HoNOUR ScHOOL oF COMPUTER SCIENCE
ParT C

MAGDALEN COLLEGE
UNIVERSITY OF OXFORD

Key Generation from Behavioural

Patterns using Smartphones

Supervisors:

Stefano Gogioso Subvg(z)tﬁecf \B;é/ d1
Bob Coecke &

Abstract

This project aims to create an Android application to generate cryptographic keys using
user-specific behavioural patterns. The behavioural patterns are recorded through sensors
on the Android device, and the keys are generated when required by processing the
recorded data from recent periods. This is done by applying the k-means algorithm to
classify the data, after which it can be discretised into voxels on which we will perform
statistical analysis. This naturally leads to the fact that the key used for encryption
and the one used for decryption will match if and only if the user maintains the same
behavioural patterns. Therefore, it will be difficult for a malicious entity to generate the
keys as they would be required to perform the same real-world activities as the original
user for an extended period of time. For the application to record user data, users input
activities they perform regularly and data for these is recorded when the activity starts.
All data is stored in an SQLite database. Graphs and charts are used to display the data
for testing but most of these would not be shown to the user.

Contents

1 Introduction
1.1 Roadmap of the Report

2 Background
2.1 Technical Terms

3 Requirements

4 Design
4.1 Using the Application
4.2 User Interface Designs
5 Key Generation
5.1 Preparation for Key Generation
5.1.1 K-means Clustering
9.1.2 Kemeans++
9.1.3 Gap Statistic
5.1.4 The f(k) Method
5.1.5 Using Cluster Data to Discretise Raw Datapoints
5.1.6 Creating a Probability Mass Function f@
5.1.7 Discretising the Range of f®
9.2 Key Generation
5.2.1 Error Detection
9.2.2 Putting Theory into Practice |
6 Implementation
6.1 Home Screen
6.2 User Activities
6.3 Recorded Data
6.3.1 SQLitein Android
6.4 Generated Keys
6.4.1 Displaying the QR code
6.4.2 Displaying Charts
6.5 Developermode
6.6 Threads
6.7 Design Patterns
7 Testing
71 Test Set 1
72 Test Set 2
8 Conclusion
8.1 Possible Improvements
8.2 Personal Development
83 Future Work

9 References

10
10
10
11
11
13
14
15
16
18
19
19

21
21
21
23
23
24
25
25
26
27
27

28
28
33

35
35
36
36

38

1 Introduction

Common authentication methods today use passwords to verify the identity of a user.
However, there is scope for cryptography and authentication without passwords - instead
of fixed information, the user is asked to provide data which only they can generate on
demand. We choose the route of using user-specific behavioural patterns to provide a
string of bits whose randomness is unique to each individual.

Smartphones play a vital role in many people’s daily lives, making them a natural
choice for collecting user-specific data. This project aims to implement a mobile
application to generate symmetric cryptographic keys from user-specific behavioural
patterns. Randomness will be provided through the use of built-in sensors available
on the majority of modern phones.

As the cryptographic keys will be generated locally and will never be stored or
transmitted, we can guarantee privacy of the data used for generating the key. Data
decryption will only be possible if the user’s daily habits are stable enough. If stability
decreases over time, this will provide a natural degradation of encrypted information over
time; a measure of this will be given by error detection. Statistical analysis methods will
provide robustness.

I have chosen to do this project because there is a possibility that this method of
providing security can become commonplace considering the way mobile devices are
used today. This would be done by providing an API to generate keys in the way this
application does; these keys could then be used by anyone with an Android phone to
encrypt their data. Developers are constantly trying to automate tasks so users can
perform actions seamlessly with minimal interaction. Following this reasoning, this
project can contribute to the way the average person uses their phone on a daily basis.
In the future, it would be possible to replace all passwords which are currently strings of
ASCII characters with cryptographic keys generated from behavioural patterns only when
needed. This would have the obvious impact of relieving people of the need to create,
remember, and type long passwords, and would have the further effects of providing
security without putting the pressure of doing this on individual users.

In this project, I have achieved my aim of creating a proof of concept for generating
security keys using user-specific behavioural patterns. I have successfully created an
Android application which records data through sensors while the user performs their
regular activities and have used this recorded data to generate cryptographic keys. This
application shows this method of key generation is feasible and that further work could
be carried out in the future to extend the project.

1.1 Roadmap of the Report

This report will begin by giving some brief information relevant to the project in Section
2, which the average reader may be unfamiliar with before moving on to laying out
the requirements of the final product in Section 3 Section. 4 will show my designs
of the application and how they were developed, which will lead on to Section 6: the
implementation of the presented designs. After this I will test the application and provide
results in Section 7 to show the project has been successful, as well as evaluate the
performance of the product. Finally, I will conclude with Section 8, in which I will
include an appraisal of not only the application, but also of my own methodologies and
personal development.

2 Background

Most Android devices are built with some basic sensors, including an accelerometer, a
magnetic field sensor, a pressure sensor, and many others. Depending on how one uses
their device, these sensors will obviously record different data. As no two people are
expected to have exactly the same daily lifestyle, there will be natural variations in the
recorded data for different people, which provides the security this project aims to achieve.

Android applications are programmed in Java, but many common Java libraries are
unavailable in the Android environment. For example, Java’s Swing library cannot be
used, as all user interfaces are defined using XML files. This restricts what can be done
statically without the use of libraries, as the default XML tags available limit developers
to a very small set of components. Basic components such as buttons and lists are
provided, but anything more graphically-inclined, such as a scatter chart, is impossible
with the standard Android XML tags. Therefore, instead of implementing various types
of graphs myself, I chose not to reinvent the wheel and to instead use an Android library
called MPAndroidChart available under the Apache Licence, Version 2.0 (PhilJay, n.d.).
The programmatic parts of the application are all written in Java.

2.1 Technical Terms

This report makes use of common Android and mobile terms, as well as some field-specific
jargon. This section provides an introduction to the terminology used, which should make
this report easier to follow.

e Status bar: The bar at the top of all Android screens which houses notifications as
well as persistent information, such as battery percentage and connectivity status.

e Action bar: A toolbar used by many Android applications which is specific to
only the application itself. Contains the application-specific menu button, optional
text, and extra menu icons which are seen as important enough to be displayed
separately to the regular menu.

e Toast: A floating message which disappears automatically after a fixed period of
time. Used to provide context-specific information (Figure 1).

o Trit: A generalisation of a bit from the values {0, 1} to the values {0, 1, 2}.

e Gray Codes: A type of binary encoding of integers where consecutive numbers
differ in exactly one bit.

Wifi enabled

Figure 1: An example Toast from this application, shown when unit testing sensors.

3 Requirements

Below are the requirements the applications must satisfy. These will be used to gauge
whether the application performs well enough, both in terms of usability for an end user,
and the stability of cryptographic keys produced.

1. The user must be able to generate cryptographic keys via statistical analysis of
sensor data recorded during regular user-specified activities.

2. Any generated key must not be stored, but instead regenerated when needed based
on recent sensor data.

3. The statistical methods employed must be stable enough to allow for the key to be
reconstructed successfully conditional upon sufficiently regular behaviour, such as
could be expected in daily and weekly activities.

4. The user interface of the application should be straightforward, giving the user clear
instructions where needed.

5. The statistical analysis must provide some guarantee that the generated keys are
random.

4 Design

4.1 Using the Application

Below are four flowcharts displaying how to use this application to generate security
keys. Flowcharts (a) to (c) are to be used by an average user, but Flowchart (d) is only
included for the sake of developing this application. If this were to be released to the
general public, this would not be available but it is included here to demonstrate the
workings of the application as it was developed.

> .,_.‘

Y
Click "Your Keys"
) 4
Click Green + icon
CT TR, \ 4
t Enter a key name and select
akey type
v
Wait for activity to start (app A4
does not need to be runnini
%) Click Generate
A) 4
Start | v
e —— Click the notification that =
appears when the activity is Return to the previous screen
v scheduled to start recording and click a key to see its details
Click "Your Activities' / ™ ;
v h 4 — T
5 Click the "Deprecated Keys™
Y. Perform the activity as normal button to see old keys v
Click "Toggle Developer
Click Green + icon eIt it ek
\ 4 A4
\ 4 Click the "Stop Recording" Click a deprecated key to v
Click an activity to edit details notification when finished see its details Click any of the newly
if;when needed displayed options for unit
l testing
4 . 2 b
" End) (End) (End) End
(a) (b) (c) (d)

Figure 2: (a) How to specify a new activity the user performs. (b) How to record data
for a pre-scheduled activity. (c) How to generate and view keys, including deprecated
keys. (d) How to access developer mode (used only when developing).

4.2 User Interface Designs

The following designs show the planned user interface for the application. These designs
only focus on what a real user would see, and ignore the developer mode shown in the
flowchart in Figure 2d. Note that all images used in the application will either be from
Android libraries, or from Openclipart, a website hosting free images with all rights
released (Openclipart, n.d.). As shown in these drawings, every screen has a question
mark in the action bar, which the user can click to display a dialog box containing help
and instructions, which addresses the fourth requirement in Section 3.

Figure 3 shows the first screen displayed to the user when the application is launched.
The layout will dynamically readjust when the phone orientation is changed.

MEISAEAETS
Z % %
=
|
~ X [[w)¥[x
MBS
(a) Portrait (b) Landscape

Figure 3: The home screen in the two different orientations.

e B L Pulable Keys 7 Depreceted Keys ¥

Activities You

Avallable Keys Keys No Longer Audible
e ~0c P —
T Y — =
— — ~
~— - PR 4R
— - g e Lo
—_— - pUER B
(a) User Activities (b) Available Keys (c) Deprecated Keys

Figure 4: (a) Clicking the calendar on the home screen shows a screen with a list of
activities the user performs. (b) Clicking the keys shows their available keys. (c) Clicking
the deprecated keys button on the Available Keys page shows a list of deprecated keys.

Figure 4 shows the remaining three screens that an end user will see. I have chosen to
make all of these similar by making them all lists with a similar format and colour scheme.
However, as the lists present different data, the layout of each list item will be different
(Figure 5). The User Activities list items will display the activity name, a checkbox for
whether or not the activity is being performed regularly, and a time and day(s) on which
the activity is performed. In contrast, the Available Keys and Deprecated Keys list items
will only show the key name, its type (e.g. 64 bit), and a key degradation indicator.

[P“J fs)]
[start {-’mg]
[29] time)

[/'\\C{ivijtj na.mej

(a) User Activities list item

\:Kej ”“MJ Eeﬂ ture] <

(b) Available Keys and Deprecated Keys list item

Figure 5: The two types of list items

When viewing the User Activities screen, the user can click the green + icon to add a
new activity. This will bring up the input form in Figure 6. Also, clicking an existing
activity in the list will show the same input form, but this time it will be pre-populated
with the data for the clicked activity.

(\j.tﬂe]

Evenf name . e

DC\ Y (5) : 1l M

Start time: :
Enc) time: £

Figure 6: The input form to add or edit an activity

When the + icon on the Available Keys screen is clicked, the user will be shown a screen
(Figure 7) where they can enter details for the new key and see a graph showing the
number of bit available from some of the activities they perform, so they have an idea of
where the bits may be selected from.

G'Ienera.fe Meu Heg 5

|

(6L bit]v]

& GENERATE f

Lunch
Grym
Rowing
Bredhpast

Figure 7: The screen shown when creating a new key

When a key is clicked from the Available Keys list, the user is shown a screen (Figure 8a)
with a barchart showing the activities from which the bits for this key were selected.
There is also a placeholder image where the key will be displayed, and a progress bar
showing how much of the key has been recomputed. Once the key regeneration is done,

the user is shown (Figure 8b) a QR code encoding the key, and a status indicator below
it.

[Key name] [V/AT) [Key name] POW

K23 f-jpe: 6L bit Kej fjfel 6L bit
QR code,
= iy

Compu\‘.ir\
3 32/ Stafus: U
Gy [
R°w..':5 i""' i |

L“ﬂ&“l “:, .

(a) Recomputing key (b) Displaying key
Figure 8: (a) The key must be recomputed before (b) it is displayed.
This concludes the designs of the application. I have shown designs for the flow of

the application and the user interface. The statistical analysis is more involved and is
therefore shown in Section 5 to aid the flow of this report.

N I R

o

5 Key (Generation

5.1 Preparation for Key Generation

The main task of this application is to generate cryptographic keys. To do this,
user-specific data is recorded as described in Section 6.2. The recorded data is nothing
more than some 1-, 2- or 3-dimensional coordinates. To give these coordinates more
meaning, we first perform the k-means clustering algorithm on them. Once clustering is
complete, we need only perform statistical analysis to manipulate the data to obtain the
keys.

5.1.1 K-means Clustering

K-means clustering is an unsupervised Machine Learning algorithm, which means it is
given input data without any corresponding output variables, and is given the task to find
an underlying structure in the data (Brownlee, 2016). Specifically, the k-means algorithm
takes an integer k and a set of datapoints S as an input. It partitions the points in S into
k disjoint subsets Si, ..., Sy such that the function W = EleEpegjd(uj, p) is minimised,
where d is a distance measure between two points and y; is the centroid of subset S;. In
other words, the algorithm splits the original dataset into k clusters. The algorithm is
straightforward and is explained in the pseudocode in Listing 1.

Listing 1: K-means Clustering

Select k points uniformly at random from the dataset to be the centroids
Repeat until centroids do not change:

For each point p in the dataset:

Assign p to the cluster for its closest centroid

Recompute the centroids of each cluster

There are many possible distance measure, such as Manhattan distance, Euclidean
distance, or supremum distance. I have chosen to use the Euclidean distance as is
conventional for this algorithm.

The problem with this algorithm is that it takes k as a parameter, but this will need
to be computed dynamically for each dataset as it will not be the case that every run
of every activity performed by every user will result in data with the same number of
clusters. The methods used to calculate the optimal &k are discussed in Section 5.1.3 and
5.1.4. The task of finding the optimal £ and then performing the k-means clustering
algorithm was too slow to be performed on the main Ul thread, so these are both done
in a background task (see Section 6.6). However, this was not the main problem with
the k-means algorithm. The issue was that the starting centroids are chosen uniformly
at random, so it is possible for the algorithm to converge to an incorrect clustering.
For example, in Figure 9a, two of the initial centroids are on the same cluster. When
this algorithm terminates (Figure 9b), the clusters are clearly incorrectly classified, even
though the algorithm began with the correct value of k. Therefore, the application uses
a slight variation of the k-means algorithm known as k-means—+-+.

10

 Cluster1 Cluster2 Clusterd Cluster4 = Cluster 5 M ster 1 Cluster2 Cluster3 & Cluster4 Cluster 5

W Clus

(a) Starting clusters (b) Final clusters

Figure 9: (a) The starting centroids are selected randomly, so the blue and yellow clusters
start too close to each other, while the pink cluster spans across two of the real clusters.
(b) The final configuration is clearly incorrect.

5.1.2 K-means++

Line 1 of Listing 1 states the starting centroids are chosen at random. This provides no
guarantees that the algorithm will converge to the correct clustering. However, Arthur
and Vassilvitskii (2007) show that by using a heuristic to assign the initial centroids,
we “obtain an algorithm that is O(log k)—competitive with the optimal clustering”. In
simpler terms, if a clustering C' has a cost COST(C), then the optimal clustering, Copr,
has cost COST(Copr) < O(logk)-COST(Chmsyt) + O(1). In comparison, there are no
approximation guarantees for k-means (Arthur and Vassilvitskii, 2007).

To select initial centroids with the k-means-++ algorithm, the first centroid is selected
uniformly at random from the dataset S. For the following initial centroids, choose point
D(p)*
qus D(g)? ’
from point = to any centroid already chosen. By doing this we increase the probability of
selecting points furthest from current centroids to be added to the list of centroids, giving
a reduced values for our objective function W right from the initialisation step. The rest
of the algorithm runs as k-means, and selecting centroids in this way does not add any
noticeable time on to the algorithm. However, as with regular k-means clustering, to
apply this algorithm & must first be known. The method used to select the optimal k is

discussed in the following sections.

p to be the centroid with probability where D(z) is the shortest distance

5.1.3 Gap Statistic

Tibshirani et al. (2001) proposed the “gap statistic” as a method to provide an estimate
for the k in k-means clustering. The method is based on the well-known “elbow method”
heuristic. The first step of the elbow method is to draw a graph as in Listing 2.

The graph will have a similar shape to the graph in Figure 10. As k increases, the
total error decreases. However, there is a point where an increase in k no longer reduces
the total error by much, making the graph look like an elbow. In Figure 10 this happens

11

© 0~ O O = Wi

I N

©O© o N O Ot

= e
Tk W NN~ O

fii
(o]

when k=3. This value of k is optimal.

Instead of looking at Wj directly, the gap statistic standardises the comparison
between log Wj, and a “null reference distribution of the data” (Tibshirani et al., 2001) -
i.e. a distribution where there is no clustering, such as the uniform distribution. Listing
3 shows how to find the optimal k using the gap statistic.

Listing 2: Elbow method

Choose K to be the maximum number of clusters we will allow
Initialise array W of size K

For int k <- [1..K]:

cs = clusters formed from running k-means clustering on dataset
For Cluster c <- cs:

mu_c = centroid of cluster c

For Point p <- c:

Wikl = Wlk] + (d(p, mu_c))"2

Plot W[k] against k

Sum of squared errors

e
&
©

4 5 5 7 10
Number of clusters (k)

7

Figure 10: Plotting W}, against k gives approximately this shape. The ”elbow
by eye. (Gove, 2015)

is judged

Listing 3: Gap statistic

Choose K to be the maximum number of clusters we will allow
Initialise an array Gap of size K

Initialise an array S of size K

For int i <- [1..K]:

sum_log_W_kb = 0
Initialise an array Wkb of size B (selection of B is discussed below)

// Calculate W for null distribution with k clusters
// Use the average from B null clusters

For int b <- [1..B]:

Create a null dataset nd

Wkb[b] = W_k calculated for nd

sum_log_W_kb += log(Wkb[b])

avg_log_W_kb = sum_log W_kb / B

12

b

NN NN NN R
O~ O U W N

[\
©

// Use avg_log W_kb to calculate the gap statistic
wk = W_k calculated for actual data
Gap[k] = avg_log_W_kb - wk

// Compute standard deviation and s_k for each k
s =0

For int b <- [1..B]:

s += (log(Wkb[b]) - avg_log_W_kb) 2

sd_k = sqrt(s / B)

S[k] = sd_k * sqrt((B+1)/B)

// Choose the optimal k
Choose the smallest k such that Gap[k] >= Gap[k+1] - S[k+1]

Note that Listing 2 shows that every time W, is calculated, the k-means algorithm needs
to be run once. Listing 3 shows W}, is calculated B + 1 times for each k, for a total
of k(B + 1) times. K-means can be a very slow algorithm if run on a large dataset, or
if unfortunate starting centroids are chosen. Therefore, when selecting B, although we
want B to be large enough to provide an accurate estimate of avg log W kb (log Wy
for the null reference distribution), we also want to keep it as small as possible to avoid
keeping the user waiting while the algorithm runs. To avoid running the algorithm so
many times, I then implemented another method of calculating k, explained below.

5.1.4 The f(k) Method

Pham et al. (2005) proposed a new method for finding the optimal k but left the method
unnamed. For this method, we first choose a K and define W, for each k € [1..K] as in
Section 5.1.3 (Pham et al. (2005) and The Data Science Lab (2014) refer to this as Sy
but we will use Wy, for consistency with the previous section). Next we define a weight
factor ay, for each & € [1..K] as follows:

3

. ifk=2and N; > 1

o — 4Nd 1 an d "
B 7 o g"“‘l ifk>2and Ny > 1

where NNy is the number of dimensions in the data. Finally, f(k) is calculated for each
k € [1..K] as follows:

1 iszloer_lzo,
f(k) = W
arWy_1

Clearly W}, decreases as k increases as introducing more clusters means the sum of
distances from points to their closest centroid decreases. The rate of decrease of Wi
is what we are interested in, as shown in the explanation of the elbow method in Section
0.1.3. ayWj_1 estimates W}, so the lower W, is than the estimate of Wi, the further
below 1 f(k) will be. As we are interested in finding a k where the decrease in the rate
of decrease (the second derivative) of W}, is the largest (the “elbow”), we want the value
of f(k) to be as low as possible. We can even use memoization to do this in one loop,
storing nothing more than the current and last values of oy, and W (Listing 4).

otherwise

13

O O 0~ Oy U n W b =

ottt
[N

P e
s Qo

Listing 4: f(k) method
Choose K to be the maximum number of clusters we will allow
best_fk = infinity
best_k = 1
k = 2 // alpha is undefined for k=1 so we start from 2
while k<=K:
Calculate W_k
Calculate alpha_k as explained above
Calculate f(k)
if (£(k) < best_fk):
best_fk = £(k)
best_k = k
prev_Wk = W_k
prev_alpha = alpha_k
return best_k

For this method, W} is only computed once for each value of k, which means we only run
the k-means++ algorithm K — 1 times, which is already more than O(B) times faster
than the gap statistic method. It is clear from this that the f(k) method will be much
faster than the gap statistic method, so it remains to be shown that the f (k) method
is still reliable for finding the optimal k. This was done through manual testing, and is
shown in Section 7.

5.1.5 Using Cluster Data to Discretise Raw Datapoints

To generate a key, we must use the data obtained from clustering to discretise the space
occupied by the datapoints. This is a very common Machine Learning technique which
will allow us to calculate a probability distribution for the raw data by considering the
probability of a newly recorded point falling in a given voxel.

For the following explanation, we consider some activity and sensor pair a for which
enough data has been recorded to generate a key *. To discretise the data, we first define
define min((la) and max((f) for d € {z, y, z} as the minimum and maximum values recorded
by the sensor in dimension d, i.e.

mingla) = mdin{dl (z,y, z) was recorded for a}

max((f) = mgx{d[(z,y, z) was recorded for a}
This will be the range for our discretisation in each dimension. We then require a step
size, i.e. the size of the voxels that the range will be broken up into.

To calculate this step size, we fetch from the database a list of standard deviations
for any cluster obtained by performing k-means clustering on the data recorded for a.
Let sff) be the median of the retrieved standard deviations in dimension d. This will be
our step size. The reason for taking the median value is for robustness - no user can be
expected to repeat their activities exactly as before without fail so taking the median
allows us to ignore outliers.

1We use a as a superscript, e.g. f(%), to denote variables relating to the activity-sensor pair a; this
should not be confused with exponentiation.

14

We now have the range and the step size for the discretisation, so we define numl(i@
to be the number of discrete cells in dimension d. This is calculated by:

@ _ [max&a) — minga)-’

num,’ = &
04

We take the ceiling for the division in order to ensure the range includes mint(ia) and
max&a). The diagram in Figure 11 visualises how these values come together to make the

discretisation more intuitive. Figure 11a represents the entire discretised space, ranging
from minfl“) to maxgz) in every dimension d. Figure 11b shows each voxel, of which there

are num{? - num{® - num'® in Figure 11a.

m ax(“)

\
numg
mind® me = (a)
Z
'nm(;’——%
i
=@
r\umg“) s \ fj
R =0
qug’—-———% B <

Y ()
/[num_’ ’[

mind max®

(a) (b)

Figure 11: A visualisation of the voxels in a three-dimensional space

5.1.6 Creating a Probability Mass Function f©
We use the voxels created in Section 5.1.5 to define a probability mass function
f@:{1,..., num,} x {1,..., num,} x {1,..., num,} — [0,1]

such that f(®(z,y, z) is the probability of a newly recorded point falling in voxel (z,y, 2).
As f@ is a random variable, we will calculate the sample mean and standard deviation:

u. = Blf9(z,y,2)]

o), = /Var(f@(z,y, 2))
Let 7 be an integer such that we have recorded data for a for 7 runs of the activity. From

here onwards, except in variable names and equations, the activity and the sensor will
implicitly be assumed to be a. Clearly

r

” 1
lu’.g:,?zl,z = ; Z fi(a) ('7:7 Y, Z)
=1

15

where fi(a) (z,y,) is the fraction of datapoints from run ¢ which fall into voxel (z,y, z).
This can be easily calculated by calculating the number of DBSensorEventEntrys for run
i in the database where the coordinates are in the required range, and dividing by the
total number of points recorded for run i. Both of these are done using a simple SELECT
query with the COUNT() function in SQLite. Similarly, we calculate the sample variance
to be

. R .
(0.7 = =7 DI (e 2) — i P
i=1

from which it is trivial to calculate the standard deviation as 0%, = 1/ (08%.2)2.
This in fact is everything we need from our probability mass function so we are now
able to move on to the final steps of preparation to generate a key.

5.1.7 Discretising the Range of f®

In the way that we discretised the space over which the recorded datapoints fall, we now
discretise the range of fé“gz for each (z,y,2). To avoid confusion with the symbols in
Section 5.1.5, we use the symbols m, M, and & rather than min, max and s.

Define mS%),, = f?iél fi(a) (z,y,z) to be the minimum calculated value of fi(a) (z,y, 2)

over all Tuns 4, and M{%), = max fi(a) (z,y, z) to be the maximum such value. This already
18T

gives a range for the discretisation of the probability mass function; a step size remains to
be found. The obvious choice, as in Section 5.1.5 would be to take the standard deviation
calculated in Section 5.1.6, i.e. ag(gag,z However, it is possible for this to be 0 (e.g. if no
datapoints fall in voxel (z,vy,2)), and we cannot discretise a space with a step size of 0.

Instead, we first define £(@ = median{ag(ffg,,z | ol . > 0}. We can then define
x,Y,2

m7y72;‘ -

—(a) _ o . ol >0
gle) otherwise

We can take 5%@ to be our step size with the guarantee that it will always be positive.

Discretising the range from m&“},z to Mggag)z is not as easy as simply dividing by 53(5‘,12,,2,
as we impose two more requirements on our discretisation. The first requirement is the
the number of cells must be divisible by three. By enforcing this, we can discretise the
range into small voxels of size 59(;2,z as well as into large voxels of size 3 - 63(&3,,2. This
allows us to use the cells as trits. The second condition is that the mean value of fé‘fy),z,
ie. ué‘f},,z, must fall in the (3% + 2)® cell, for some integer £ > 0. This will mean a
small variation of a point (one voxel to the left or right) in the small voxels will keep the
point in the same large voxel. This is best explained through Figure 12. The numbered
boxes represent the small voxels of step size 53(;,12,,2. The red numbers above the boxes
show the trit represented by the voxel below it, and the blue numbers number the large
voxels of step size 3 - 5’3(5“2,;4 We ensure ug(fz),z occupies a voxel labelled as 1 so that if
a future calculation of /,Lglg)/z shifts it enough for the new value to occupy an adjacent
box, although it will have a different red number, its blue number will remain the same.
Counting the number of voxels (z,y, z) where ,ugfé,,z falls in the wrong box will give us an
estimation of the degradation of the key. This is expanded on in Section 5.2.1.

16

Figure 12: A visualisation of the discretisation of the range of f @) (z,y, 2)

To meet these requirements, we define variables 19 and ule)z, respectively denoting
1y7 y

the number of small voxels below (l;(,y),z for lower) and above (ux,y » for upper) the small

voxel containing 4%
g Mzy,z-

u@ M. (ag gca%z l/(a) _ Ma(cag/ —mé‘f&w
Z,Y,2 _(a) ¥ Z,Y,2 —(G:)

Oz,y,2 Oz,y,z

We then tweak these variables to meet our requirements. Figure 13 shows the possibilities
that can occur if we construct our discrete cells such that /Lg(c 3), » falls in the (l'(z),z + 1)tk
cell. From this it is easy to see that we should extend the ran (ge over which we discretise
to meet the second requirement. We make /L;(,;a% . fall in the (Is4,. + 1)*™ cell, where
@ 41 #1%., =0 mod3
i =48, if 09, =1 mod3

l;(f;),z +2 if lé(?;)z =2 mod 3

M _ M
olafafol - _lelr]2] [olafad] -+ _Tolz]2]
L/—\r—_J __ S _ :
L2 L2
M5,
[elafofel - _Tofa]2]
L.’_\/,—J

(
e

Figure 13: The three possibilities for the voxel into which ué‘i},z

Similarly, we can use Figure 14 to identify that in order to meet the first requirement,
we should once more extend the range of the discretisation in order to discretise into

lﬂ(;,l?g,z % Lo u(za:?/z cells, where

u/x(a:;/)r' lf l(7yyz + 1 + Urlzt(?y),z = 0 mOd 3
(a; = /(Z/),z +2 if la(va@)/,z +1+ u;:(z;),z =1 mod 3

w, +1 18 +1 + . =2 mod3
This gives us our final discretisation, as shown in Figure 15. We have 1(02,,2 + 1+ ug(ca?),

(a) (a)
small voxels, and define V. (,y),z = Z—M to be the number of large voxels. The step

17

Mo Mo

Tl - 2o} Telal2 - lof1

-
e -
Tolalz[- Ti]2)

@
Yo

Figure 14: The three possibilities for the tri-arity of the number of voxels we have

@:@-W’fﬂ--ﬁﬂ

_

()
Vish e

Figure 15: The final discretisation. Note the last voxel is labelled 2 so the number of
voxels is a multiple of 3. Also note that ug";z falls in a voxel labelled 1. Thus both
requirements are satisfied.

size was calculated near the start of this section to be 53(;12,,2 However, we have extended
our range by adding voxels on either side of the original I, , and u, ., so we define a
new minimum and maximum for the range:

@ e e Ly e

Z,Y,2 = /’Lm,y,z T,Y,% 2 Z,Y,%

MO =@ 4 41y 5@

T,Y,% = ILI'fL‘,y,Z Z.Y,% 2 T,Y,2
At this point we store in the database the values m(a),, ., Mugy,., N(a),, . and 5 .
with the composite primary key as the activity and sensor pair? a that produced the
data which was manipulated to obtain these values. This concludes the preparation for
generating a cryptographic key.

5.2 Key Generation

We now have everything we need to generate or regenerate a security key as well as to
check robustness. To generate a key, we must first have performed the preparation in

Section 5.1.5 to 5.1.7. This preparation is done when data is recorded (see Section 5.2.2).
We recalculate u;“;z as we did in Section 5.1.6. The reason for this is that it is possible
the user has recorded more data for activity-sensor pair a since the preparation was first

done, meaning the expected value of f(* may have changed. We fetch mé“;z and 6&272

2A composite primary key in an SQLite database is one that spans over multiple columns. In our case,
each activity and sensor pair only appears in one record, but each activity or each sensor can appear in
multiple records.

18

and use these to calculate

@ _ | s — My
Jzyz = 3. 5@
*Ozy,z

which is the index of the large voxel into which the mean now falls, given any new data
that may have been recorded. Fetch Né?y),z from the database and encode each jg(ga?zz in
Gray codes using flogz(Ngg?),zﬂ bits. Finally, we loop over all z, y, and z and concatenate
the values of gé‘?,z to form a large bit string. This gives us a cryptographic key and can
be truncated to the required number of bits. The reason for using Gray code should now
be clear: if jéag),z differs by 1, the Gray code will only differ by 1 bit, by definition of Gray
codes, so the generated key (a concatenation of the Gray codes) will only have a single
incorrect bit. The statistical analysis performed on the key to generate it, ensures each
bit is equally likely to be 0 or 1, satisfying requirement 5 of the project.

However, we do not take this as our final key. We instead create multiple such keys
and take a small number of bits from each, concatenating them all to create one key of the
desired length. This means many different activity-sensor pairs will be used in creating
any key, so for any key to be forged, the malicious attacker would have to replicate various
different activities to a high enough quality rather than just one activity. For each key,
we store the ordered list of activity-sensor pairs used to create the key as well as the
number of bits obtained from each pair.

5.2.1 FError Detection

The small voxels can be used to detect errors. Calculate

@ _ piy e = My s
pz?y7z - —_ (CL)
O_CE,%Z

J mod 3

If u(za;z is close enough to the original value computed when preparing to generate the
key, p;“;z will be 1. Otherwise it will vary slightly to 0 or 2. This is the reason we use
trits rather than bits - using trits we can detect an error in either direction. We need
not consider the case where u&“;z varies enough for pé‘f’%,z to be 1, as this would require
u&“ﬁ,z to vary by at least three times the standard deviation. The probability of this is
negligible given we expect the user to be fairly regular with their real-world activities.

We can then measure the total error in the key as

(3 = b -)

z7y7'z

E =

v

where v is the number of voxels used to create the key (i.e. if the key only takes 2 bits
from an activity-sensor pair, it is possible it only used data from one voxel, so v =1 In
this case). E lies in [0,1.5] and is O if there are no errors in any of the used voxels. For
a completely random key, we expect 1/3 of the pg .. values to be 1, so 2 /3 of the voxels
will cause an error, so F will be 1.

5.2.2 Putting Theory into Practice

There are some practical concerns with the above description of generating a key. Firstly,
the preparation described in Section 5.1 needs to be done before the key can be made.

19

However, performing all of these calculations when generating a key would take too
long, keeping the user waiting while a background thread works on the preparation and
generation. Therefore, when a user performs an activity, k-means clustering is performed
as soon as the recording is finished. This batch processing is unnoticeable to users as it
happens in the background, and the user does not expect anything from the application
at this point. Also, once the clustering is complete, if the number of runs of the performed
activity is greater then 22 (a lower limit for the Central Limit Theorem to apply), the
preparation is done for any sensor which is not already being used in a key. The reasoning
behind this is that if a sensor is being used in a key, the values stored for My, ., May,z,
Ny, and Jz,y . should not be changed, but if a sensor is not being used, we should keep
these values up-to-date in case they are required for the next key to be generated.

Another concern is briefly touched upon in Section 5.2. A key is generated not by
one activity-sensor pair, but by many pairs. The implementation for this takes a random
number b of activity-sensor pairs, and each of these is used to generate a random number?
of bits such that the concatenation of these bits is a key of the desired size. To do this,
we need to be able to select activity-sensor pairs which will provide enough bits for the
key. We do this by storing the number of bits provided by each activity-sensor pair in
the database when we perform the key generation preparation, and select the key which
provides enough bits by fetching the required activity-sensor pair from the database.
Before generating a key, a chart is displayed showing the activities in the database which
can provide the most bits.

The final concern is displaying the key. The length of the key will be a multiple of 8,
which means it will be an integer number of bytes. We can use this fact to encode the key
as an ISO-8559-1 string, where each byte represents one character. This is then passed
to the ZXing library, which requires a string as an input, and will output the bitmap
for a QR code. This QR code is displayed to the user along with a chart showing which
activities were used to generate the key and in what proportions.

All of the above concerns deal with tasks that can take a long time and use up
resources necessary for keeping the Ul responsive. These are performed in a background
thread, as discussed in Section 6.6.

3These random numbers are pairwise independent as knowing one does not tell us the other, but they
cannot all be independent as they must sum to the key size.

20

6 Implementation

This section will discuss what was implemented, how it was implemented, and how it can
be used. This should give a detailed insight into all of the features of the application and
the important and interesting parts of the code without going into too much detail. Some
screenshots in this report contain a small white circle, as in Figure 16. The white circle
indicates where the screen was being touched while the screenshot was taken. These are
not a part of this application.

a | s

Security Keys SEIAGS

(a) (b)

Figure 16: The difference between the icon when it (a) is not and (b) is being clicked.
The white dot shows where the screen is touched, and will be seen in further screenshots
below.

6.1 Home Screen

The home screen displays only two buttons (Figure 17). As per Android convention,
long-pressing on either of these buttons (and any button or icon in the entire application)
displays a toast with a description of what clicking the button does (Figure 18).

Security Keys

Figure 17: The first
screen the user sees
when the application
X 2))) is opened. Only two
buttons are visible.
The view re-adjusts
dynamically when
the orientation of the
(a) Portrait mode (b) Landscape mode device is changed.

Security Keys

=

6.2 User Activities

Before using most applications, it is necessary for the user to perform some basic tasks
to set up the application in a way that suits them. For this application, this is done by
inputting data about activities the user performs via the User Activities screen which

21

Figure 18: A descriptive toast appears if
the user long-presses on (a) either of the
buttons on the home screen or (b) any
button in the application

Add new event

X 7

& User Activities

Activities You Currently Do
Thu

~ Sainsburys trip 21:00
2125
Weekdays
_ Breakfast 08:30
09:00
AllDays
~ Waking up 06:00
06:30
[Start time:
Morning run ¢
07:30
Allbays End time:
© Lunch in my room 12:30
13:00
AliDays
~ Going to bed 22:00
22:30

Figure 19: (a) The + button in the
action bar being clicked. (b) The input
dialog which appears, allowing the user
(a) (b) to enter details of a new activity

M Tacrn trin

can be reached by clicking the first button on the home screen. A user can create a new
activity by clicking the + icon in the menu (Figure 19a). This brings up an input box into
which the user can add their activity details (Figure 19b). On clicking “OK”, this activity
is saved in a database and displayed in a list along with all other activities entered. To
edit an activity, the user can click on the item in the list corresponding to that activity
to see another input box which is pre-populated with the details of the required activity.
If a user changes their lifestyle and no longer performs an activity, they can click the
checkbox on the list item corresponding to that activity to deactivate it. At this point,
an Alert dialog pops up which notifies the user of the keys using data from the activity
the user is trying to deactivate, and asks the user to confirm the deactivation.

If an activity is activated, the user is sent a notification exactly one minute before
it is scheduled to start. If they click this, the sensors on the phone are activated and
data recording begins. The reason for this is in case the user happens to not perform
the activity just for one day (for example, skipping a morning run while still intending
to continue a daily running regime). In this case no data should be recorded, so the user
will simply be able to ignore the notification. Assuming the notification is clicked, the
user is shown a new notification reminding them data is being recorded. This notification
is persistent, so the user cannot remove it by swiping it away.

Finally, once the user has completed their activity, they can click this persistent

22

Processing recorded data 1020 am.

Clustering data

Figure 20: On Android devices, a notification containing a progress bar is the standard
method of displaying progress for a task in a background thread.

notification to stop data recording. At this point the notification disappears and they are
shown a third notification. This notification includes a progress bar (Figure 20) which
shows the user how much of the recorded data has been processed and stored. This is
persistent while the processing is taking place, but can be removed once it is finished.
Thus data from activities the user performs can be collected with only two clicks from
the user - one to start recording and one to stop it.

The first of these notifications plays a sound from the phone speakers when it appears.
The next two notifications do not need to do this as they are merely state indicators rather
than event notifiers. All of these notifications are programmed so that if the device has
an LED light, it will flash orange when the notification is present in the status bar.

6.3 Recorded Data

Once data has been obtained, it is stored in an SQLite database. Data from new
points which have not yet been processed are logically stored as DBSensorEventEntry
objects; processed data only contains data from clusters after k-means clustering has been
performed (see Section 5.1.1) so it is stored logically as a DBClusterEntry object. Once
data is old enough, it is removed permanently from the database, ensuring the keys are
always calculated using fresh data.

The DBSensorEventEntry class contains fields for z, y and z values which represent
the datapoint recorded. The DBClusterEntry class contains a field for the centroid for the
k-means cluster, the standard deviations in the three different dimensions for all points
in that cluster, and the size of the cluster. In addition, both of these classes contain a
field for the activity ID, a field for the sensor ID to record which sensor this data comes
from, and a field indicating the run of the activity from which this object was obtained.
This way if an activity consistently provides similar data, but one run has completely
different data (e.g. if the user forgot to stop recording on time), the outlier run can be
easily identified. Obviously the activity ID is needed as each activity will give unique
data, so to recreate data for the cryptographic keys, we need to be able to identify where
the data came from or, more specifically, which activity it came from.

Although this is the logical representation of the data in the Java code, the data
stored in the table is merely stored as Strings and various numerical types, as SQLite
does not allow storage of complex classes.

6.3.1 SQLite in Android

Interestingly, using SQLite in Android is quite different to the regular method of
typing queries as Strings and executing them. Although queries take the same
form, they are executed slightly differently in Android. Consider the dummy query
“SELECT * FROM dummy_table” for the purposes of a short example (Listing 5). Line
2 returns a Cursor object from the android.database package. Counter-intuitively,
calling db.rawQuery() does not have any visible effect on the database. The query is

23

o o S e S gy S O
DU W H O O~ U W

=
o ~1

only performed when cursor.moveToFirst () is performed. This caused a lot of bugs in
my original implementation as the code for my deletion queries was being run without
affecting the database.

Listing 5: Initialising the SQLite database

// Define the query

String selectQuery = "SELECT * FROM dummy table"
SQLiteDatabase db = this.getWritableDatabase();
Cursor cursor = db.ranuery(selectQuery, null);

// Obtain and return the query results
ArrayList<DummyObject> dummyLlist = new ArrayList<>();
if (cursor.moveToFirst()) {
do {
DummyQObject o = new DummyObject();
o.setIntVariable(cursor.getInt(0));
o.setStringVariable(cursor.getString(1))
dummyList.add (o) ;
} while (cursor.moveToNext());

}

// Avoid memory leaks
cursor.close();

6.4 Generated Keys

To view the generated keys, the user must click the second button on the home screen.
This opens a new screen with a list of cryptographic keys the user has generated through
the use of this application. Each element of the list displays the name of the key (decided
by the user), and its strength (Figure 21a). As Emoji are commonly used by about 80%
of people in the UK (The Telegraph, 2015), the strength of the key is displayed as an
emoji which serves the added effect of giving the application a light, non-corporate feel.

To generate a key, the user clicks the green + icon in the action bar. This opens a
new screen where the user can enter a name for the key, select the type of key and see a
graph of some of the activities which are able to provide the most bits (Figure 21b). The
user can enter a name for the new key and select a type of key, and then click generate.
This will start the statistical analysis required to generate the bits of the key, and once
this is completed, the user is automatically taken back to the list of keys, with the new
key added.

If the user clicks on any one of the list items, they are taken to a page where the key
is first regenerated (Figure 21c) and then displayed (Figure 21d). The user can edit the
name of the key by clicking the pencil icon in the action bar. Although the key itself is
not displayed as text, a QR code of the key is shown (see Section 6.4.1), with a barchart
below it (see Section 6.4.2) showing the activities from which the bits for this key were
derived. This way, if a user wants to stop an activity, they know which key(s) will no
longer have access to fresh data. When a key deteriorates to the point that it becomes
unusable the user will see a sad or angry emoji as its status (depending on the level of
degradation), and can deprecate the key by clicking the bin icon in the action bar.

24

W N =

i

T &7 A 12pm Y 4 9%l 527 p.m.

€ YourKeys PO < ? & Testkey2da ? o &

Available Keys
Testkey 23 sabit (7

[Te:! key 22

Key type: 64 bit

New key name

6abit (3

Test key 21 6abit &3

64 bit

@

@

[T:st key 20

Testkey 19 128bit &3

]

Testkey 18 64bit 43

@

____Recomputing key Status:
2 70%

Testkey 17 128bit &3

Testkey 16 64bit (o

(a) (b) () (d)

Figure 21: (a) Existing cryptographic keys. The emoji on the right show the reliability
of the key. The “Deprecated keys” text at the bottom is clickable and takes the user
to a list of deprecated keys, similar to this page. (b) Clicking the green + icon in (a)
opens a screen which allows the user to edit details of the key to be created. (c) When
an existing key is selected from the list in (a), the corresponding key is regenerated, and
(d) is displayed as a QR along with further details.

S W 15 20 25 Moming run
Moring ron . e i et i

Sansturys o TR

Lunch n cotlege: P B .- Lunch n cotiege e
Usogn o detam rontey - g o i ey

Deprecating a key frees the sensor data that was involved in its creation, so that the new
data (which is clearly different enough from the original data) can be used to generate
new keys. Clicking the “Deprecated keys” text below the list of keys shows a list of the
deprecated keys. Clicking any one of these keys has the same effect as clicking an active
key, but these cannot be edited.

6.4.1 Displaying the QR code

The QR code is displayed as a regular image, which is generated using the ZXing (“Zebra
Crossing”) library. To do this, the cryptographic key is converted to a String, and this
Is used to create a BitMatrix using the ZXing library. This BitMatrix is then easily
converted into a Bitmap, which is the image displayed as the QR code. We perform the
task of converting the key into a Bitmap image in a background thread to avoid an ANR
dialog (see Section 6.6).

6.4.2 Displaying Charts

For this section, I will use a barchart as an example, but all other charts used in this
application are displayed in a similar way as they are all from the MPAndroidChart
library (PhilJay, n.d.).

Listing 6: Defining entries for a chart

ArraylList<BarEntry> entries = new ArrayList<>();
entries.add(new BarEntry(x, y));

BarData data = new BarData(entries);
barChart.setData(data);

25

The first step is to include a barchart tag in the XML layout file for the screen on
which to display the barchart. Next, Java code is added to create a list of entries and
add these to the chart (Listing 6).

Here x and y are placeholders for floats representing the z and y values of the
datapoints. This completes the minimum code required for a basic barchart. Extra
options can be added, either for aesthetic purposes (e.g. changing the bar colour, size
of points on a scatter chart, or adding animation) or for added detail (e.g. labelling the
axes or specifying which gridlines to draw).

An issue with the library causes an error if datapoints are added to the chart in
an unsuitable order. For some chart types, if the entries list above is not sorted in
increasing order of z-value, a java.lang.NegativeArraySizeException is thrown. The
documentation states this only happens for line charts, but actually the problem arises
for scatter charts and bar charts too, with no helpful indication of how to solve it. This
insufficient documentation resulted in this bug being a large time-sink even though it
stemmed from a minor issue.

6.5 Developer mode

As shown in Figure 17, the user is only shown two buttons on the home screen. However,
for the purposes of developing this application, I included more hidden buttons so I
could perform unit testing throughout the development process. The home screen menu
contains a “Toggle Developer Mode” option (Figure 22a). Upon clicking this, the user can
scroll through 14 more testing options, including an option to test the k-means clustering
algorithm implementation, an option to test the data recording done by the sensors, and
an option to display recorded data as basic line charts (Figure 22b). The developer can
click the arrow on the right of these options to view a description of the item, or click
the item itself to be taken to a testing page. Developer Mode also changes the menu so
database tables can be reset to a state required for testing (Figure 22c). For more detail
on tests performed using these buttons, see Section 7.2.

LU 86% 4 4:31 pm.

SECTGS Toggle developer mode SETVAGT Toggle developer mode

Clear Stored Data

W Clear lly Stored Data
1

Clear User Events Data

A

Your Activit

Your Teles Y
Reset Existing Keys Data
bl Visualisation -
Clear database

View heatmaps for f(2) v View heatmaps for f(®) v
View clusters as heatmap v View clusters as heatmap Y

Display specifically recorded data v’

[View clusters as scatterplot Vv] [View clusters as scatterplot WV]
[Display specifically recorded data v’] []

View line graphs of recorded datav’ View line graphs of recorded data'v’

(a) (b) ()

Figure 22: (a) A “Toggle developer mode” option is included in the menu for debugging
purposes. (b) Clicking the button shows various hidden options used for testing. (c) The
menu is also expanded when in developer mode.

26

6.6 Threads

Many of the processes used in this application take too much time to be done on the
UI thread (also called the main thread). When a task is being performed on the UI
thread, the screen effectively freezes - the user cannot interact with the screen at all.
Therefore, if a process on the UI thread takes longer than about a second, it should be
performed on a background thread to avoid blocking the main thread. However, even if
this is not done, it is impossible for the UI to stop responding entirely due to a failsafe
in the Android operating system. This failsafe is the ANR dialog (“Application Not
Responding”) (Google, n.d.) (Figure 23) and allows the user to decide whether to allow
the lengthy operation to continue or to force the application to close.

6.7 Design Patterns

When writing code in an Object Oriented language, it is always a good idea to follow
common design patterns, as well as to adhere to the four pillars of Object Oriented
Programming. One design pattern I have used is the Factory Pattern to instantiate
classes for the statistical analysis on the recorded data. Another interesting pattern is
the Null Pattern which I have used when a database lookup fails to return a relevant
value, in which case I return a Null object rather than the null value. Moreover, I have
carefully implemented inheritance to reduce the complexity of my code; I am able to
call methods defined in an interface or an abstract class, which are performed by the
implementation in a concrete class.

Async Examples isn't responding.

Do you want to close it?

WAIT OK

Figure 23: If an application is unresponsive for too long, an ANR dialog appears. (Google,
n.d.)

As stated throughout this report, all lengthy tasks are performed on background threads.
This ensures the application continues to be responsive and provides a smooth user
experience.

7 Testing

The following section details the testing strategy and shows the results of testing. All
testing for this mobile application has been carried out on a Samsung Galaxy S5 running
Android version 6.0.1. The white dot described in Section 6 appears in many of the
following screenshots to show where the screen was being touched when the screenshot
was taken.

7.1 Test Set 1

The following tests are all performed by simply using the application as an end user
would. However, some tests, e.g. test 4, will need to be verified by checking the logs as
a regular user would not be able to verify them.

Test 1: Do all buttons, list items, and menu options take the user to the
correct screen or open the correct dialog? All buttons have been tested multiple
times over the course of the development process and they all perform the expected

function.

Test 2: Is the user able to add and edit activities they perform?

€ UserActivities

Activities You Currently Do

Thu
= Sainsburys trip 21:00
2125

Weekdays
- Breakfast 08:30
09:00
AllDays
= Waking up 06.00
0630
‘AliDaya
1 Morning run 07:00
0730
Allbays
7 Lunch in my room :

] Going to bed

! Sainsburys trip

Thy
{2 Breakfast :

Event name: Test event

fi Oay: Woekends

7 Waking up ¥
3
1 Moming run z

3 Lunch In my room
134

{1 Testevent

" Goingtobed

()

Figure 24: (a) Clicking the green + icon brings up (b) an input form where the user can
enter details about the new activity. (c) The list of activities is updated dynamically to
show the new activity, which can be clicked to show (d) an input form to edit the activity
details. (e) Clicking OK saves the new data, which updates the list again.

(e)

28

Test 3: When an activity is scheduled to begin, does the user receive a
notification to start recording data?

= Ty 9 5¢ V67025 mom 5 My o)

5:59 p.m. Mon, 15 May

THOM AN NS

& User Activities ? = Q b { ¥ 5]

Fight Moble Scroen =1 Sansburys trip E 3 Fight Moblle Screen
Localon 1ode dus rotation Locatlon 1ode dura rotation
[7 Testevent
Q S Finder <% Quick connect Q. SFinder <% Quick connect
" Breakfast :

USB for file transfer Mm;m Recording data 602pm,

Touch for more options. [% Waking up o Event: Dinner
06:30

‘AllDays USB for file transfer
Touch for more options.

Event "Dinner” is starting 559 pm.
© 18:00-19.00

|
o
S
=
S

~ Morning run 07:00

! Lunch in my room 12:30

a2
W N G
BB

$

‘AlDays
18:00
:00

= Dinner

background thread re

(a) (b) (c)

Figure 25: (a) This notification appears one minute before an activity is scheduled to
begin. The device also plays a tone, and the notification LED lights up as orange.
Behind the darkened notification dropdown, the Dinner event can be seen as starting
at 6pm, and the notification timestamp shows it was displayed at 5:59pm. (b) Clicking
the notification shows a toast confirming sensors are recording data and (c) places a
permanent notification in the status bar while data is being recorded.

Test 4: Is data recorded and stored when an activity is performed?

1724 pm. Mon, 15 May

SHONXRwHED

Flight Mabile Screen
mode dats rotation

&Hoe—— O

) (13
7:24 5. Mon, 15May =

FHOE AN ND

Flight Mobile Screen
made data rotation

e

WeFL Location

. Sainsburys trip
Q SFinder <% Quick connect

Q SFinder % Quick connect

Recording data 724pm. [estevent e Processing recorded data 724pm.
Event: Test event W—'
~ Breakfast R
[1 Waking up

[Morning run

~| Lunch in my room

AllDays

(a) (b) ()

Figure 26: (a) Clicking the permanent notification stops data recording and (b) displays
a toast notifying the user the sensors are being deregistered. (c) It also replaces the
notification with another one which displays the progression of statistical analysis on the
data and storing data in the database.

Listing 7: A few lines of the log showing database stores are completed successfully when
data recording is stopped

cluster stored: DBClusterEntry{activityID=19, run=5, sensorID=1,
centroid=(15.82, -10.55, 13.22), std_dev=5.479272121508821, clusterSize=30}

cluster stored: DBClusterEntry{activityID=19, run=5, sensorID=1,
centroid=(-18.73, -3.39, -1.44), std_dev=4.077403401319759, clusterSize=29}

cluster stored: DBClusterEntry{activityID=19, run=5, sensorID=1,
centroid=(-4.02, -9.80, 3.55), std_dev=4.3924547456504355, clusterSize=44}

sensor event stored: DBSensorEventEntry{activityID=19, run=5, sensorID=9,
point=(-5.97, 1.92, 7.54)%}

sensor event stored: DBSensorEventEntry{activityID=19, rumn=5, sensorID=10,
point=(5.75, -1.88, 2.26)}

sensor event stored: DBSensorEventEntry{activityID=19, run=5, sensorID=1,
point=(-0.25, 0.05, 9.77)}

Test 5: When a user stops performing an activity, are they notified of the
keys this will affect?

Disabling activity. The following

key(s) rely on this activity and will Disabling activity. No key currently

not be able to obtain new data until uses data from this activity so

j this activity Is re-enabled: disabling it will have no effect on

your keys.

Test key 22
Test key 23

(a)

Figure 27: (a) Unticking “Sainsburys trip” shows a list of keys which use data from this
activity. (b) Unticking “Test event” displays a different message as this activity is not
used in any key.

30

Test 6: Is the user able to generate cryptographic keys? This test matches
requirements 1 and 2. It can be seen from the graphs displayed below the QR codes that
the keys are generated from the data recorded from sensors, satisfying requirement 1. In
addition, Figure 28e shows the key being regenerated before being displayed, proving it
is not stored, but instead recomputed when needed.

NG 91%H 7:59 p.m N 4 91%E3 8:00p.m

€ YourKeys ?

< Generate new key ? < Generate new key

key 24
Available Keys fetheyas o Test key 24

Test key 23 6abit
[Test key 22 64 bit \:,]
bst key 21 64bit &5
[Test key 20 64bit (75]
0 2000 4000 6,000 8000 10000 12,000 0 2000 4,000 6000 8,000 10,000 12,000

[Test key 18 64 bit _/} e mmm..q._.,,
[Test key 17 128bit (63] Ssingburys rip - o Sainsburya rip - bw
[Test key 16 64bit (-3] Moming run I r Morning un l "
0 2000 4,000 6,000 8,000 10,000 12,000 0 2,000 4,000 6,000 8,000 10,000 12,000
Depricated keys: 20 B Bhts available from activity 3 ® Bus ovaloble fromoctty
(a) (b) (c)

-

< YourKeys X

Available Keys
Testkey 24 eabit (3 E

Test key 23 64 bit u}

é

Key type: 64 bit Key type: 64 bit

o

—

—

Test key 41 64 bit K./]

Test key 40 64 bit (&)] E
Testkey 19 sabit (5

it m 6] o o

G

—

—

Bt 28%
010 20 3 4 S0
it @ L
[Test key 17 64 bit ___/1 o 1 2 1 4 s ek oo o
Lunch in my room s 7, GBS AU BN
Testkey 16 128bit (=3 it (s bt et el
L 2 bxt we Lunch in colloge ™
o Ly —. Usage of data In this key
Depricated keys: 20 o 0 20 . 4 S0 00 20 T30 40 so
51 Activity usefulness for this key 1 Activity usefulness for this key
(d) (e) (f)

Figure 28: (a) The current list of keys, with the New Key button clicked. (b) The
screen for entering details for the new key. (c) Key generation progress is shown in a
progress bar at the bottom of the screen. (d) Once key generation is complete, the user
is automatically taken to the updated list of keys. (e) Clicking the new key starts the
key regeneration process. (f) The key is displayed as a QR code above key metadata.

31

Test 7: Is the user able to deprecate keys?

I 49D 847 pm.

€ YourKeys 2 3 2 9 Your Keys ? +

Available Keys Available Keys
Test key 24 sabit (5 Testkey 23 sablt (5

€ Deprecated Keys

Keys No Longer Available
Testkey 25 64 bit g‘-/

Testkey 23 64 bit U] Eﬂkeyu 64 bit \J] [Testkeysa 64 bit @]
[Testkeyﬂ 64 bit u] ['res:keyw 64 bit \0,] testkeyz‘? 64 bit :3]

[restkayao 64bit &5
[Tm key 19 6abit (Tx

[Tes(kzyw sabit (75 Test key 21 64 bit Q]
Testkey 18 128bit &5 [Tesﬂoey24 64bit (&3

Testkey 18 128bit &3 Status: (& Testkey 17 64bit (&3 Testkey 24 64bit (7
@ & ()
= o w2 ® e @ = =

testkey" 64 bit ::-J i VRS L N -,. [Testkcym 128 bit a bstkeyas 64bit &3

[Testkcy'ls 128bit (&3 mnm"' TSR Test key 15 eabit (&3 LTestk:yZé 6abit &3

0o wom ow e De;. _ated keys: 21 [Testkeysa 64 bit @]
Actway usetunes tor s key
(a) (b) (c) (d)

Figure 29: (a) The current list of keys, note the existence of “Test key 24” and the number
of deprecated keys at the bottom is 20. (b) Clicking the trash can icon deprecates the
key. (c) After deprecating the key, it is no longer shown in the list, and the number of
deprecated keys is incremented. The “Deprecated keys” can be clicked to reach (d) a list
of deprecated keys including the newly deprecated “Test key 24”.

Test 8: Is the key generated the first time the same as the key generated after
collecting more data for the related activities? This can only be tested by checking
the logs written when a key is first generated and when it is regenerated. I carried out
this test for multiple keys and found them to be unchanged even after collecting more
data. This satisfies requirement 3, as the key has been reconstructed successfully even
after adding some variance to the data by performing activities again.

32

7.2 Test Set 2

The next set of tests require developer mode. This is explained in Section 6.5. All of
these tests have been performed as unit tests while developing the application, but have
been redone to document them.

Test 9: Are all sensors able to record data?

Record Data Record New Data Security Keys

Activity Test activity 3
Activities recorded previously Gangih 6‘””“—*—‘"”"
S Instantaneous
g 7 Test activity 1 %) 5mins ; 7 Al
e Y QO 30mins Ll /&K
Test activity 2 QO 1hour !
K-Means++ Y [ty] o L L\new CIUSLELS 83 nedunap v J
Frequency () pally
Testing Sensors O e View clusters as scatterplot A4
e
Record specific data v O Fortnightly [Display specifically recorded data’
QO Monthly

Record da'a for line graphs 4 View linc craphs of recorded data
‘ C'.L ECT DATA ’ (smp nsconmne)

Y
(a)

QR code generator f(k) 4

€ View recorded data <

Data for Test activity 3

Activities recorded already Sensors

Test activity 1 Accelerometer_x 0 g 0
[Test activity 2 Accelerometer_y

LAcceIerometer_z

| &
1

e ;
|
] 4
]

[Test activity 3

Magnetic field_z

|
[
[Proximity
l

Pressure Teatactivity 30

(e) (f) (8)

Figure 30: (a) Clicking “Record data for line graphs” in developer mode. (b) A list of
activities for which data has already been recorded through this method. Clicking one
of these starts recording for that activity; clicking the plus icon records data for a new
activity. (c) Starting the recording. (d) Clicking “View line graphs of recorded data” (d)
A list of activites for which data was recorded this way, note the new addition of “Test
activity 3”. (e) A list of all sensors (continues off the screen). (f) The line graph for one
of the sensors for “Test activity 3”. The other sensors also display their graphs correctly
but their screenshots are omitted.

33

Test 10: Does the implementation of the k-means+-+ algorithm cluster data
as expected

Not finished yet
s k0

min max o c min max o ¢ k
0 2 15540 b 20 15540
. 2 " " —0 ” 15

Not finished yet
sk #

______ Centroids data

Actual centroids
(6.03,7.70,0.00)

el i " ” 1 "
- . (8.22,17.01,0.00)
- . . (19.41,2.07, 0.00)
K-Means 6o 1'.. -t % . 1 i i (12.20,7.13,0.00)
5 (15.08, 6.18,0.00)
£(k) v 2 n 2 n n "
Gap statistic v T
[| -'@;' ikl
oy s
3 of eneet
K-Means++ v YRR i
i R h i
~ i ~
T ol i
B ot 1 ot 4 Gl 3 o = o 8 ot o ik 5 3 s 8 G B i i o G G4 i
Record speclﬁc deta v Gm mﬂOD GWMJ.‘L@@) Gmm“ﬂﬂ) RUN ml@
(a) (b) (c) (d)

Figure 31: (a) Clicking “K-Means++" in developer mode. (b) The true centroids and
clusters are generated randomly with respect to the parameters at the top of the screen.
(¢) The initial clusters before running any iterations of the algorithm. The heuristic used
by k-means++ is good enough to already have most of the points classified correctly.
(c) The result after running the algorithm. (d) Comparing the actual centroids with the
centroids found by the algorithm.

£ Ly » »

Found centroids
(6.77,5.62,0.00)
(9.21,16.95,0.00)

(17.65, 6,05, 0.00)

Test 11: How do the Gap Statistic and f(k) method compare for finding an
optimal %k for the k-means algorithm? I performed both algorithms on randomly
generated clusters 30 times to find the average time taken and the number of times an
incorrect k£ was found. Correctness was measured by eye in case multiple clusters overlap,
i.e. although we expect 5 clusters, if two of them are very close together, we effectively
end up with four. The Gap Statistic method found the correct & 27/30 times and the
f (k) method found the correct k 26/30 times, so perform equally reliably. Timings show
f(k) is superior by far.

(i] B O >

Security Keys 20p's (i] B O >

B O
mn max o cs ¢ B mak @ min mox a cx & B maxk @ mn ma o e 2 B mak @
0_20 154001510 O_20 154001510 P20 1.5 400910
R e T B T
£l .ﬁ £l o » - -
..ﬁ = "
Ve
'-"-
" {%
o =
K-Means++ v e z
o -3
o A
e Sensors
SR
- 1
Record soaclfic datn v T
Teeked Optmalh . foona i 60#3ms Optovl =&
(a) (b) (c) (d)

Figure 32: (a) The two methods of finding %k are tested using the respective options in
developer mode. (b) The optimal k is found for randomly generated clusters. While the
algorithms are running, the user sees a progress bar. (¢) The Gap Statistic method took
an average of 5.94 seconds over 30 runs. (d) The f(k) method took an average of 0.18
seconds over 30 runs.

34

8 Conclusion

This project has shown it is possible to generate cryptographic keys using user-specific
data. These keys can be used by the owner of the mobile device to encrypt the data on
their device, or in place of a password, with negligible effort from the user. Even a user
whose lifestyle does not have many regular events can benefit from this application by
recording the few events that happen to be regular, e.g. waking up at a certain time or
having lunch at a certain place. Of course, such a user will be able to generate fewer keys
than a user with a more regular lifestyle, but the keys they do generate will be just as
secure as if their entire lifestyle was regular. Moreover, the application even encourages
users to be more active if there are insufficient bits to generate a key. Also, the keys
are specific to each user, so cannot be easily forged. The application is easy to use and
provides a graphical user interface to make it accessible to a layman. In addition, time
consuming tasks are performed on a background thread, so they do not restrict the flow
of the application.

The keys generated have been shown in the testing section to seem like a random
combination of high and low bits, but can be reconstructed accurately as long as the
user does not drastically change their habits. There is of course natural variance in the
recorded data provided by the fact that a human cannot be expected to repeat an activity
perfectly every time. However, this variance is not high enough to affect the security
key, as the preparation for generating a key described in Section 5.1.7 accounts for this
variance. In the tests, the recomputed key was the same as the originally generated key
even after an activity had been performed multiple times since the key generation.

8.1 Possible Improvements

Although all of the aims of the project were met, there are improvements that could be
made to my methodology and implementation. This section discusses improvements I
would make if I were to redo this project, or a similar one in the future.

One of the most important parts of any project is the design section. At the start of
this project, I drew up the designs shown in Section 4.2 and made rough notes regarding
the implementation and how various classes would fit together. However, these were not
thorough enough and I should have spent much longer fleshing out more detailed designs
in order to make the implementation easier. The lack of comprehensive designs meant
there were instances where I was forced to rewrite code because, wasting valuable time.

Another time sink stemmed from the lack of comments in the code I had originally
written. When I first started writing the code for the application, I failed to add comments
as I felt at the time that the meaning of the code would be obvious at a glance. However,
after taking a break from the coding for three weeks, I came back to the project to find
I was struggling to understand the flow of the application. Therefore, before adding any
new code, I added comments to all of the code I had written until that point, separating
similar methods by whitespace (e.g. methods to affect the interface were close together
and methods to react to interactions from the user were close together, but both of these
types of methods were separate from each other). Luckily, as this point I had not been
working on the project for very long so this did not take as much time as it could have
had I been further along. The next time I took a break from the coding, I came back to
find T easily understood the stage I was at and the next steps. In the future, I will be
mindful to write such readable code from the beginning of any project.

35

8.2 Personal Development

Through the course of this project, I have developed my skills in various aspects of
Computer Science. As expected, I am now much more familiar with the quirks of Android
applications. For example, the graphical user interface is defined using XML, and there
are many Java classes specific to the Android API which I am now comfortable using.
This is demonstrated by the fact that I have constructed a large application which runs
smoothly, has not been found to run into errors, and uses background threads to perform
arduous tasks.

Finally, T have further developed my knowledge of many courses I have taken by
actively applying what I already know to the project. I have developed my skills in
Object Oriented Programming through the use of good design patterns, as discussed in
Section 6.7. Furthermore, The graphs and heatmaps displayed in developer mode shown
in the testing section tie in directly to Visual Analytics, as does the K-means Clustering
algorithm implementation described in Section 5.1.1. Coincidentally, this algorithm also
links to Machine Learning, of which I have substantially improved my knowledge by
understanding how the application analyses the recorded data to predict a range in which
we expect the most datapoints to be recorded. Another course that links directly to this
analysis is Probability And Computing, from which I applied my knowledge of random
variables and manipulation of probabilities to reach conclusions about expected values.
Finally, the Databases course was invaluable in this project as all of the data is stored
in an SQLite database, for which I had to draw on my knowledge of SQL queries as
well as query optimisation, such as through indexing columns and using EXIST instead
of COUNT (columnName)>0.

8.3 Future Work

There is currently no other application available for Android devices which generates
cryptographic keys in this way, but there is still room for many new features to be added.
This application was simply a proof of concept to show this method can be used to
generate cryptographic keys, so there are possibilities for future expansions. The most
obvious of these possibilities is to expand the application to work on and in conjunction
with a wider range of devices so it has access to more sensors. For example, Android
Wear devices have a range of sensors that would be useful to record data which could be
sent back to the main device for processing and key generation.

Another future development could be to make the application play a more active role
in ensuring the user is performing the activities rather than having them faked by an
attacker. For example, if the user has scheduled activity A for a certain time interval,
some time during that interval a notification could appear asking the user to confirm
they are performing the activity. This would be something simple, such as “You are
scheduled to be performing [activity A]. Please take a photo to prove you are at the
correct location for this activity.” The user would then be taken to a camera internal to
the application (similar to how messaging applications allow pictures to be taken from
within the application) and would take a picture of their surroundings. This would be
analysed in terms of light intensity, colours used, shapes in the image, faces present, or
many other possibilities. There is no need to restrict this to only pictures, as it would
also work with sound recordings, analysing features such as the pitch, timbre, or volume
for background and foreground sounds. This would require reliable analysis of images
and sounds and was outside the scope of this project, but is a possibility for the future.

36

9 References

Arthur, D. and Vassilvitskii, S. (2007, January). ‘k-means++: The advantages of careful
seeding’. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1027-1035. Society for Industrial and Applied Mathematics.

Brownlee, Jason (2016), ‘Supervised and Unsupervised Machine Learning
Algorithms’, Machine Learning Mastery [Online]. Retrieved from:
http://machinelearningmastery.com/
supervised-and-unsupervised-machine-learning-algorithms/ [Accessed 23 April 2017]

Google (n.d.). ‘Keeping Your App Responsive’, Google Developer training article
[Online] Retrieved from: https://developer.android.com/training/articles/perf-anr.html
[Accessed 20 December 2016]

Gove (2015). ‘Using the elbow method to determine the optimal number of clusters for
k-means clustering’ [Online]. Retrieved from:
https://bl.ocks.org/rpgove/0060ff3b656618e9136b [Accessed 4 February 2017)

Pham, D.T., Dimov, S.S. and Nguyen, C.D. (2005). ‘Selection of K in K-means
clustering’. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, Vol. 219, No. 1, pp.103-119.

PhilJay, (n.d.). ‘MPAndroidChart’, Github repository [Online]. Retrieved from:
https://github.com/PhilJay/MPAndroidChart [Accessed 31 January 2016]

The Telegraph (2015), ‘Emoji is Britain’s fastest growing language as most popular
symbol revealed’ [Online], Retrieved from:
http:/ /www.telegraph.co.uk/news/newstopics/howaboutthat /

11614804/ Emoji-is-Britains-fastest-growing-language-as-most-popular-symbol-revealed.html

[Accessed: 14 March 2017)
Tibshirani, Robert, Walther, Guenther and Hastie, Trevor, (2001). ‘Estimating the
number of clusters in a data set via the gap statistic’. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), Vol. 63, No. 2, pp. 411-423.

ZXing, (n.d.). ‘Zebra Crossing’, Github repository [Online]. Retrieved from:
https://github.com/zxing/zxing [Accessed 28 January 2011]

38

