process outcome is hence allowed
to be different during different runs, which makes testing harder. We resolve this
issue by mocking the random number generators (RNG), then performing a short
simulation by hands to carefully craft some test cases (using the mock RNG output,
which we set up ourselves) and test if our library produces expected results.

We have attempted to cover as many edge cases as possible by writing tests for the
PDMPs framework discussed in this chapter. A total of 66 test cases were written,
the source code of which can be found in the tests/core/ directory of the project’s
GitHub page.
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4 Building a Framework for Output Analysis

In the previous chapter we designed and implemented a flexible and efficient library
for creating arbitrary PDMPs. Assume that a user of our library wants to test a
new MCMC algorithm based on a PDMP. A natural research workflow could then
go as follows: first, we build the process using our framework, then, we output the
results to a text file and finally, we load them with, for example, R or Python to
analyse the output. The shortcomings of such an approach are easy to see — by
outputting the simulation results to a text file we lose all the information about the
state space representation and what the deterministic flow function of the process
is. This information is necessary in order to recreate the complete process trajectory
(from the points at event times) so it would have to be reprogrammed in the tool
used for analysing the output. Furthermore, due to the inherent randomness of our
process, doing statistical analysis requires simulating the same process a number
of times. These days, even the cheapest laptop computers have at least 4 logical
processors, with the more expensive ones reaching 8. It would therefore be nice, if
there was some easy way to use all the cores to run independent processes, turning
an experiment that could take a few days into a simple overnight simulation. In this
chapter, we will try to address the concerns laid out above by extending our library
with support for analysing the output!. Once again, our main focus is flexibility —
we want out output analysis utilities to be easily extendable and customisable by the
client for its special needs.

4.1 Analysis Utilities

Let’s first discuss the simplest tools that are necessary to do any kind of analysis on
the output of our processes.

1. Support for running multiple processes in parallel. This is very simple to do,
since our separate processes will be independent from each other and will re-
quire no communication. Since the C-++11 language standard, support for
multithreading was added. We use it to write a simple function, which accepts
a set of callable objects (e.g. lambda functions), executes them all in parallel®
and collects the results.

2. Support for visual analysis. Since there is no built-in support for plotting graphs
in C++, we use QCustomPlot [12] — an open source library, built on top of Qt
[28], for plotting and data visualisation. We added wrappers around this library
for easy plotting of line graphs, box plots and our simulated process’ sample
path (for the 2-dimensional case only).

!The code for this chapter can be found at the project’s GitHub repository int the src/analysis/
directory.

*To avoid unnecessary overhead (e.g. context switching), we of course do not run more threads
at a time than the number of available logical processors.
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3. Support for numerical integration. Recall, that the main motivation behind our
framework is MCMC algorithms. As discussed in Chapter A.1, we will want to
use the output of our process to compute certain expectations. Since our al-
gorithms output continuous trajectories rather than discrete samples from the
target distribution, summation in the strong law of large numbers estimator be-
comes integration. We hence need tools for efficient one dimensional integraton.
As a result, we added the GNU Scientific Library (GSL) [19] - a C library for
scientific computing which has an implementation of Gaussian quadrature. We
implemented wrappers around the C API for easy and idiomatic C++ use.

4. Support for timing. Roughly speaking, one algorithm is better than the other, if
it performs the same task faster. Hence it is natural that we need tools to easily
time (possibly specific parts only) of our processes. Care must be taken when
choosing the timing technique. One possibility is to use the wall-clock time. It is,
however, very susceptible to noise due to operating system’s activities. Another
option is to use the CPU time. It has a downside, however, that an algorithm
effectively using many cores and finishing much faster than another algorithm
using one core only, may have, for instance, equal CPU times. All the algorithms
in our project will run on one core only. We will want to run many independent
processes at the same time using separate threads. Hence, we provide a wrapper
around a timer measuring CPU time separately for each thread. Clients of our
library may implement their own timers and use them with the existing code
by simply changing template parameters where appropriate.

4.2 Running the Process

So far, our PDMPs’ host class interface only supports simulation of one iteration of
the process. Every user of our library thus has to write their own code for running
the whole process and deciding when to stop. This is clearly unacceptable, since
many people would be writing essentially the same code. To solve this, we implement
a separate class capable of running any PDMP3. We again reuse the policy-based
design, by creating a host class for all runners and delegating the specific running and
stopping decisions to its policy class. The host class will be responsible for registration
of output processors, which we will introduce in the next section. We provide two
running policies — one for simply performing a fixed number of iterations, another for
stopping the process after the specified amount of time (with extra support for the
burn-in* time and optionally excluding the time spent by the output processors.

3The runner class is general enough to run any kind of PDMP, not even necessarily built using
our own framework. We could thus wrap any other PDMP implemented in C++ to return results
compatible with our framework, and such third-party algorithm could fully benefit from our analysis
framework’s functionality.

“Running a Markov chain for a while and discarding its output. We hope that our process has
converged to the invariant distribution during this time.
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4.3 Output Processors

This is the most interesting decision we make in the output analysis framework’s
design. To the best of our knowledge, most of MCMC libraries’ APIs only support
generating a pre-specified number of samples from the target probability distribution.
Suppose we also did that and that we want to generated samples over 104 dimensional
space using single precision floating point numbers. Then, generating 25000 samples
would take at least 1 GB of RAM. Running 8 such chains simultaneously, would
require 8 GB of RAM, which is the limit in most current laptop computers at the
time. This puts severe limitations on the simulations that we can perform (without
outputting samples to a hard drive).

Note, however, that we do not actually need to save all the generated samples.
Some of the most useful output analysis statistics can be calculated by simply looping
through the generated samples only once. To solve our memory issue we can simply
do our calculations while the process is running and discard the old samples which
allows our analysis framework to use only O(1) memory. We realise this idea by
employing the Observer pattern (see Gamma et al. [15]) — we create a base class
called observer for classes implementing arbitrary calculations on the output of our
process. Any class that inherits from the observer can register to our PDMPs runner
class. Then, whenever the runner gets a new sample from the PDMP, it notifies all
the observers with the obtained new value, thus allowing them to do the calculations
online. Note that this design does not put any restrictions on the output analysis as
one can implement an observer, which simply stores all the output into an array, or
writes the output into a text file, which would allow us to use the standard analysis
techniques.

We implement three output processors in our analysis framework — expectation,
autocorrelation and asymptotic variance calculators. The last two are quite tricky
to implement online and require some compromise. We refer an interested reader to
Appendix C for details on what autocorrelation and astymptotic variance is, why it
1s useful in output analysis of MCMC algorithms and a brief explanation on how we
calculate these quantities online. See Figure 4.1 for a graphical representation of the
analysis framework discussed in this chapter.
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9 Applications to MCMC Algorithms

In this chapter we show how the current PDMP based MCMC algorithms can be
efficiently implemented by using our framework, namely, the Bouncy Particle Sampler
[4] and the Zig-Zag process [2]. We further show how our analysis framework can assist
in solving the current research problems.

5.1 The Bouncy Particle Sampler

5.1.1 The Global Scheme

Suppose we want to generate samples from some probability distribution 7 over R¢
which we can evaluate only up to a positive normalising constant, that is:

7(x) x y(z).
Further, let
U(z) = —log~(z)
and call U the energy function.
Now consider a R = (X, V) state space, where the first d variables represent
position of a particle, while the last d variables represent velocity (just like in the toy
PDMP example introduced in Section 2.3.2). Define the intensity function A on such

state space as:
Az, v) = (VU(z),v)*

and define the reflection operation:

VU(SC)(VU(I))T) (VU(z),v)

Rlz)v=(1;-2 =0V = 2-——7"ZV(x

e G T RZETAR

where ||-|| is the L? norm. The reflection operator reflects the velocity v on the

hyperplane tangent to the energy function gradient at the given position z.

Further, let Aot > 0 be the refresh rate and let ¥ be a standard normal multivariate
d-dimensional probability density. The Bouncy Particle Sampler is then a PDMP,
given by the following generator:

Af(z,v) = (Vo f(z,v),v)
+ Az, y)(f(z, B(z)v) — f(z,v))

+ At [ (f(z,0) - flz,v))(v') dv'.

The first term is the linear flow, the second term corresponds to reflecting the velocity,
while the last term corresponds to simply resampling the velocity. See (27, 4] for jus-
tification of such procedure. Every point in the resulting trajectory generated by our
PDMP is a sample from the invariant distribution . The law of large numbers be-
comes integrating instead of summation. See Figure 5.1 for some samples trajectories
generated with different refresh rate parameters.
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Aref = 102 Aref = 103

Figure 5.1: The role of the refresh rate parameter in the Bouncy Particle Sampler. In each image,
a trajectory path of the BPS is plotted, where the target distribution is 2-dimensional standard
normal. Both too small and too large values of At lead to difficulties in exploration of the state
space. Indeed, it was shown in Bouchard-Coté et al. [4] that with Aref = 0 the resulting Markov
process need not be ergodic. See Figure 5.4 which shows how our framework can assist in searching
for an optimal value of the refresh rate. See examples/path_plotting/ in the project’s GitHub
repository for reproducing these plots by using our analysis framework.
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5.1.2 The Local Scheme

Now supose that

(@) = [ [ vz

feF

Then the energy function writes as a sum of (local) energies. Consequently, we can
associate a (local) intensity factor Ar and a (local) reflection operator Ry with each
factor f € F in the same way as we did in the global BPS scheme above. The local
Bouncy Particle Sampler is then a PDMP with infinitesimal generator given by:

Ah(z,v) = (V h(z,v),v)
+ D Az, y)(h(z, Ry(z)v) — h(z,v))

fEF

+ et [ (R(z,0") — h(z, )0 () dv'.

See [4] for full details. This local BPS scheme is extremely useful in scenarios where
we have a lot of factors and the dependencies between them are VEry sparse.

5.1.3 Implementation

The good news is that there is not really much that we need to implement. Indeed,
in Chapter 3 we have already efficiently implemented processes of such type. The
Poisson process simulation is model dependent and thus will have to be specified by
the user. So the only thing we need to do is implement the reflection operator, which
is easy to do.

To take away the burden of gradient calculations and basic probability densities
definitions we have added the Stan mathematics library developed by Carpenter et al.
[6] to our project, which was built for almost identical use case as ours (Hamiltonian
Monte Carlo simulations).

Finally, we provided a builder class for creating the BPS algorithm, which simply
takes our specificaly designed probability distribution class as input for adding factors
to the generator. The probability distribution objects encapsulate how to simulate
Poisson process jump times associated to them, while the BPS builder class in addition
adds reflection kernels as well as the refreshment kernel. See project’s code repository
for full implementation details. Listing 8 a code example of using the builder and our
probability distribution classes.

5.2 The Zig-Zag Process

The Zig-Zag process is similar to the BPS, except that instead of performing velocity
reflections, during each event time ir multiplies one velocity component by —1 (flips
that component). See Bierkens et al. [2] for details. This essentially means that we
can reuse almost all the code used to construct the BPS PDMPs — we only need to
change the reflection kernel with the flipping kernel. See the pro ject’s code repository
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Listing 8 Example usage of the BPS algorithm within our framework.

// Create a standard normal 2-dimensional distribution object.
RealMatrix covariances(2, 2);
covariances << 1, 0,
0, 1;
RealVector mean(2);
mean << 0, 0;
mcme: :GaussianDistribution gaussianDistribution(mean, covariances) ;

© 00O U W

// Create a PDMP simulating the BPS algorithm.

pdmp: :mcmc: : BpsBuilder bpsBuilder(2);

bpsBuilder.addFactor(
{0,1}, // Specify the model variables on which this factor acts.
gaussianDistribution);

// Add more factors if needed. ..

auto pdmp = bpsBuilder.build();

L S G GG
NO U WD~ O

// Now select a PDMP runner and output processors from the analysis
18 // framework to perform arbitrary actions as needed.

for implementation details. See Figure 5.2 for an example trajectory generated by
the Zig-Zag process. See Figure 5.3 for how our framework can be used to compare
the BPS and the Zig-Zag process.
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Figure 5.2: A sample path generated by
the Zig-Zag process on the bivariate stan-
dard normal distribution as its target. Note
that at the event times only one veloc-
ity component is changed. See /exam-
ples/path_plotting/ in the project’s GitHub
repository for code.

Figure 5.3: Comparison of asymptotic vari-
ances (see Appendix C) of the BPS and
the Zig-Zag process on a two-dimensional
standard Gaussian target, where the func-
tion we integrate along the path is the
squared L>-norm. Each algorithm was
run 42 times to generate the box plot.
We have used our analysis framework’s to
run many processes in parallel. See /ex-
amples/ compare _bps_ zig_zag/ directory in
the project’s GitHub page for the code used
to run this experiment. Note that no param-
eters were tuned for either of the algorithms,
this example is merely meant to demonstrate
the capabilities of our framework. Listing 9
shows the sketch of code used efficiently gen-
erate such graphs.

Figure 5.4: Comparison of asymptotic vari-
ances (see Appendix C) of the BPS algorithm
on a two-dimensional standard Gaussian tar-
get, where the function we integrate along
the path is the squared L?-norm. This graph
suggests that the best refresh rate for such
target distribution is approximately 1. See
/examples/bps_refresh_rate/ for code that
can reproduce this plot.



Listing 9 Sketch code for comparing different algorithms just as we did in Figure 5.3

1
2
3
4
)
6 >
7
8
9

10
11
12 }
13

double getBpsAsymptoticVariance() {

// Create a new BPS process and use our output analysis framework
// to run it and calculate the asymptotic variance.

return calculatedAsymptoticVarianceForThisRun;

double getZigZagAsymptoticVariance() {

// Same as above, but for the Zig-Zag process.

return calculatedAsymptoticVarianceForThisRun;

14 int main() {

15
16
17
18
19
20
21
22
23
24
25
26
27
28 }

ParallelWorkers<double> bpsWorkers, zigZagWorkers;

// Launch 40 BPS processes on 8 cores.

auto bpsAsymptoticVariances = bpsWorkers.executeTasksInParallel(
getBpsAsymptoticVariance, 40, 8);

// Launch 40 Zig-Zag processes on 8 cores.

auto zigZagAsymptoticVariances = zigZagWorkers.executeTasksInParallel(
getZigZaghAsymptoticVariance, 40, 8);

plotBoxPlot(
{bpsAsymptoticVariances, zigZagAsymptoticVariances},
{"Bps", "Zig-Zag"});

return 0;
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6 Conclusion

In Section 1.2 we have set the goal to build an efficient, flexzible, reliable, relevant and
easy to use framework for PDMPs simulation which will hopefully speed up future
research on MCMC methods. We will now briefly review how each of these 5 qualities
were achieved:

1. We addressed efficiency of our framework in Chapter 3 by choosing the right
tools and design patterns.

2. The flexibility of our process stems from the policy-based design and hierarchical
structure ranging from low level to higher level interfaces. A user of our library
can easily change any component of our framework.

3. Reliability was addressed by adding a carefully crafted autamated tests suite
(see Section 3.5).

4. We made sure our framework is relevant to MCMC researchers by complement-
ing it with MCMC output analysis tools described in Chapter 4 and Appendix C.
We further showed in Chapter 5 how our framework can help to solve some of
the current research problems (Figure 5.3 and Figure 5.4).

5. Finally, in Chapter 5 we demonstrated that the current PDMP based Monte
Carlo algorithms are very easy to implement by using our library.

We are by no means trying to suggest that our framework is perfect. There is indeed
a lot of more work to be done. For example, an abstract layer of standard bench-
marking problems could be added (ie., simulating from Gaussian distributions or
solving a Bayesian logistic regression problem). Newly developed algorithms would
then imediatelly get access to these problems. As a result, no additional code at all
would have to be written to compare it against the other implemented algorithms
(like the BPS or the Zig-Zag process).

Recall that one of the best features in our output analysis framework is the abil-
ity to implement output processors which do the calculations online. While due to
memory limitations discussed in Section 4.3 it is necessary to do analysis online for
extremely long runs, it is, however, not necessary for short simulations. In such a
scenario analysing the output using a language like C++ is clearly undesirable. This
problem could be completely solved by implementing an R interface to our framework.

6.1 Reflection on the Development Process

At the begining of the project I was accustomed to solving every programming prob-
lem I had by using inheritance. Being new to C++, I did not initially realise how
complex this language is and how many different ways of doing the same things it
offers. The implementation of our framework, as outlined in Chapter 3, was already
my second attempt. My first purely object-oriented design resulted in too deep class
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hierarchies and in the end reusing code was hard. This is when I came accross the
book by Alexandrescu [1] where the policy-based design was introduced, which seems
to be the perfect fit for our problem.

Writing a big test suite also played an important role in the development process.
It allowed us to catch many bugs, which would have otherwise been hard to track
down. Also, C+-+ compilers ignore template class methods that are never called. To
avoid surprises, it is important to have some code which calls all of our implemented
methods, to make sure that all of our framework compiles.

Finally, this project has served me as a great introduction to the Monte Carlo
methods. Designing the framework and thinking about code reuse helped me to
better understand the underlying theory. I hence hope that this report can also serve
as an accessible introduction to PDMPs to a non-expert in the field.

It would be nice, however, if we did not have to worry about defining the depen-
dencies graph (from Chapter 3) nodes ourselves and only think in terms of the factors
that we add to the generator. We thus implement a higher level builder class, which
takes a distribution as input and adds a relevant term to the generator of our process.
Also, we add Stan’s mathematics library, which implements reverse-mode automatic
differentiation and many common probability distribution functions so that we need
not to worry about these details.
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A Background Material on MCMC Methods

A.1 Motivation for Using Monte Carlo Simulations

In many scientific problems one has to compute an integral over some high-dimensional
space. Finding a closed form representation is usually infeasible and numerical ap-
proximation techniques have to be used. As the dimensionality of the integral in-
creases, most deterministic numerical integration techniques need to evaluate the
integrand at exponentially more points thus making such algorithms computationally
intractable. We will now briefly show how such integrals appear in Bayesian inference
(which is the main motivation for this project) and how Monte Carlo techniques can
be used to approximate them.

In Bayesian statistics (see Gelman et al. [17] for a great introduction), a probability
model is given by a joint probability distribution over the unobservable parameters of
interest § € © (where the dimensionality of © is defined by our model) and observed
data z. We define the model in terms of the likelihood function p(z|f) and the prior
distribution over the parameters p(9):

p(0,z) = p(z|6)p(4).

By observing the dataset = we gain additional insight into the distribution of param-
eters ¢, which is summarised in the posterior distribution p(f|z). We can calculate
the posterior distribution by applying Bayes’ theorem:

_ pl0,z) _ p(a]f)p(d)
POl = =

Calculating p(z) is also infeasible, except for the simplest models, and hence we
usually only have access to an unnormalised posterior density:

p(blz) o p(z|6)p(6).

We can express our quantities of interest in terms of expectations of the form:
Bavston |01 = | (6)p(6l2) a0

Now suppose we can draw random samples 01 6P from the posterior distribution
p(0]z). Then, using the strong law of large numbers we can estimate the above integral
by Sp = 237" f(8%). The central limit theorem then tells us that

Vn(S, —E[6 ~ p(6]2)] £(6)) & N(0,0),

where N(0,0?%) is a centred Gaussian random variable, 0% := Varg. . [f(6)] and

2 denotes the convergence in distribution. Hence the asymptotic error rate O(n~2)
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does not depend on the dimensionality of ©, which is the main advantage of the Monte
Carlo techniques for approximating integrals. However, it is not fair to say that Monte
Carlo algorithms beat the curse of dimensionality — drawing random samples from
arbitrary distributions can be hard and the resulting variance of our estimator can
also be unreasonably high.

A.2 The Metropolis-Hastings Algorithm

In this section we will introduce on of the most important Markov chain Monte Carlo
algorithms ~ the Metropolis-Hastings algorith (see Chapter 1.1 for a brief history).
We mainly refer to Liu [22] for presenting the following material.

Suppose we want to generate samples from a given probability density function?
7 defined over R?. In most realistic cases we can only pointwise evaluate some other
function v which satisfies v¥(x) o m(z). The normalising constant [, v(z) dz is usu-
ally unknown and impractical to compute. In traditional Markov chain analysis, one’s
goal is often to calculate the stationary distribution once the Markov transition kernel
is given. In contrast, the idea of the Metropolis-Hastings algorithm is to simulate a
Markov chain using a carefully chosen transition kernel, so that the resulting invari-
ant distribution is 7. We will now explain this algorithm (the pseudocode is given in
Algorithm 5) and prove its correctness.

Let {¢(-|z) | = € R?} be a family of probability density functions satisfying
Vz,y € R? g(z]y) > 0 & q(ylz) > 0. Assume that we can easily generate random
samples from these densities. Once our Markov chain is at state T, We propose a
new state y ~ g( - |x) which is accepted with probability r(z,y). The acceptance rate
function r is chosen in such a way as to ensure that the invariant distribution of our
Markov chain is 7.

In the original paper by Metropolis et al. [25] only symmetric proposal densities
were considered in the sense that Vz,y € R? q(zly) = q(y|z) and it was suggested to

use:

r(z,y) = min {1,M} =min{1,w}. (A1)

v(z) 7(z)

It is easy to explain this acceptance rate function — if we propose a new state, which
moves to a region with higer probability density with respect to T, we accept that
state with probability 1. Otherwise, we reject the proposed state with some positive
probability, which increases as the proposed state gets "worse" relative to the current
state. However, if the proposal densities are not symmetric, the invariant distribution
of the Markov chain generated using such procedure need not be 7. Indeed, suppose
that all proposal densities are strongly biased towards some small but very high
probability region with respect to 7 (e.g. if 7 is a standard Gaussian distribution,
while all proposal distributions are centered Gaussian with marginal variances very
close to 0). Then nearly all proposals will be concentrated very close to the origin

More precisely, we want to draw samples from some probability measure defined on a Borel
o-algebra B(R?). We assume that this probability measure is absolutely continuous with respect
to the Lebesgue measure, so that the probability density function 7 exists. We will be implicitly
making such an assumption throughout the whole text.
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and will be accepted with a very high probability. As a result, our Markov chain’s
invariant distribution will overrepresent that high probability region and thus will
be different from 7. This issue was addressed by Hastings [21] where the following
acceptance rate function was suggested:

r(z,y) = min {1,209 _ . f . 7(y)e(aly)
(.v) {l’v(l‘)q(ylx)} {l’w«c)q(yra:)} ' (A2

The new term ¢(zy)/ q(y|x) compensates for the flow bias introduced by the family
of our proposal distributions.

A formal proof showing that the acceptance rate function given by Equation A.2
guarantees 7 to be the invariant distribution of our simulated Markov chain is sur-
prisingly simple. Let T(z,-) be the transition density function once our Markov chain
is at state z. For z # y, we make a transition from z to y if we propose to move to
state y and also accept this move. Hence for r # y we have T(z,y) = q(y|z)r(z,y)
and thus:

(2)T (2, y) = 7(x)q(y|z)min {1’ %%}

= min {7(z)q(y|z), 7 (y)q(z|y)} .

Since the right hand side is symmetric in z and y it follows that the detailed balance
equations hold:
2,y € RY n(2)T (2, ) = n(y)T(y, z).

We further deduce that
[ e,y do - [ 5 @T,)de = n(y) [ 102w = (),

which proves that 7 is an invariant distribution of our reversible Markov chain. Show-
ing that the resulting Markov chain is also ergodic (i.e., a Markov chain for which the
law of large numbers holds) is somewhat more complicated and we refer an interested
reader to Robert and Casella [29, Chapter 6).

An obvious difficulty of the Metropolis-Hastings algorithm is choosing the family
of proposal distributions — a choice which does not capture the main properties of the
target distribution 7 will lead to very slow exploration of the state space. It is also
noteworthy to mention that unlike in ordinary Monte Carlo techniques, the samples
generated by MCMC algorithms are correlated, which makes output analysis harder.
We will discuss how the efficiency of correlated samples can be calculated once we
introduce our MCMC algorithms analysis framework.
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Algorithm 5 The Metropolis-Hastings algorithm

Initialize z, arbitrarily on the support of target distribution 7
fori=1,2,... do

Generate y ~ g( - |z;_1)

Generate U ~ Uniform(0, 1)

if U < min {1, e} then
T,y
else
Ty < T
end if
end for
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B The Toy Example Poisson Process Time Simula-
tion

We will derive exact formulas for simulating the Poisson process times for the toy
PDMP from Section 2.3.2. Let the state space be Z = R* = R¢ x R? = (X, Y). We
have the flow function given by ¢((z, v),t) = (z + vt,v) and the intensity function
given by A(z,v) = max{0, (z,v)} We give all the credit to Bouchard-Coté et al. [4]
for the derivation of the following results.

Note that we can write (with |-| denoting the L2 norm):

Ao((z,v),t)) = Mz + vt, v)
= (z +vt,v)"

(Pt Y

(A lz+ v\
C\dt 2 '
Now note that ||-|| is a strictly convex function. It thus follows, that for a given
(z,v) € R* 37* > 0, such that £ llz + vt||? is negative for t € (0, 7*) and positive for

t € (7%,00). We can calculate the value of 7 exactly, by solving %Hx + vt]|? = 0 for
t (and setting 7* = 0 if the solution is negative). One can easily verify that:

(z,v) ) i
"= - ) (B.1)
( lo]?
Now lets see how we can use Algorithm 2 (the time scale transformation algorithm)

for simulating jump times of our PDMP. We first simulate [/ ~ Uniform(0, 1) and try
to find the smallest 7 > 0 such that

/OT)\(¢((x,v),t)) it = /0 (%Mz—mfﬁ>+dt — —logU.

Now note that we can rewrite:

T(d lz+otP\ 7T /T* /T d ||z + vt|?
ol Ll N I ¢ el el
/0<dt 2 db= | O+ | 3

T 2
:/ d |z + vt @t

T* dt 2
Mz +or]? |z ur|?
- 2 - 2
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Hence, to get the jump time we need to solve the following equation for 7:

et orlffeorlt

If 7% = 0, the equation becomes:
[v]]*72 + 2(x, v)7 + 2log U = 0

and solving for the positive root, we obtain:

7= '[1}1”2 (=tz.) + /T, ) = 2o log U).

If 7* > 0, ten by using Equation B.1 we get the following quadratic equation:

[v]]*72 + 2(z, v)7 + 2log U — %’)%i =0

with the positive root giving:

1

TP

(-(w,v) + v/ —2|v|? log U) :

This concludes the derivation of equations for the jump time simulation of the toy
PDMP from Section 2.3.2.
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C On MCMC Output Analysis

In this chapter we present the basic theory behind the tools implemented in our
output analysis framework that can be used to objectively compare different MCMC
algorithms. We refer to Brooks et al. [5, Chapter 1] and Liu [22, Chapter 5], where
more thorough treatment of the following material can be found.

Suppose we have generated n random samples z(M) 22 , 2™ using some MCMC
sampler with invariant distribution 7 and further assume that z(1) ~ 7 (usually ob-
tained by throwing away some initial part of the simulation, waiting for the Markov
chain to converge to 7). Then, for an arbirary function f, we can estimate K, [f(X)]
by:

R :
~o_ 1 (i)
fin 1= — ;:1 f).
Had our samples been independent, we would have Var[fi,] = 2Var,[f(X)]. Unfor-

tunatelly, samples drawn from a Markov chain are generally not independent. Under
certain regularity conditions, the Markov chain CLT tells us that as n — oo:

S 197 1 -
Varlfin] = - = ~(Vara[f(X)] + 23 Cov[f (), f(Xua)])  (C.1)
k=1
where Xj, X,,... is the Markov chain (with X; ~ 7) from which we generate the

samples. The term denoted by ch2¢ in Equation C.1 is called the asymptotic variance.
Essentially, if we want to compare two MCMC algorithms which generate samples
from the same distribution at the same speed, the one with lower asymptotic variance
is better since it provides a more reliable expectation estimator.

C.1 Autocorrelation Function

Let p == Corr[X;, Xi1+x) and call it lag-k autocorrelation. We can then rewrite Equa-
tion C.1 as follows:

Varfi] = Y2y 55 ) (€2)
k=1

Hence, to compare two MCMC algorithms generating samples from the same distri-
bution we can simply plot their autocorrelation functions, which act as a proxy for
estimating the asymptotic variance. See F igure C.1 for an example.

However, such an analysis does not take the speed of the samplers into account. To
see why it is problematic, consider the following scenario: samples generated using one
MCMC algorithm may possess bigger correlation than samples produced by another
algorithm. However, assume that the first algorithm generates the samples much
faster. Then it may still be preferable to use the first algorithm, which could produce
better expecatation estimates within a fixed time budget. This issue is solved by
comparing how many effective samples each algorithm produces per time unit. See
the next section for details.
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\ ‘ Figure C.1: An example of autocorrelation plots.
|| We simulate two Markov chains to generate sam-
| ; ples from N(0,1) distribution according to the
l ! Metropolis scheme described in Equation A.1,
B with proposal densities g(-|zr) = N(z,02). The
‘ \ red curve is the autocorrelation function of the
samples produces by such a MCMC algorithm us-
ing 0 = 1. The blue curve was generated using
o2 = 0.1. It is easy to see from the grap, that

ol \Mf\ setting o2 to 0.1 results in too slow exploration of

e — the state space.

Correlation

Finally, we want to briefly discuss how to calculate the autocorrelation function.
Essentially, what we want to do is estimate pr for any given value of k (up to some
upper bound for which we want to generate our plots). Recall that:

_ Cov|[f(Xy), f(X111)]
’ Var, [f(X)]

so after generating n samples from our MCMC algorithm, we can estimate py by
computing:

n—k

@ _ p (i+k) _ 5
=1 Un

where we estimate 62 from our MCMC output simply in the same way as we estimate
any other expectation.

Recall that in our framework we implement an output processor which calculates
autocorrelation statistics online. We face one difficulty, however, because we cannot
reliably estimate /i, and 2 at the beginning of the simulation. Even though this is
not ideal, to solve this problem we simply start estimating the correlations after our
output processor has obtained a pre-specified number of samples (e.g. a trajectory
of length 1000 was already generated). We can then use these samples to get initial
estimates of [, and 62 and start using the estimator from Equation C.3. As the
simulation progresses, we keep updating the values of f,, and 62 so that we get better
and better estimates with the later samples. Such procedure results in an online
computation of autocorrelation function at the cost of some extra noise.

C.2 Effective Sample Size
As we have briefly mentioned already, we would like to have some way to compare

MCMC algorithms which also takes the running time into account. Define the inte-
grated autocorrelation time (IACT) as:

(o]
Tint =1 +22pk.
k=1

Now note that by Equation C.2, having nny, samples from our MCMC algorithm
has the same effect (in terms of variance of our expectation estimator) as having n
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independent samples from our target distribution 7. Hence, we define the effective
sample size of n samples obtained from our simulated Markov chain by the following
equation:
n
Neg == ——.
Tint
To compare the performance of different MCMC algorithms we can then run them
for the same amount of time and compare the number of effective samples produced
by each algorithm.
A question remains, however, of how to compute the Tinge Which contains an infinite

sum in its expression. Note that

2
gy

Timt, = Var,[f(X)]

where o7 is the asymptotic variance. Estimating Var,[f(X)] is trivial from the sam-
ples of our MCMC algorithm output, so we only need to worry about 0/%. We will
now describe how to estimate it using a method called batch means!.

Suppose we have drawn samples z(V), (2 , 2™ from our MCMC sampler. Now
assume we take a contiguous segment of samples @, .. z(M) and for simplicity
denote kK = m — [+ 1. Then assuming that & is large enough, from the Markov chain
CLT we have:

—= Y16~ Viu & N(0,03
1=l

where u denotes E,[f(X)] and & says that the expression on the left is approxi-
mately distributed as the random variable on the right. We can hence partition
AONIC ,z™ into a number of batches from which we can obtain samples from
N(0,0%), after which estimating 0% is trivial. Choosing batch sizes requires trade-offs.
If we partition our samples into too many batches, the number of samples in each
batch may be too small for the Markov chain CLT to hold. On the other hand, too
few batches may result in too noisy estimate of U?. It is argued in Flegal et al. [14]
that taking \/n batches of equal length is often a good choice.

In our MCMC output analysis framework, we provide an output processor which
computes the asymptotic variance using the technique described above. The only
difficulty in doing the calculations online is that we do not know what the resulting
trajectory length of the process will be so we cannot choose the batch lengths in
advance. We thus need to maintain batches in real time, creating new ones and joining
the old ones as the process evolves. Our implementation maintains the following
invariant: at any point of the process where the total trajectory length generated is
T, we maintain n € [—‘/E—T, VT batches, where each bath length is in [VT,2v/T). We
refer readers interested in full implementation details to the project’s code repository
(see the src/analysis/ output_ processors,/ directory).

1For ease of presentation, we will describe the discrete case version. For continuous time Markov
chains we essentially just replace the summation with integration. See Bierkens et al. [2] for a
detailed description of the batch means method for continuous time MCMC algorithms.
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